Assignment 2
 Communication Theory EE304

Submit Qts.: 2, 4, 6, 11, 12 and 13.

1. For each of the baseband signals,
(a) $m(t)=\cos 1000 t$;
(b) $m(t)=2 \cos 1000 t+\sin 2000 t$;
(c) $m(t)=\cos 1000 t \cos 3000 t$;
(d) $m(t)=\operatorname{sinc}(100 t)$;
(e) $m(t)=e^{-|t|}$ and $m(t)=e^{-|t-1|}$ (Observe that $e^{-|t-1|}$ is $e^{-|t|}$ delayed by 1 second.);
(f) $m(t)=e^{-|t|}$ if the carrier is $\cos (10,000 t-\pi / 4)$;
do the following.
i. Sketch the spectrum of $m(t)$.
ii. Sketch the spectrum of the DSB-SC signal $m(t) \cos 10,000 \pi t$.
iii. Identify the upper sideband (USB) and the lower sideband (LSB) spectra.
iv. For (i)-(iii), identify the frequencies in the baseband, and the corresponding frequencies in the DSB-SC, USB, and LSB spectra. Explain the nature of frequency shifting in each case.
2. Design a DSB-SC modulator to generate a modulated signal $k m(t) \cos \left(\omega_{c} t+\theta\right)$, where $m(t)$ is a signal band-limited to $B \mathrm{~Hz}$. Figure 1 shows a DSB-SC modulator available in the stock room. The carrier generator available generates not $\cos \omega_{c} t$, but $\cos ^{3} \omega_{c} t$, Explain whether you would be able to generate the desired signal using only this equipment. You may use any kind of filter you like.

Figure 1:
(a) What kind of filter is required in Fig. 1?
(b) Determine the signal spectra at points b and c , and indicate the frequency bands occupied by these spectra.
(c) What is the minimum usable value of we?
(d) Would this scheme work if the carrier generator output were $\cos ^{2} \omega_{c} t$? Explain.
(e) Would this scheme work if the carrier generator output were $\cos ^{n} \omega_{c} t$ for any integer $n \geq 2$?
3. Amplitude modulators and demodulators can also be built without using multipliers. In Fig. 2, the input $\phi(t)=m(t)$, and the amplitude $A \gg|\phi(t)|$. The two diodes are identical, with a resistance of r ohms in the conducting mode and infinite resistance in the cutoff mode. Show that the output $e_{0}(t)$ is given by $e_{0}(t)=\frac{2 R}{R+r} w(t) m(t)$, where $w(t)$ is the switching periodic square wave signal (unit amplitude between ($-\frac{\pi}{2}, \frac{\pi}{2}$) and zero elsewhere) with period $2 \pi / \omega_{c}$ seconds.

Figure 2:
(a) Hence, show that this circuit can be used as a DSB-SC modulator.
(b) How would you use this circuit as a synchronous demodulator for DSB-SC signals.
(c) In Fig. 2, if $\phi(t)=\sin \left(\omega_{c} t+\theta\right)$, and the output $e_{0}(t)$ is passed through a low-pass filter, then show that this circuit can be used as a phase detector, that is, a circuit that measures the phase difference between two sinusoids of the same frequency $\left(\omega_{c}\right)$. Hint: Show that the filter output is a dc signal proportional to $\sin \theta$.
4. Two signals $m_{1}(t)$ and $m_{2}(t)$, both band-limited to $5000 \mathrm{rad} / \mathrm{s}$, are to be transmitted simultaneously over a channel by the multiplexing scheme shown in Fig. 3. The signal at point b is the multiplexed signal, which now modulates a carrier of frequency 20,000 $\mathrm{rad} / \mathrm{s}$. The modulated signal at point c is transmitted over a channel.

Figure 3:
(a) Sketch signal spectra at points a, b, and c.
(b) What must be the bandwidth of the channel?
(c) Design a receiver to recover signals $m_{1}(t)$ and $m_{2}(t)$ from the modulated signal at point c.
5. Figure 4 shows a scheme for coherent (synchronous) demodulation. Show that this scheme can demodulate the AM signal $[A+m(t)] \cos \left(\omega_{c} t\right)$ regardless of the value of A.

