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Abstract—This work introduces novel random projection-
based efficient time complexity detectors for an uplink mas-
sive multiple-input multiple-output (MIMO) communication net-
works. The proposed Random projection-based detectors reduce
the original dimension of the received symbols while preserving
the pairwise Euclidean distance between the received and the
corresponding transmitted symbols. Consequently, obtaining a
faster detection algorithm with a comparable detection perfor-
mance. Building on several variants of random projection such
as Rademacher, Very Sparse Random Projection (VSRP), and
Fast Johnson Lindenstrauss Transform detectors (FJLT), the
corresponding detectors, ŝRP-ZF, ŝVSRP and ŝFJLT are presented.
A closed-form expression of the approximate symbol error
probability (SEP) is obtained to characterize their performance.
The time complexity of the proposed detectors is shown to
significantly improve from the benchmark detectors, namely
the maximum likelihood (ML), zero-forcing (ZF), and minimum
mean-squared error (MMSE) detectors, along with the class of
reduced complexity Neumann-series-based matrix inverse ap-
proximation (NS-MIA) detectors. The simulation results validate
the tradeoff between the detection performance and the time
complexity of the random projection-based detectors.

Index Terms—Sketching, Random Projection based Detection.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) improves
the reliability and efficiency of wireless communication sys-
tems and hence has become an integral part of the wireless
standards [1]. However, these benefits come at the cost of
increased hardware and complex signal processing algorithms
[2]. For example, an uplink massive MIMO system with
M single antenna users with a base-station (BS) having N
antennas, the optimal Maximum Likelihood (ML) detector
has an exponential time complexity. Similarly, zero-forcing
(ZF) and minimum mean-squared error (MMSE) detectors
achieve near ML detection performance [1] with a lower
time complexity of O(NM2) 1. However, for massive MIMO
systems with large N , N ≫ M , the time complexity of
O(NM2) turns out computationally intensive [2]. To mitigate
these challenges, a few fast and simplified detection techniques
have been proposed to provide speedup at a compromised
detection performance, and are discussed next.

Among the approximation/ iterative method based fast de-
tectors, one such class of detectors reduces the complexity by
approximating the inverse of the MIMO channel gram matrix
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1Notation O(.) denotes asymptotic time complexity of the algorithm [3].

which is of complexity O(M3). For the channel matrix H ∈
RN×M , the channel gram matrix is defined as Q = HHH.
Detectors like Neumann-series based matrix inverse approxi-
mation (NS-MIA) [2], other variants like Gauss-Seidel (GS)
[4], Newton-Iteration [5], Successive Over-Relaxation (SOR)
[6] and quasi-newton based iterative detectors [7] aims to re-
duce the matrix inversion complexity from O(M3) to O(M2)
[8]. The NS-MIA-based approximate detector achieves near
ZF performance but converges under specific scenarios [9],
[10]. The reduced gram matrix inversion complexity leads
to the asymptotic overall detection complexity of O(NM2),
which is computationally expensive for large values of N and
M . Therefore, it is necessary to devise fast and simplified
detection techniques that can provide processing speedup at a
comparable detection performance.

Dimensionality reduction (a.k.a. sketching) techniques have
been extensively used in various applications that involve high
dimensional data by offering solutions of lower time and
space complexity at the cost of tolerable error in performance.
Johnson-Lindenstrauss [11] (a.k.a. random projection) is one
of the classical dimensionality reduction algorithms for real-
valued vectors. Their algorithm compresses high-dimensional
real-valued vectors into low-dimensional such that compressed
vectors closely approximates the original pairwise Euclidean
distance. Further, several other dimensionality reduction al-
gorithms are known depending on the data type and the
underlying similarity measures [12]–[14]. These sketching
algorithms have been widely used in problems belonging to
linear algebra [15], data science/ machine learning [16] etc.

