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Abstract—This work introduces novel detection schemes which
are robust with respect to the uncertainty in the estimate of
the signal covariance matrix for non-coherent spectrum sens-
ing in multiple-input multiple-output (MIMO) cognitive radio
networks. We employ an eigenvalue perturbation theory based
approach to model the uncertainty in the estimated signal covari-
ance matrix. Subsequently, we derive an optimization framework
for the generalized likelihood ratio test (GLRT) based robust test
statistic detector (RTSD) and robust estimator-correlator detector
(RECD) towards primary user detection, which incorporate the
channel state information (CSI) uncertainty inherent in such
scenarios. Further, employing the Karush-Kuhn-Tucker (KKT)
conditions, we derive closed form expressions for the proposed
robust spectrum sensing schemes. Simulation results demonstrate
the superior performance of the proposed robust detectors in
comparison to the uncertainty agnostic estimator-correlator (EC)
detector for spectrum sensing in MIMO cognitive radio networks
with CSI uncertainty.

Index Terms—Multiple-Input Multiple-Output (MIMO), Cog-
nitive Radio (CR), Spectrum Sensing.

I. INTRODUCTION

THE ongoing transition from the low rate circuit switched
voice call services to the high data rate packet switched

multimedia applications has resulted in a steady increase in the
demand for higher bandwidth in modern 3G/4G wireless cel-
lular networks. This has led to a scarcity of licensed spectrum
bands. Surprisingly however, the survey in [1] has shown that
a significant fraction of the spectral bands which are allocated
to the licensed users are unused at any given instant of time.
In this context, cognitive radio [2], [3] has emerged as a key
enabling technology for dynamic spectrum access that allows
secondary/ unlicensed users to opportunistically access the
unused radio spectrum allotted to the primary/ licensed users.
Thus, spectrum sensing towards reliable detection of spectral
holes or unused primary user bands is a key task in cognitive
radio networks.

Several spectrum sensing techniques have been proposed
in literature [4]. Among these, the energy detector [5], which
has a simple structure, has gained a wide appeal for spectrum
sensing in cognitive radio networks. It has been demonstrated
in [6], that the energy detector can be derived as the sim-
plification of the optimal estimator-correlator (EC) detector
for non-coherent spectrum sensing scenarios with isotropic
signal and noise covariance matrices. Further, it is known
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from works such as [6]–[8] that the performance of the EC
deteriorates with covariance uncertainty. However, due to the
limited resources at the secondary users, estimation error and
the fading nature of the wireless channel, it is often difficult
to obtain an accurate estimate of the signal covariance matrix.

Therefore, we propose robust detection schemes in order to
mitigate the effect of the uncertainty in the estimated signal
covariance matrix on spectrum sensing in practical wireless
scenarios. Employing perturbation theory, we derive results to
bound the distortion in the estimated covariance matrix. Based
on these results, we develop the generalized likelihood ratio
test (GLRT) detectors for robust estimator-correlator based
non-coherent spectrum sensing and demonstrate that these
can be formulated as appropriate optimization paradigms. The
GLRT test statistic can be employed to formulate the robust
test statistic detector (RTSD), which although simplistic, can
be solved efficiently since it is convex. Further, the robust
estimator-correlator detector (RECD) is also derived. Closed
form expressions for the RTSD and RECD are derived employ-
ing the Karush-Kuhn-Tucker (KKT) conditions. Simulation
results demonstrate a significant improvement in the primary
user detection performance of the proposed detection schemes
in comparison to the nominal covariance matrix estimate based
uncertainty agnostic EC detector.

The rest of the paper is organized as follows. In section II we
describe the system model for MIMO cognitive radio networks
followed by the perturbation analysis. Next, in Section III we
develop the optimization framework and derive closed form
expressions for the proposed GLRT based RTSD and RECD
schemes towards robust spectrum sensing. Simulation results
and conclusion follow in sections IV and V respectively.

II. SYSTEM MODEL

Consider a multiple-input multiple-output (MIMO) cogni-
tive radio system with Nr receive antennas at the secondary
user and Nt transmit antennas at the primary user base-station.
Let the MIMO base-band system model between the primary
user base-station and the secondary user, corresponding to the
kth symbol transmission, be represented as,

y(k) = Hx(k)︸ ︷︷ ︸
s(k)

+η(k),

where y(k)∈CNr×1, x(k)∈CNt×1 are the received and trans-
mitted temporally independent and identically distributed (IID)
zero-mean Gaussian signal vectors respectively, with the
Gaussian signal covariance matrix Rs∈CNr×Nr defined as



Rs= E{s(k)sH(k)}= HE{x(k)xH(k)}HH , similar to the
works such as [4], [7]. The matrix H∈CNr×Nt is the MIMO
channel matrix with each element hr,t denoting the channel
coefficient between the tth transmit antenna of the primary
user base-station and the rth receive antenna of the secondary
user. The vector η(k)∈CNr×1 denotes the spatio-temporally
white Gaussian noise with the known noise covariance Rη=
E{η(k)ηH(k)}=σ2

ηI. The primary user detection problem can
be formulated as the binary hypothesis testing problem as,

H0 :y(k) = η(k)

H1 :y(k) = s(k) + η(k),

where the null hypothesis H0 denotes the absence of the
primary user and the alternative hypothesis H1 denotes the
presence of the primary user. The respective distributions of
the observation vector y(k) described above are given as,

H0 :y(k) ∼ CN (0,Rη)

H1 :y(k) ∼ CN (0,R), (1)

where the covariance matrix R is defined as R = Rs +Rη .
The optimal decision rule for the above primary user detection
problem can be obtained using the likelihood ratio test (LRT).
Let the columns of the matrix Y=[y(1), . . . ,y(K)]∈CNr×K

denote the received signals corresponding to the K IID ob-
served symbol vectors y(k), 1≤k≤K. Hence, the joint LRT
statistic for the scenario described above can be computed as,

L(Y) =
p(Y;H1)

p(Y;H0)
=

∏K
k=1 p(y(k);H1)∏K
k=1 p(y(k);H0)

,

where p(y(k);H0), p(y(k);H1) denote the marginal proba-
bility densities under hypotheses H0,H1 respectively of the
kth symbol y(k). Simplification of the above expression
employing the distributions in (1), yields the test statistic as,

T (Y) =log(L(Y)) = Klog |Rη|

+

K∑
k=1

yH(k)
[
R−1

η −R−1
]
y(k)︸ ︷︷ ︸

TEC(Y)

−Klog |R|︸ ︷︷ ︸
TC

, (2)

where |R| and |Rη| denote the determinants of the matrices
R and Rη respectively. The component TEC(Y) of the test
statistic T (Y) constitutes the decision rule for the standard EC
detector [5] with perfect knowledge of the covariance matrices
Rs,Rη and can be equivalently represented as,

TEC(Y) =
K∑

k=1

yH(k)R−1
η y(k)−

K∑
k=1

yH(k)R−1y(k). (3)

The performance of the detector is critically dependent on the
accuracy of the covariance estimates. However, in practical
wireless scenarios, it is challenging to obtain an exact estimate
of the signal covariance matrix due to the limited resources
and processing capabilities available at the secondary users
coupled with the time varying nature of the fading wireless
channel. Frequently, in such scenarios, it is only possible to
obtain a nominal estimate of the true signal covariance matrix
which is unknown. Let γi, 1 ≤ i ≤ Nr be the eigenvalues of

the true signal covariance matrix Rs = UΓUH and similarly,
γ̂i be the eigenvalues of the estimated signal covariance matrix
R̂s, i.e. the diagonal matrices Γ = D(γ1, . . . , γNr ) and
Γ̂ = D(γ̂1, . . . , γ̂Nr ) are the eigenvalue matrices correspond-
ing to the true and estimated signal covariance matrices. Let
the uncertainty in the eigenvalues γ̂i of the estimated signal
covariance matrix R̂s be modeled as,

