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Abstract—Random projection (RP) based detectors achieve
an asymptotically faster detection than linear low complexity
massive MIMO detectors with a comparable error performance.
To characterize the complexity v/s error performance trade-
off, this work paves a way to obtain the exact symbol error
probability (SEP) for RP-based detectors. Given the Rademacher
or very sparse random projection (VSRP) distribution of the
projection matrix, this work proves the columns of projection
matrix to be orthogonal with high probability, as stated in the
Lemmas III.1 and III.2. This leads to obtaining the distribution
of the random projection detector statistic and thereby leads to
obtaining an exact SEP for a projection matrix with orthogonal
columns in massive MIMO communication networks.

Index Terms—Random Projection, Orthogonality, Detection.

I. INTRODUCTION

Rapid advancements in wireless technologies and futuristic
paradigms like the Internet of Everything (IoE) have led
to dramatic user applications like, augmented/virtual reality,
smart homes, smart agriculture, autonomous navigation, and
self-driving automotive, etc., requiring to connect billions of
devices that demand a pervasive, reliable wireless connectivity
and infrastructure [1]. The massive multiple-input multiple-
output (MIMO) and millimetre wave technologies, working in
conjunction, can provided the radio solution to the seamless
connectivity, ever-increasing high throughput and bandwidth
requirements of next-generation wireless network applications
[2]. However, the widespread adoption of massive MIMO tech-
nology still requires addressing pertinent issues. For instance,
the uplink signal detection at the base station in massive
MIMO systems is of high computational complexity due to the
high dimensional received signal and uplink MIMO channel.

Over the last decade, several low complexity signal de-
tectors based on Gauss-Seidel [3] , Newton-Iteration [4] and
successive over relaxation [5] , have been proposed. These
detectors reduce the detection complexity of the conventional
zero-forcing (ZF) and minimum mean squared error (MMSE)
detectors by replacing the matrix inversion with iterative or
series-based approximations. However, all of these detectors
have an asymptotic detection complexities same as ZF and
MMSE. A class of low complexity random projection (RP)-
based detectors, namely the Rademacher, Very Sparse Random
Projection (VSRP), and Fast Johnson Lindenstrauss Transform
detectors (FJLT), for massive MIMO networks were presented
in [6] where the authors could present the bound on the symbol
error probability (SEP) performance, but not the exact SEP
expression.

We observe for RP based detectors in [6], exact SEP
expression can be obtained when the columns of the projection
matrix P are orthogonal. This work shows the columns of
the projection matrix are orthogonal with high probability,
presented in the Lemmas III.1 and III.2, for the RP-based
detectors [6] in the massive MIMO communication networks.
Given the orthogonal columns of projection matrix, the SEP
performance can be obtained using the analysis for the signal
in the additive white Gaussian noise.

II. SYSTEM MODEL AND DETECTION FRAMEWORK

Consider an uplink massive MIMO scenario with U single
antenna user terminals communicating with a large antenna
array base station with B antennas. The real-equivalent of
the complex base-band massive MIMO system model [6],
considering small and large scale fading channel coefficient
for N = 2B and M = 2U , is given as

y = Hx+ n, (1)

with the equivalent observations y ∈ RN×1, the equivalent
channel coefficient matrix H ∈ RN×M and the equivalent
white Gaussian noise vector n, where n ∼ N (0, σ2

nIN ). The
well known zero-forcing (ZF) detector aims to solve the cost
function x̂ZF = argminx∈RM ∥y−Hx∥2, where ∥.∥2 denotes
ℓ2 norm, which yields the sufficient ZF statistic as

x̂ZF = H†y, (2)

where (.)† denotes the Moore-Penrose pseudo-inverse. The
complexity to obtain x̂ZF is O(NM2), which is very high
for large values of N and M . This work presents a road
map to characterize the exact performance of the random
projection-based fast detectors, presented in [6], that achieve
asymptotically faster detection performance compared to the
existing linear detectors stated in the introduction section
in the massive MIMO communication networks. The next
subsection briefly states the necessary background for the
random projection-based fast detectors.

A. Random Projection-based Detectors [6]

Johnson-Lindenstrauss transforms provide an efficient algo-
rithm to obtain a low dimensional representation or “random
projection (RP)” of a set of high dimensional data points
while preserving their pairwise Euclidean distance with high
probability [7]. The lemma is stated as follows:



Lemma II.1. Johnson and Lindenstrauss [7]: Let ϵ, δ > 0
be two parameters. Let v ∈ V ⊂ RN such that |V| = M .
Then there exists a mapping P : RN → RL, where L =

O
(

logM
ϵ2 log 1

δ

)
, such that ∀u,v ∈ V , following holds with

probability at least 1− δ,

(1− ϵ)∥u− v∥22 ≤ ∥Pu−Pv∥22 ≤ (1 + ϵ)∥u− v∥22.