This work employs random projection [11] (Lemma II.1)
based methods to achieve faster detectors. As the symbol
error probability (SEP) performance depends on the mini-
mum Euclidean distance between the symbols, the random
projection-based techniques are a natural choice to provide
faster detection algorithms as they preserve the pairwise Eu-
clidean distances between the original and the compressed
dimensions with high probability. Section IV proposes to
obtain asymptotically fast detectors, namely ŝRP-ZF, ŝVSRP and
ŝFJLT, by extending the advantages of several improved variants
of random projection algorithms – Rademacher, Very Sparse
Random Projection (VSRP), and Fast Johnson Lindenstrauss
Transform detectors (FJLT), with a tolerable performance
tradeoff in the massive MIMO wireless communication sys-
tems. Consequently, Section V derives a closed-form expres-
sion of SEP for the proposed detectors. Next, the work presents



the time complexity analysis for the proposed and state-of-the-
art detectors in Section VI. The simulation results presented in
Section VII validate the proposed detectors time complexity
and performance tradeoff. Matrices, vectors, and scalars are
denoted using boldface capital, boldface small and regular
letters, whereas the sets are denoted by calligraphic alphabets,
e.g., S. The ℓ2 norm of a vector x is denoted by ∥x∥.

II. BACKGROUND

The seminal work of Johnson. W and Lindenstrauss suggest
a dimensionality reduction algorithm for real-valued data such
that the compressed vectors closely approximate the original
pairwise Euclidean distance between the corresponding input
vectors [11]. The lemma is stated as follows.

Lemma II.1. Johnson and Lindenstrauss (JL) [11]: Let ϵ, δ
> 0 be two parameters. Let v ∈ V ⊂ RN such that |V| = M .
Then there exists a mapping T : RN → RK , where K =

O
(

logM
ϵ2 log 1

δ

)
, such that ∀u,v ∈ V , following holds with

probability at least 1− δ, (1− ϵ)∥u− v∥22 ≤ ∥Tu−Tv∥22 ≤
(1 + ϵ)∥u− v∥22, where |V| denotes the cardinality of set V ,
ϵ the error tolerance, and δ the probability confidence.

The mapping can be taken as a matrix T = 1√
K
R, where

R ∈ RK×N with its elements Rij ∼ N (0, 1). A few follow-up
results [17]–[19] suggest improved matrix construction T and
provides a faster algorithm with almost same approximation
in the pairwise Euclidean distance estimation.

III. SYSTEM DESCRIPTION

Consider an uplink massive MIMO wireless communica-
tion scenario with F users, each having a transmit antenna,
transmitting simultaneously to the BS with B receive antennas
where B ≫ F [2]. The wireless channel matrix H is denoted
as H = GΓ ∈ CB×F between the users and the BS. The
elements of G ∈ CB×F are flat faded, follows a standard
complex Normal distribution with zero mean and unit variance.
The diagonal matrix Γ ∈ CF×F has principle diagonal
elements β

1
2

f , 1 ≤ f ≤ F, following a log-normal distribution
with shadowing σ2

s . The received signal y ∈ CB×1 at the large
antenna array BS corresponding to the transmission of F users
signal s ∈ CF×1 is expressed as

y = Hs+ w, (1)

where the noise vector w ∈ CB×1 is circularly symmetric and
follows a Gaussian PDF w ∼ CN (0, 2σ2

wIB). The baseband
system model in (1) can be equivalently written into a real-
valued system model as[

Re{y}
Im{y}

]
︸ ︷︷ ︸

y

=

[
Re{H} −Im{H}
Im{H} Re{H}

]
︸ ︷︷ ︸

H

[
Re{s}
Im{s}

]
︸ ︷︷ ︸

s

+

[
Re{w}
Im{w}

]
︸ ︷︷ ︸

w

⇒ y = Hs+w, (2)

where the operators Re{y} and Im{y} denote real and
imaginary parts of the complex vector y. Assuming N = 2B
and M = 2F , the vectors y ∈ RN×1, s ∈ RM×1,

w ∼ N (0N×1, σ
2
wIN ) along with the massive MIMO channel

coefficient matrix H ∈ RN×M . The transmit symbol s can
take S = |S| values, where |S| denotes the cardinality of the
set S, corresponding to the considered signaling scheme, i.e.,
s = {s1, s2, · · · , sS} ∈ S. For the massive MIMO system
model described in (2) the optimal ML detector is presented
next. The ML detector maximizes the likelihood p(y|s) which
equivalently minimizes the symbol error, given as

ŝML ≜ argmax
s∈S

p(y|s) = argmin
s∈S

∥y −Hs∥2. (3)

The ML detector is optimal in terms of SEP performance but
has a higher computational complexity. The computation com-
plexity grows exponentially with the size of the input signal
vector s, i.e., M . The ZF relaxes the optimization problem
in (3) to reduce the exponential computation complexity to
O(NM2) by trading the SEP performance, given as

ŝ = arg min
s∈RM×1

∥y −Hs∥2. (4)

The solution of optimization problem in (4) is obtained as

ŝZF = F
(
H†y

)
, (5)

where the operator F(a) represent element-wise thresholding
operation over the vector a and (·)† the Pseudoinverse. Next
section proposes a random projection based detectors.

IV. RANDOM PROJECTION BASED DETECTOR

The relaxed linear detectors, ZF in (5) and the MMSE in
[1, (23)], have a time complexity of the order O(NM2). The
SEP performance is proportional to the minimum pairwise Eu-
clidean distance between the symbols. The random projection
technique, proposed by JL in Lemma II.1, suggests trans-
forming the N−dimensional vectors into a K−dimensional
space for K ≪ N such that pairwise Euclidean distance is
closely approximated, with a high probability. Hence random
projection based algorithm becomes a natural choice to obtain
faster detectors. The received vector y ∈ RN×1 in (2) is
transformed using the random projection matrix T ∈ RK×N

in order to obtain the compressed vector z ∈ RK×1, given as

z = Ty (6)

where K < N . The JL transformation (JLT) matrix T encodes
the N− dimensional vector y to a K− dimensional vector,
where K = O

(
logM
ϵ2 log 1

δ

)
, with a guarantee to preserve

(1− ϵ)∥y∥2 ≤ ∥z∥2 ≤ (1 + ϵ)∥y∥2 within ϵ− approximation
[20]. Different JLT constructs were developed, defined as

T =


1√
K
R1 Rademacher√
s
KR Very Sparse Random Projections (VSRP)

PUD Fast JL transform (FJLT)

(7)

where the ith row and the jth column element Rij of the
matrix R for VSRP [18] can take {1, 0,−1} with probability
{ 1
2s ,

s−1
s , 1

2s for s ≥ 1}, respectively. For the sparsity param-
eter s = 1, it is called Rademacher distribution, i.e., R1 = R



at s = 1, and was proposed in [17]. Ailon and Chazelle [19]
suggest FJLT by making the projection step faster, to employ

T = PUD, (8)

where D ∈ RN×N is a diagonal matrix whose diagonal entries
are from Rademacher distribution. U ∈ RN×N is a normalized
Hadamard matrix. P ∈ RK×N is a sparse matrix such that its
elements Pij ∼ N (0, q−1) with probability q and Pij = 0

with probability 1 − q where q = min
{
Θ
(

(logM)2

N

)
, 1
}

.
The notation Θ(.) denotes the asymptotic complexity of an
algorithm/ operation [3]. The received signal z (6) in reduced
dimension be solved using the JLT constructs in (7) to

z = T(Hs+w) = H̄s+ w̄, (9)

where H̄ = TH ∈ RK×M and w̄ = Tw ∈ RK×1. Using the
framework (3) to system (9), the random projection based ML
detector for massive MIMO uplink communication is given as

sRP-ML = argmin
s∈S

∥z− H̄s∥2. (10)

The relaxed optimization problem (4) when employing random
projection (9) on to the received signal equivalently yields

sT = arg min
s∈RM×1

∥z− H̄s∥2 (11)

= (HTTTTH)−1HTTTTy, (12)

where the thresholding operator F(sT) is applied to obtain the
equivalent ŝT = F(sT) ∈ S. The detected symbol ŝT when us-
ing the random projection matrix T in (7) for the Rademacher,
VSRP and FJLT yields the random projection based detectors,
ŝRP-ZF, ŝVSRP and ŝFJLT, for the uplink massive MIMO wireless
communication networks. The detection performance of the
proposed detector sRP-ML is presented next.

V. SEP OF RANDOM PROJECTION BASED DETECTOR

The analysis is presented for known channel coefficients
matrix H, random projection matrix T, and the source sym-
bols s = {s1, . . . , sS} ∈ S, for any signaling scheme.

Theorem V.1. The approximate SEP, i.e., the exact deci-
sion regions considering all the symbols is approximated by
a tractable two-part decision regions obtained when con-
sidering two symbols at a time, considering the symbols
s = {s1, . . . , sS} ∈ S for the proposed random projection
based detector sRP-ML in (10) for the massive MIMO uplink
communication, with C=(TH)†TTT ((TH)†)T , obtained as

Pe ≤
1

S

S∑
j=1

S∑
i=1,i̸=j

Q

(
(si − sj)

TC−1(si − sj)

2
√
σ2
w(si − sj)TC−1(si − sj)

)
. (13)

Proof. The closed form expression for the random projection-
based detector in (12) using (2) is expressed as

sT = H̄†z = (HTTTTH)−1HTTTT(Hs+w)

= s+ H̄†w̄, (14)

where the equivalent noise vector n is defined as n ≜
H̄†w̄ and follows a Gaussian density with zero mean vec-
tor and the covariance matrix E{nnT } = σ2

wC, where

C = (TH)†TTT ((TH)†)T . Let S be the total number of
symbols s ∈ S . Without loss of generality, let the symbol
sj , 1 ≤ i, j ≤ S was transmitted. The error event occurs when
the detected symbol is si, i ̸= j. The probability of symbol
error when sj was transmitted can thus be written as

Pe|sj = Psj (Psj→s1 + . . .+ Psj→si + . . . Psj→sS ).

= Psj

S∑
i=1,i̸=j

Psj→si (15)

where, Psj denotes the probability of transmitting the jth
symbol from the set S, and Psj→si denotes probability of
detecting symbol si when sj was transmitted. Extending the
same to all the symbols, the SEP can be expressed as

Pe =

S∑
j=1

Pe|sj , (16)

where Pe|sj is obtained in (15). Computing the exact sym-
bol error using (16), i.e., using the exact decision region
corresponding to the transmission of the symbol s ∈ S is
challenging. To make the computations tractable, this work
computes an approximate expression [21] for the probability of
symbol error, and relaxes the computation of the exact decision
region by the computation of an approximate decision region
obtained considering two symbols at a time. When considering
two symbols at a time, for instance si, sj for 1 ≤ i, j ≤ S and
i ̸= j, the symbol detection problem can be formulated as the
binary hypothesis testing problem given as

H0 : sT = si + n

H1 : sT = sj + n.

Hence, decoded symbol sT corresponding to the transmission
of the symbols si and sj denoting the null (H0) and the
alternative (H1) hypotheses, respectively. To decide in favour
of the alternative hypothesis H1 the LRT [22] is given as

L(sT) =
p(sT|H1)

p(sT|H0)

H1

≷
H0

γ′, (17)

where γ′ denotes the decision threshold, and the two probabil-
ity density functions (PDFs) are p(sT|H0) ∼ N (si, σ

2
wC) and

p(sT|H1) ∼ N (sj , σ
2
wC). Upon using these Gaussian PDFs

in (17) and further solving the LRT in (17) the decision test
statistic TT(sT) equivalently can be obtained as

TT(sT) = (si − sj)
TC−1sT

H0

≷
H1

γ, (18)

where γ = 1
2 (si−sj)

TC−1(si+sj) is the decision threshold.
When considering the transmitted symbol to be si, among the
two symbols si and sj , the probability of symbol error P̄si→sj

can be defined as,
P̄si→sj ≜ P (H1|H0) = P (TT(sT) ≤ γ|H0) (19)

= P
(
(si − sj)

TC−1(si +w) ≤ γ
)
. (20)

Use (18) in (19) to get (20). The probabilities Psi→sj in (15)
and P̄si→sj defined in (19), to confuse between the symbols sj
and si, differ in the number of symbols under consideration. In
Psi→sj , the symbol si can be confused with sj , 1 ≤ j ≤ S, i ̸=



j whereas in P̄si→sj , the symbol si can only be confused
with sj , i ̸= j, i.e., the pairwise symbol error probability. The
quantity (si−sj)

TC−1(si+w) follows a Gaussian PDF which
has a mean µ = (si − sj)

TC−1si and variance σ2 = σ2
w(si −

sj)
TC−1(si− sj). The SEP in (20) can now be expressed as

P̄si→sj = Q
(
µ− γ

σ

)
= Q

(
(si − sj)

TC−1(si − sj)

2
√
σ2
w(si − sj)TC−1(si − sj)

)
.