γi = γ̂i +△γi, 1 ≤ i ≤ Nr,

where △γi denotes the perturbation with respect to γi, the
true eigenvalue of Rs. Let △R denote the uncertainty in
the covariance matrix, with ∥△R∥ ≤ ϵ, where ϵ denotes the
uncertainty radius, similar to the model in works such as [9].
Let the matrix U=[u1, . . . ,uNr ], where ui, 1 ≤ i ≤ Nr

denotes the ith column vector. The result below, derived
using perturbation theory [10], describes an insightful property
which characterizes the uncertainty bound for the eigenvalues
of the true covariance matrix.

Lemma 1. A first order bound for the perturbation in the
eigenvalues of the true covariance matrix R is given as,

Nr∑
i=1

△γi ≤
√
Nr ϵ.

Proof. From the result for the perturbation of the eigenvalues
in [10], we have △γi, the perturbation in the eigenvalue γ̂i of
the estimated covariance matrix R̂s given as, △γi≈uH

i △Rui.
Hence, the eigenvalue uncertainty radius can be bounded as,

Nr∑
i=1

△γi ≈ tr

(
Nr∑
i=1

uH
i △Rui

)
= tr(△RI)

≤
√

∥△R∥2∥I∥2 = ϵ
√
Nr,

where the last inequality follow from the Cauchy-Schwarz
inequality for the matrix Frobenius norm.

Based on the uncertainty model above, we propose a novel
framework for detection in the next section.

III. ROBUST DETECTION WITH COVARIANCE
UNCERTAINTY

From the uncertainty analysis presented above, it can be
seen that the test statistic T (Y) obtained in (2) varies with the
uncertainty in the estimate of the true covariance matrix R.
Hence we formulate the RTSD and the RECD for primary user
detection in cognitive radio scenarios that consider uncertainty
in the signal covariance matrix.

A. Robust Test Statistic Detector (RTSD)

A simplistic GLRT based detector can be obtained by
maximizing the EC test statistic in (3) for the given uncertainty
radius. This can be readily seen to be equivalent to minimizing
the term

∑K
k=1 y

H(k)R−1y(k). Let the eigenvalue decompo-
sition of the covariance matrix R be given as R = UΛUH ,
with the ith eigenvalue λi of the diagonal matrix Λ given as



λi = γi + σ2
η. Hence, the objective function for the above

minimization problem can be equivalently formulated as,
K∑

k=1

yH(k)R−1y(k) =

K∑
k=1

yH(k)
(
UΛUH

)−1
y(k)

=
K∑

k=1

ỹH(k)Λ−1ỹ(k)

=
K∑

k=1

(
Nr∑
i=1

|ỹi(k)|2

λi

)
,

where ỹi(k), i=1, ..., Nr are the elements of vector ỹ(k)=
UHy(k). Also note ∥ỹ∥2=∥y∥2 since U is a unitary matrix.
Using the uncertainty model from Lemma 1 in above objective
function, the optimization framework that yields the RTSD for
primary user detection can be equivalently formulated as,

minimize
△λi

Nr∑
i=1

∑K
k=1 |ỹi(k)|2

λ̂i +△λi

subject to
Nr∑
i=1

△λi ≤ ϵ
√

Nr. (4)

The above optimization problem can be easily seen to be
convex and is readily solved employing the KKT conditions.
Let f⋆

RTSD denote the optimal value of the objective function
for the optimization framework defined in (4). Hence, the test
statistic (2) corresponding to RTSD for spectrum sensing in
MIMO cognitive radio scenarios can be equivalently given as,

TRTSD =

K∑
k=1

yH(k)R−1
η y(k)− f⋆

RTSD. (5)