The mapping can be taken as a matrix P = 1√
L
R, where

R ∈ RL×N with its elements Rij ∼ N (0, 1). A few follow-
up results [8] suggest improved construction of P and provide
a faster algorithm with almost similar guarantee stated in
Lemma II.1. In their result, the projection matrix P ∈ RL×N

has entries with the following distribution

Pij =

√
s

L


1 with probability 1

2s ,

0 with probability s−1
s ,

−1 with probability 1
2s , for s ≥ 1.

(3)

For s = 1 and s > 1, the above distributions are referred to
as Rademacher and VSRP distributions, respectively.

Let P ∈ RL×N , L ≪ N denote a random projection matrix
that satisfies the guarantee stated in the Lemma II.1. The
received signal, upon random projection with the matrix P
is given as w = Py. Note the reduction in the size of the
received signal vector w ∈ RL, further using (1) we get

w = P(Hx+ n) = H̄x+ n̄, (4)

where H̄ = PH and n̄ = Pn. Using the ZF detection
framework in (4) the random projection based decoded symbol
can be obtained from the cost function

x̂P = arg min
x∈RM

∥w − H̄x∥2, (5)

to yield x̂P = H̄†w. Using the variants of the random
projection matrix P in (4), the work [6] presents a class of
fast random projection-based detectors such as Rademacher,
Very Sparse Random Projection (VSRP), and Fast Johnson
Lindenstrauss Transform detectors (FJLT), i.e., x̂RP-ZF, x̂VSRP
and x̂FJLT, respectively.

III. ORTHOGONALITY OF THE COLUMNS OF MATRIX P

Recall from Equation (5) that the detected symbol has the
following expression:

x̂P = H̄†w = (HTPTPH)−1HTPTPy = x+ v, (6)

where v = (HTPTPH)−1HTPTPn. The closed-form ex-
pression of exact SEP of the random projection-based fast
detectors [6] in massive MIMO communication networks
remains an open problem. As, the authors in [6] could only
compute a theoretical bound on the instantaneous SEP for
the random projection-based fast detectors. This work demon-
strates a way to derive the exact SEP expression when PTP =
kI. It is imperative to obtain the distribution of the equivalent
noise vector v to derive the exact SEP expression for a given
channel matrix H when averaged over the distribution of the
projection matrix P. However, when PTP becomes a diagonal

matrix, the sufficient statistic x̂P in (6) will be similar to
a scenario of the signal x transmitted in the additive white
Gaussian noise vector v, where the noise vector v follows
a Gaussian distribution, i.e., v ∼ N

(
0, σ2

n(H
TH)−1

)
and

yields a tractable and exact SEP expression. Therefore, this
section derives the probability with which the matrix PTP is
a diagonal matrix.

The entries of the gramian matrix PTP are obtained as

(PTP)ij =

{
∥pi∥2 i = j

⟨pi,pj⟩ i ̸= j
, where ⟨., .⟩ denotes inner

product and pi the ith column of P. When s = 1 in
Equation (3), the term ∥pi∥2 is equal to 1, and when s ≥ 1,
then expected value of ∥pi∥2 is equal to 1. What remains is to
show that non-diagonal entries P are zero. This is proved in
Lemma III.1 and Lemma III.2, which shows the non-diagonal
entries of P are equal to zero with high probability, for s = 1
and s ≥ 1, respectively.

Lemma III.1. Two arbitrary L− dimensional vectors u and
v, whose entries are sampled independently from Rademacher
distribution, are orthogonal with probability

PR =
1

2L
L!

(L2 )!(
L
2 )!

. (7)

Proof. The inner product between vectors u and v is given
as ⟨u,v⟩ =

∑L
i=1 uivi. Consider a random vector z =

[z1, z2, . . . zL]
T , where zi = uivi, i ∈ [1, 2, . . . L]. From (3), it

is clear that zi are independent and take zi ∈ {+1,−1} with
equal probabilities. Let z = [−1, . . .−1, 1, . . . 1] be an instance
of z such that the first L

2 elements are −1 and the remaining
elements are 1. Hence, for a given z = z the probability of
orthogonality, i.e., ⟨u,v⟩ =

∑L
i=1 zi = 0, is obtained as

P[⟨u,v⟩ = 0|z] =
L
2∏

i=1

P[zi = −1]

L∏
i=L

2 +1

P[zi = 1] = 2−L. (8)

Above partitioning of L−termed sequence into two parts, each
corresponding to equal 1 and −1, be done in L!/

(
(L2 )!(

L
2 )!