Consider the symbols to be equally likely, Psi = 1
S ,∀i. Use

the above probability P̄si→sj in the overall SEP (16), a bound
on the SEP is obtained (21). Further solving (21) yields (13).

Pe ≤
S∑

i=1

Psi

S∑
j=1,i̸=j

P̄si→sj . (21)

VI. TIME COMPLEXITY ANALYSIS OF RANDOM
PROJECTION BASED DETECTORS

The original detection problem mentioned in equation (3) is
of exponential computational complexity. Its relaxed problem
is listed in equation (4) is of polynomial time complexity
O(NM2), where N > M . This is due to the computation
of H†, the pseudo-inverse of the channel matrix H. Using
random projection, the columns of H, which are of N−
dimension, are embedded into a K− dimensional space. The
random projection based detectors involve the following two
steps, (i) Projection of received signal, z = Ty. (ii) Computing
ŝRP-ZF in (12) for the optimization problem in (11). The
random projection matrix T follows the rademacher, VSRP,
and FJLT distributions as defined in (7). For T from the
Rademacher distribution, the random projection based detector
computes the matrix H̄ = TH, projection of received signal
Ty, and the solution to the optimization problem in (11),
i.e., the pseudo-inverse of H̄, which have time complexities
O(KNM), O(KN) and O(KM2), respectively. Therefore,
the overall time complexity to obtain ŝRP-ZF, random projection
based detector, is ∼ O(KNM + KN + KM2), that is
O(KNM). The following theorem derives the computation
complexity of other proposed detectors ŝVSRP and ŝFJLT.

Theorem VI.1. For a massive MIMO channel matrix H ∈
RN×M defined in (2) and random projection matrix T ∈
RK×N that satisfies JL Lemma in Lemma II.1, the random
projection based detectors ŝVSRP and ŝFJLT, obtained as a
solution to the cost function in (11), have the complexities

• O
(
KNM

s

)
, when T follows a Very Sparse Random Pro-

jection (VSRP) with sparsity parameter s, and
• O(NM logN ), when T follows a Fast JLT (FJLT).

Proof. For ŝVSRP, consider the JLT constructed from VSRP
[18]. In this setting T =

√
s
KR, the element Rij of

R can take the value Rij ∈ {1, 0,−1} with probability
{ 1
2s ,

s−1
s , 1

2s for s ≥ 1}, respectively. Therefore, the number
of nonzero entries in the matrix T is KN

s , in expectation. As a
consequence, the complexity of the projection step, that is the
multiplication of T ∈ RK×N and H ∈ RN×M is O

(
KNM

s

)
,

in expectation. For the second part, the projection matrix is
considered from Fast JLT, that is, T = PUD (8). Further,

due to Lemma 2.1, [19] the time complexity of multiplication
of T ∈ RK×N and H ∈ RN×M is O(NM logN).

Remark VI.2. The proposed random projection based detec-
tors ŝVSRP and ŝFJLT are asymptotically faster than the ZF
in (5) and the MMSE in [1, (23)] when K

s = o (M) and
logN = o(M), respectively, where o() denotes small-oh
notation of asymptotic time complexity analysis [3].

The order complexities of different detection schemes for an
N×M masive MIMO system are summarized in the TABLE I.
The proposed RP-based detectors guarantee asymptotic faster
detection from the ZF, MMSE and from the class of low
complexity massive MIMO detectors in [23].