We now derive a closed form expression for the above
optimization framework by solving the Lagrangian objective
function corresponding to the KKT conditions. Let the uncer-
tainty △λi in the eigenvalue λ̂i for 1≤i≤Nr be stacked as the
uncertainty vector △λ=[△λ1, . . . ,△λNr ]. The Lagrangian
cost function L(△λ, θ) for RTSD can be derived as,

L(△λ, θ) =

Nr∑
i=1

∑K
k=1 |ỹi(k)|2

λ̂i +△λi

+ θ

(
Nr∑
i=1

△λi − ϵ
√
Nr

)
,

where θ is the associated non-negative Lagrange multiplier.
The KKT conditions [11] for the Lagrangian are given as,∑K

k=1 |ỹi(k)|2

(λ̂i +△λi)2
− θ = 0, θ

(
Nr∑
i=1

△λi − ϵ
√

Nr

)
= 0.

Solving the KKT conditions above, one can obtain the optimal
value △λ⋆

i of the uncertainty △λi as,

△λ⋆
i = −λ̂i +

√∑K
k=1 |ỹi(k)|2

θ
, (6)

where the Lagrange multiplier θ is given as,

θ =

(∑Nr

i=1

√∑K
k=1 |ỹi(k)|2

ϵ
√
Nr +

∑Nr

i=1 λ̂i

)2

.

Next, we formulate the optimization framework to obtain the
RECD for the primary user sensing problem.

B. Robust Estimator-correlator Detector (RECD)

The optimal GLRT based RECD for uncertainty aware
non-coherent MIMO spectrum sensing can be derived as
follows. The term TC = Klog |R| = K

∑Nr

i=1 logλi of the
test statistic T (Y) in (2) depends on the uncertainty in the
signal covariance matrix. Hence, the optimization framework
leading to the formulation of the optimal detection rule for
the primary user detection problem with uncertainty in the
signal covariance matrix is obtained by including TC in the
cost function of (4) and can be derived as,

minimize
△λi

K

Nr∑
i=1

log
(
λ̂i +△λi

)
+

Nr∑
i=1

∑K
k=1 |ỹi(k)|2

λ̂i +△λi

subject to
Nr∑
i=1

△λi ≤ ϵ
√
Nr . (7)

The above optimization problem is non-convex. Hence, the
solution obtained from the KKT conditions yields a local
optimum. The Lagrangian cost function can be formulated as,

L(△λ, µ) =

Nr∑
i=1

(
Klog

(
λ̂i +△λi

)
+

∑K
k=1 |ỹi(k)|2

λ̂i +△λi

)

+ µ

( Nr∑
i=1

△λi − ϵ
√
Nr

)
,

where µ is the Lagrange multiplier. The KKT conditions [11]
for the non-convex optimization problem in (7) are given as,

K

λ̂i +△λi

−
∑K

k=1 |ỹi(k)|2

(λ̂i +△λi)2
+ µ = 0,

µ

(
Nr∑
i=1

△λi − ϵ
√
Nr

)
= 0.

The optimal value △λ⋆
i of the uncertainty △λi in the estimate

of the eigenvalue λ̂i can be obtained by solving the KKT
conditions as,

△λ⋆
i = −λ̂i +

−K +
√

K2 + 4µ
∑K

k=1 |ỹi(k)|
2

2µ
,

where µ can be found using the bisection or trust region
methods. Let f⋆

RECD denote the optimal value of the objective
function. Hence, from the optimization framework in (7), the
test statistic in (2) can be equivalently formulated as,

TRECD =
K∑

k=1

yH(k)R−1
η y(k)− f⋆

RECD. (8)

The above test statistic yields a robust decision rule for primary
user detection in MIMO cognitive radio networks.