)
ways, where k! denotes factorial k. Hence, the overall proba-
bility of vectors to be orthogonal is obtained considering the
conditional probabilities (8) over all instances of z as

PR = P[⟨u,v⟩ = 0] =
1

2L
L!

(L2 )!(
L
2 )!

.

The following lemma summarizes the similar result for
vectors sampled from VSRP distribution.
Lemma III.2. Two arbitrary L− dimensional vectors u and
v, with entries sampled independently from VSRP (sparsity
parameter = s) are orthogonal with probability

PV =

(
1

2s2

)L
L
2∑

i=0

L!

((L−2i
2 )!)2

(2(s2 − 1))2i

(2i)!
. (9)

Proof. The inner product of the vectors u and v be given as

⟨u,v⟩ =
L∑

i=1

uivi =

L∑
i=1

zi. (10)
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Fig. 1: For vectors u, v ∈ RL the probability of orthogonality vs. (1a) vector dimension L for the Rademacher distribution where R denotes the number of
repetitions to boost the probability of orthogonality from Remark III.3, (1b) sparsity s for VSRP with different dimensions L, and (1c) vector length L for
VSRP with different sparsity s.

where zi = uivi, for 1 ≤ i ≤ L, is a random variable

with distribution zi =


+1 with probability 1

2s2

−1 with probability 1
2s2

0 with probability s2−1
s2

. Let

z = [z1, · · · , zi, . . . zL]T , then for the summation of zi to be 0,
there should be t1 terms = 0, t2

2 terms each equal to +1 and
−1, where t1 + t2 = L. One such instance be where t1 = 2
and t2 = L− 2, denoted as z = z. Given that the partitioning
of L−summation terms into the groups of 2, L−2

2 and L−2
2

can be done in L!/
(
(L−2

2 )!(L−2
2 )!2!

)
ways, the probability

that the vectors u and v are orthogonal for instance z = z be

P[⟨u,v⟩ = 0|z] = L!

(L−2
2 )!(L−2

2 )!2!
P[z = z]

=
L!

(L−2
2 )!(L−2

2 )!

(
1

2s2

)L−2 (
s2 − 1

s2

)2

. (11)

Adding the probability of all instances of z and algebraic
simplification yields (9).

Remark III.3. Lemma III.1 gives the probability bound on
one non-diagonal entry that takes value zero. The prob-
ability that all non-diagonal entries are zero is P̃ =(

1
2L

L!
(L

2 )!(L
2 )!

)(N2 )
where

(
N
2

)
denotes the ways 2 objects can

be chosen from N objects. The probability P̃ is further boosted
to 1−δ, for δ > 0, by repeating the experiments O( 1

P̃
log( 1δ ))

times and picking the best solution. Analogous bound can also
be given for VSRP distribution stated in Lemma III.2.

Numerical Results: This paragraph discusses the numerical
results, highlighting the trends in the orthogonality of random
vectors. The Figures 1a, 1b, and 1c, presented elaborate the
effect of varying the dimension (L) and sparsity parameter (s)
on the orthogonality of random vectors. Figure 1a shows the
variation of probability of orthogonality of two L dimensional
vectors whose each entry is sampled from the Rademacher
distribution. Note that with the increase in dimension, the
probability of orthogonality reduces. Also, the boosting of
probability due to repetitions, as stated in Remark III.3, can
be observed as the increase in the number of repetitions (R)
increases the probability of orthogonality.

Figure 1b and Figure 1c shows the variation of probability
of orthogonality of two vectors from VSRP as a function of

sparsity (s) and their dimension (L). The derived theoretical
probability (denoted as ‘Th’) in III.2 match their simulation
(denoted by ‘Sim’) counterparts. For a given dimension L,
the probability of orthogonality increases with s. This agrees
with the intuition that the randomly sampled sparse vectors
with increased sparsity are more prone to being orthogonal.

IV. CONCLUSION AND FUTURE WORK

This work presented a way to obtain an exact SEP expres-
sion for the RP based detectors in [6] for massive MIMO com-
munication networks, by making the columns of the projection
matrix P orthogonal. The result in the Lemmas III.1 and III.2,
proved the columns of the projection matrix (obtained from
Rademacher and VSRP distributions) are orthogonal with high
probability. A similar observation was attained via simulations.
Further analysis of SEP can be built upon the findings of this
work. One of the ways would be to obtain the distribution of v,
when the columns of the projection matrix are orthogonal, to
find the closed form SEP expression for the random projection-
based detectors in massive MIMO communication networks.
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