TABLE I
TIME COMPLEXITY COMPARISON OF VARIOUS DETECTORS

Detector Time Complexity

ZF (Eq.(5)), MMSE [1, (23)], NS-MIA [10, (9)] O(NM2)

ŝRP-ZF, proposed in Section IV O (KNM)

ŝVSRP, proposed in Section IV O
(

KNM
s

)
ŝFJLT, proposed in Section IV O(NM logN)

VII. SIMULATION AND RESULTS

Considers an uplink massive MIMO scenario with F =
{6, 30} number of transmit antennas and B = {60, 128} num-
ber of receive antennas at the BS. The wireless communication
channel is considered to be Rayleigh flat faded, with parameter
σ2

s = 8dB. The noise is assumed to be complex circularly
symmetric, additive, white having a Gaussian density, i.e.,
w ∼ CN (0, 2σ2

wIB). The entries of the matrix T in (7) follow
Rademacher, VSRP and FJLT distributions corresponding to
the proposed detectors ŝRP-ZF, ŝVSRP and ŝFJLT, respectively.
Without loss of generality, the elements of the transmitted
vector s ∈ RM×1 can take si ∈ {1,−1}, 1 ≤ i ≤ M . The
compression ratio/ percentage indicate the ratio/ percentage
between the reduced dimension K to the original dimension
N . The proposed RP-based detectors being linear, their per-
formance is compared with baseline i.e., ZF and MMSE [1],
and other low complexity linear detectors like NS-MIA [10],
Gauss-Seidel [4], and SOR [6].

Fig. 1 presents the SEP vs. signal-to-noise ratio (SNR)
performance comparison for a 60×6−MIMO with σ2

s = 8dB.
A superior performance of the random projection based ML
detector sRP-ML (10) over the random projection based ZF
detector ŝRP-ZF (12) is observed. The detection performance
of the proposed random projection based detectors, namely
sRP-ML and ŝRP-ZF, are close to the original dimension based
ML and ZF detectors for a higher K

N . Also, the performance
vs. time complexity trade-off for the proposed detectors can
be observed, i.e., the performance of the proposed detectors
improves with an increase in K

N , for K
N ∈ {80%, 60%}. The

SEP bound (RP-ML App.) expression in (13) of Theorem
V.1 has an asymptotic performance close to the RP-detector
sRP-ML. A similar trend is observed between the original
dimension ML detector in (3) and its corresponding ML
approximate.
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Fig. 1. SEP vs. SNR performance comparison between sRP-ML in (10), ŝRP-ZF
from (12), ML in (3), ZF in (5), the approximate SEP for ML and the RP-ML
in Theorem V.1 for compression ratio K

N
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Fig. 2. SEP vs. SNR performance comparison between the ZF, MMSE
[1], NS-MIA [10], Gauss-Seidel and SOR based detectors with the proposed
ŝRP-ZF, ŝVSRP and ŝFJLT in Section IV for a compression ratio of 70%.

Fig. 2 compares the SEP vs. SNR performance between
the proposed ŝRP-ZF, ŝVSRP and ŝFJLT for K

N = 70%, and the
benchmark detectors ZF, MMSE, along with the approxima-
tion based NS-MIA detector [10, (9)], and iterative Gauss-
Seidel [4, (6)] and SOR (ω = 0.9) [6, (10)] based detectors,
for 128 × 30−MIMO and σ2

s = 8dB. The sparsity parameter
s in ŝVSRP is s = 50. The number of terms in the summation
of NS-MIA based detector, the number of iterations of Gauss-
Seidel, and SOR detectors are 10. It is observed that plots
corresponding to ŝRP-ZF, ŝVSRP and ŝFJLT, i.e., Rademacher,
VSRP, and FJLT, are close to each other. It is worth noting that
the performance gap between the optimal and the proposed
RP-based detectors remain constant between moderate to low
error probabilities. However, the SEP performance of the NS-
MIA along with the Gauss-Seidel and SOR based detectors
fail to improve with an increase in SNR and saturates.

VIII. CONCLUSION

This work proposed random projection based time complex-
ity efficient detectors for the uplink massive MIMO wireless
communication networks. The approximate SEP performance
was derived for the proposed random projection-based fast
detectors. The theoretical analysis and the simulation com-
parisons validated the trade-off between the detection perfor-
mance and the time complexity of the proposed detectors with
respect to the baseline detectors.

REFERENCES

[1] S. Yang and L. Hanzo, “Fifty years of MIMO detection: The road to
large-scale MIMOs,” IEEE communications surveys & tutorials, vol. 17,
no. 4, pp. 1941–1988, 2015.

[2] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta,
O. Edfors, and F. Tufvesson, “Scaling up MIMO: Opportunities and
challenges with very large arrays,” IEEE signal processing magazine,
vol. 30, no. 1, pp. 40–60, 2012.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[4] L. Dai, X. Gao, X. Su, S. Han, C.-L. I, and Z. Wang, “Low-complexity
soft-output signal detection based on Gauss–Seidel method for uplink
multiuser large-scale MIMO systems,” IEEE Transactions on Vehicular
Technology, vol. 64, no. 10, pp. 4839–4845, 2015.

[5] V. Gupta, A. K. Sah, and A. K. Chaturvedi, “Iterative matrix inversion
based low complexity detection in large/massive MIMO systems,” in
2016 IEEE International Conference on Communications Workshops
(ICC), pp. 712–717, 2016.

[6] X. Gao, L. Dai, Y. Hu, Z. Wang, and Z. Wang, “Matrix inversion-
less signal detection using SOR method for uplink large-scale MIMO
systems,” in 2014 IEEE Global Communications Conference, pp. 3291–
3295, 2014.

[7] L. Li and J. Hu, “Fast-converging and low-complexity linear massive
MIMO detection with L-BFGS method,” IEEE Transactions on Vehic-
ular Technology, vol. 71, no. 10, pp. 10656–10665, 2022.

[8] M. A. Albreem, M. Juntti, and S. Shahabuddin, “Massive MIMO
detection techniques: A survey,” IEEE Communications Surveys and
Tutorials, vol. 21, no. 4, pp. 3109–3132, 2019.

[9] H. Prabhu, J. Rodrigues, O. Edfors, and F. Rusek, “Approximative
matrix inverse computations for very-large MIMO and applications to
linear pre-coding systems,” in 2013 IEEE Wireless Communications and
Networking Conference (WCNC), pp. 2710–2715, IEEE, 2013.

[10] D. Zhu, B. Li, and P. Liang, “On the matrix inversion approximation
based on neumann series in massive MIMO systems,” in 2015 IEEE
international conference on communications (ICC), pp. 1763–1769,
IEEE, 2015.

[11] B. J. William and J. Lindenstrauss, “Extensions of lipschitz mapping
into hilbert space,” Contemporary mathematics, vol. 26, no. 189-206,
pp. 323–341, 1984.

[12] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-
wise independent permutations,” in Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pp. 327–336, 1998.

[13] M. S. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, pp. 380–388, 2002.

[14] P. Indyk, “Stable distributions, pseudorandom generators, embeddings,
and data stream computation,” Journal of the ACM (JACM), vol. 53,
no. 3, pp. 307–323, 2006.

[15] D. P. Woodruff et al., “Sketching as a tool for numerical linear algebra,”
Foundations and Trends® in Theoretical Computer Science, vol. 10,
no. 1–2, pp. 1–157, 2014.

[16] A. Blum, J. Hopcroft, and R. Kannan, Foundations of data science.
Cambridge University Press, 2020.

[17] D. Achlioptas, “Database-friendly random projections: Johnson-
lindenstrauss with binary coins,” Journal of computer and System
Sciences, vol. 66, no. 4, pp. 671–687, 2003.

[18] P. Li, T. J. Hastie, and K. W. Church, “Very sparse random projections,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 287–296, 2006.

[19] N. Ailon and B. Chazelle, “Approximate nearest neighbors and the
fast johnson-lindenstrauss transform,” in Proceedings of the thirty-eighth
annual ACM symposium on Theory of computing, pp. 557–563, 2006.

[20] S. Dasgupta and A. Gupta, “An elementary proof of a theorem of johnson
and lindenstrauss,” Random Structures & Algorithms, vol. 22, no. 1,
pp. 60–65, 2003.

[21] J. G. Proakis and M. Salehi, “Digital communications, 5th expanded
ed,” 2007.

[22] S. M. Kay, Fundamentals of statistical processing, Volume 2: Detection
theory. Pearson Education India, 2009.

[23] M. A. Albreem, W. Salah, A. Kumar, M. H. Alsharif, A. H. Rambe,
M. Jusoh, and A. N. Uwaechia, “Low complexity linear detectors for
massive MIMO: A comparative study,” IEEE Access, vol. 9, pp. 45740–
45753, 2021.