IV. SIMULATION RESULTS

We consider a scenario with Nt = 2 transmit antennas at
the primary user base-station and Nr = 2 receive antennas at
the secondary user, i.e. a 2 × 2 MIMO system. We consider
different levels of uncertainty ϵ with △R = ϵG, where G
is generated as the unit norm Wishart random matrix. We



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prob. of false alarm (P
FA

)

P
ro

b.
 o

f d
et

ec
tio

n 
(P

D
)

 

 

EC(Genie)
RECD
RTSD (CVX)
RTSD(Theory)
EC(Nominal)
EC(Genie)
RECD
RTSD (CVX)
RTSD(Theory)
EC(Nominal)
EC(Genie)
RECD
RTSD (CVX)
RTSD(Theory)
EC(Nominal)

SNR = −10 dB

SNR = −7 dB

SNR = −13 dB

Fig. 1. Probability of detection vs. probability of false alarm comparison
between the genie aided estimator-correlator (EC Genie), nominal estimate
based estimator-correlator (EC Nominal), robust estimator-correlator (RECD),
robust test statistic detector (RTSD) from the closed form solution (RTSD
Theory) and CVX solver (RTSD CVX) for Nr = 2, Nt = 2 MIMO, ϵ = 0.5
and D1 = D(1, 0.5).

consider the estimated covariance matrix R̂ = UΛ̂UH with
the diagonal matrix Λ̂ = D(1, 0.5), i.e. λ̂1 = 1, λ̂2 = 0.5.

In Fig. 1. we plot the probability of detection (PD)
versus the probability of false alarm (PFA) by varying
the detection threshold in the range (0, 1) at each SNR
∈ {−7,−10,−13}dB and compare the detection performance
of the proposed RTSD in (5) and RECD in (8) with the
uncertainty agnostic estimator-correlator detector (EC Nom-
inal) (3) and the true covariance matrix based genie aided
estimator-correlator (EC Genie) detector for spectrum sensing
in MIMO cognitive radio networks. It can be observed that the
proposed robust detectors significantly outperform the nominal
estimate based estimator-correlator detector and are close to
the performance of the true covariance matrix based genie
aided estimator-correlator detector. It can also be observed
that the proposed RECD has a performance edge over RTSD
for spectrum sensing in MIMO cognitive radio scenarios with
uncertainty in the estimated covariance matrix. However, the
RTSD has low complexity and being convex in nature, it can
be efficiently implemented in practical scenarios. Additionally,
the performance of the closed form expression for RTSD
derived in section III-A coincides with that obtained using
the CVX solver for convex optimization problems [12].

In Fig. 2. we plot the probability of detection (PD) versus
the probability of false alarm (PFA) for varying levels of
uncertainty ϵ in the estimated covariance matrix for spec-
trum sensing and compare the detection performances of the
proposed RTSD and RECD with the uncertainty agnostic
estimator-correlator detector. It is evident from the simulations
that as the uncertainty in the eigenvalues of the covariance
matrix increases, the performance gap between the uncertainty
agnostic estimator-correlator detector and the proposed robust
detection schemes increases.

V. CONCLUSION

In this work we have proposed robust detection techniques
for non-coherent spectrum sensing in MIMO cognitive radio
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Fig. 2. Probability of detection vs. probability of false alarm comparison
between the nominal estimate based estimator-correlator (EC Nominal), genie
aided estimator-correlator (EC Genie), robust estimator-correlator (RECD) and
robust test statistic detector (RTSD) for Nr = 2, Nt = 2 MIMO, SNR=
−10dB, D1 = D(1, 0.5) and ϵ = 0.3, 0.6.

scenarios. Towards this end, we have derived the uncertainty in
the eigenvalues of the true signal covariance matrix employing
results from perturbation theory. The proposed RTSD and
RECD schemes significantly improve the primary user detec-
tion performance under CSI uncertainty. We further derived
closed form expressions utilizing the KKT conditions for
the GLRT based robust detection problems above. Simulation
results demonstrate that the proposed robust detectors outper-
form the conventional uncertainty agnostic nominal CSI based
estimator-correlator detector.
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