Figure 4:
6. Sketch the AM signal $[A+m(t)] \cos \left(\omega_{c} t\right)$ for the periodic triangle signal $m(t)$ shown in Fig. 5 corresponding to the modulation indices,

Figure 5:
(a) $\mu=0.5$.
(b) $\mu=1$.
(c) $\mu=2$.
(d) $\mu=\infty$. How do you interpret the case of $\mu=\infty$?
(e) For the AM signal with $m(t)$ and $\mu=0.8$. Find,
i. the amplitude and power of the carrier.
ii. the sideband power and the power efficiency η.
7. Show the following,
(a) Any scheme that can be used to generate DSB-SC can also generate AM. Is the converse true? Explain.
(b) Any scheme that can be used to demodulate DSB-SC can also demodulate AM. Is the converse true? Explain.
8. In the early days of radio, AM signals were demodulated by a crystal detector followed by a low-pass filter and a de blocker, as shown in Fig. 6. Assume a crystal detector to be basically a squaring device. Determine the signals at points a, b, c, and d. Point out the distortion term in the output $y(t)$. Show that if $A \gg|m(t)|$, the distortion is small.

Figure 6:
9. A modulating signal $m(t)$ is given by:
(a) $m(t)=\cos 100 t$
(b) $m(t)=\cos 100 t+2 \cos 300 t$
(c) $m(t)=\sin 100 t \sin 500 t$

In each case:
i. Sketch the spectrum of $m(t)$.
ii. Find and sketch the spectrum of the DSB-SC signal $2 m(t) \cos 1000 t$.
iii. From the spectrum obtained in (ii), suppress the LSB spectrum to obtain the USB spectrum.
iv. Knowing the USB spectrum in (ii), write the expression $\phi_{U S B}(t)$ for the USB signal.
v. Repeat (iii) and (iv) to obtain the LSB signal $\phi_{L S B}(t)$.
vi. Determine the time domain expressions $\phi_{L S B}(t)$ and $\phi_{U S B}(t)$ if the carrier frequency $\omega_{c}=1000$.
10. (a) Sketch $\phi_{F M}(t)$ and $\phi_{P M}(t)$ for the modulating signal $m(t)$ shown in Fig. 7, given $\omega_{c}=10^{8}, k_{f}=10^{5}$, and $k_{p}=25$.
(b) Estimate the bandwidth for $\phi_{F M}(t)$ and $\phi_{P M}(t)$. Assume the bandwidth of $m(t)$ in Fig. 7 to be the third-harmonic frequency of $m(t)$.

Figure 7:
11. A baseband signal $m(t)$ is the periodic sawtooth signal shown in Fig. 8.
(a) Sketch $\phi_{F M}(t)$ and $\phi_{P M}(t)$ for this signal $m(t)$ if $\omega_{c}=2 \pi \times 10^{6}, k_{f}=2000 \pi$, and $k_{p}=\pi / 2$.
(b) Show that the PM signal is equivalent to a PM signal modulated by a rectangular periodic message. Explain why it is necessary to use $k_{p}<\pi$ in this case. [Note that the PM signal has a constant frequency but has phase discontinuities corresponding to the discontinuities of $m(t)$.]

Figure 8:
(c) Estimate the bandwidth for $\phi_{F M}(t)$ and $\phi_{P M}(t)$. Assume the bandwidth of $m(t)$ in Fig. 8 to be the fifth-harmonic frequency of $m(t)$.
12. An angle-modulated signal with carrier frequency $\omega_{c}=2 \pi \times 10^{6}$ is described by the below equations. Considering one at a time, find,

$$
\begin{aligned}
\phi_{E M}(t) & =10 \cos \left(\omega_{c} t+0.1 \sin 2000 \pi t\right) \\
\phi_{E M}(t) & =5 \cos \left(\omega_{c} t+20 \sin 1000 \pi t+10 \sin 2000 \pi t\right)
\end{aligned}
$$

(a) The power of the modulated signal.
(b) The frequency deviation $\triangle f$.
(c) The phase deviation $\triangle \phi$.
(d) The bandwidth of $\phi_{E M}(t)$.
13. A periodic square wave $m(t)$ (Fig. 9(a)) frequency-modulates a carrier of frequency $f_{c}=10 \mathrm{kHz}$ with $\triangle_{f}=1 \mathrm{kHz}$. The carrier amplitude is A. The resulting FM signal is demodulated, as shown in Fig. 9(b). Sketch the waveforms at points b, c, d, and e. (Hint: Refer Sec. 5.4 (Fig. 5.12) of [B. P. Lathi, 4/e])

(a)

(b)

Figure 9:

