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Abstract—In this paper, we develop generalized likelihood
ratio test (GLRT)-based detectors for robust spectrum sensing in
multiple-input multiple-output (MIMO) cognitive radio networks
considering uncertainty in the available channel state information
(CSI). Initially, for a scenario with known CSI uncertainty sta-
tistics, we derive the novel robust estimator-correlator detector
(RECD) and the robust generalized likelihood detector (RGLD),
which are robust against the uncertainty in the available estimates
of the channel coefficients. Subsequently, for a scenario with
unknown CSI uncertainty statistics, we develop a generalized
likelihood ratio test (GLRT) based composite hypothesis robust
detector (CHRD) for spectrum sensing. Closed form expressions
are presented for the probability of detection (Pp) and the
probability of false alarm (Pr4) to characterize the detection
performance of the proposed robust spectrum sensing schemes.
Further, a deflection coefficient based optimization framework is
also developed and solved to derive closed form expressions for
the optimal beacon sequences. Simulation results are presented
to demonstrate the performance improvement achieved by the
proposed robust spectrum sensing schemes and to verify the
analytical results derived.

Index Terms—Cognitive radio, spectrum sensing, multiple-input
multiple-output (MIMO), channel state information (CSI) un-
certainty.

I. INTRODUCTION

HE proliferation of wireless multimedia applications has

lead to a natural increase in the demand for a higher data
rate in current and upcoming 3G/4G wireless communication
systems. The radio frequency (RF) spectrum is a valuable re-
source for wireless communication applications and its usage
is regulated by agencies such as the Federal Communications
Commission (FCC) of the United States etc. However, recent
reports such as [1] on the temporal and geographic RF spec-
trum utilization patterns point to an extremely low efficiency
of current spectrum utilization. Thus, to cope with the tremen-
dous increase in the demand for RF spectrum, coupled with the
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motivation for efficient spectrum utilization, the FCC has re-
cently proposed the cognitive radio paradigm [2]-[4] which al-
lows a set of unlicensed/secondary users to opportunistically ac-
cess unused spectrum bands licensed to primary users. This in
turn leads to an increase in the efficiency of spectrum utiliza-
tion. This strategic reuse of the licensed spectrum by the unli-
censed secondary users in cognitive radio networks necessitates
the need to reliably detect the presence of vacant spectral bands,
termed as spectral holes or white spaces, without causing a sig-
nificant interference to the licensed primary users. This key task
of spectral occupancy detection in cognitive radio networks is
termed as spectrum sensing.

Several spectrum sensing techniques have been proposed in
literature [5] for the detection of primary user signals in cogni-
tive radio networks. Among these, the energy detector [6] has
a simple structure and does not require any prior knowledge of
the primary user signal. However, the non-coherent energy de-
tector has a poor performance compared to other techniques for
spectrum sensing [7]-[9]. Other popular spectrum sensing tech-
niques exploit statistical properties of the primary user signal
for the detection of spectral holes. These techniques can be ex-
tended to wideband spectrum sensing, with Nyquist and sub-
Nyquist sampling, as described in [10], [11] and to a distributed
wideband sensing scenario with finite feedback in [12]. For in-
stance, the cyclostationarity based detection scheme [5] requires
the existence and knowledge of the cyclic frequency of the pri-
mary user signal. Similarly, the matched-filter based detection
scheme [5] requires perfect channel state information (CSI) of
the primary user, in the absence of which its performance de-
grades drastically [13]. Further, the work in [14] demonstrates
that soft combination based schemes, such as equal gain com-
bining (EGC) and maximal ratio combining (MRC), exhibit a
significant improvement in the detection performance over con-
ventional hard decision fusion schemes. However, it is shown
in [15], that the improvement in the detection performance ob-
tained from such soft-decision based spectrum sensing schemes
depends significantly on the accuracy of the CSI at the sec-
ondary user. An adaptive spectrum sensing scheme based on a
finite state Markov channel (FSMC) model is presented in [16].
However, the FSMC with finite states for the channel coefficient
does not capture the continuous variation of the channel.

On the other hand, the generalized likelihood ratio test
(GLRT) based approach exploits the prior information of the
signal of the licensed user. One major advantage of the GLRT
based approach is that it achieves joint primary user detection
and unknown parameter estimation. In literature, several spec-

1053-587X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1622

trum sensing algorithms have been proposed for cognitive radio
scenarios, which compute the maximum likelihood estimates
(MLE) of the unknown system parameters towards employing
GLRT based detection schemes. For example, [17]-[20] com-
pute the MLE of the noise variance and the signal correlation
matrix, whereas [21]-[23] compute the MLE only for the
noise variance in order to employ the GLRT framework for
primary user signal detection. However, it is shown [7], [8]
that the noise power uncertainty agnostic detectors, such as the
energy detector, are limited by a signal-to-noise ratio (SNR)
wall below which the detector fails to detect the presence of
the primary user signal, irrespective of the sensing duration.
Similarly, [24] shows the existence of the sampling wall, i.e.,
the sampling density below which the performance of the
detector can not be guaranteed at a given SNR, regardless of
the number of samples of the primary signal acquired by the
secondary user. Further, [17], [18], [25] employ the GLRT
framework with the unknown parameter being the CSI between
the primary transmitter and the secondary receiver. The various
contributions of these works are listed below.

* The work in [17] presents a GLRT based framework for
spectrum sensing with unknown channel gains and con-
sidering a single antenna at the primary user and multiple
antennas at the secondary user

e The work in [18] presents various partial GLRT schemes
with each of the channel gain, noise variance and signal
variance components unknown considering block as well
as fast fading channel scenarios

* The work in [25] presents a framework for GLRT based
spectrum sensing with Bernoulli nonuniform sampling
(BNS) considering unknown signal power.

However, a significant shortcoming of all these works above
is that they do not consider CSI uncertainty, which is of signif-
icance in communication scenarios where frequently nominal
CSlI is available at the receiver. The work in [26] considers the
Wilks’ detector based spectrum sensing for a scenario with un-
known noise covariance. However, the authors therein consider
a simplistic scenario with a deterministic channel matrix and
analyze the instantaneous detection performance without aver-
aging over the channel statistics.

Obtaining the true channel coefficients in a cognitive radio
network is challenging, owing to estimation/quantization er-
rors, limited feedback, Doppler shift etc, in practical wireless
scenarios. These uncertainties in the system parameters can
potentially lead to a performance degradation of uncertainty
agnostic spectrum sensing schemes. Therefore, this paper
considers a GLRT based approach for spectrum sensing, unlike
conventional techniques such as matched filtering, energy
detection and soft combining etc described in [5], [6], [14] re-
spectively. Works such as [10]-[12], exploit only second order
statistical information. Further, the motivation of this work
is to develop detection schemes which are robust against the
performance degradation caused by the uncertainty in the avail-
able CSI estimates, unlike the conventional GLRT schemes
[17]-23], [25] which consider completely unknown CSI, noise
variance or other parameters. We propose novel primary user
detection schemes, namely the robust estimator-correlator de-
tector (RECD) and the generalized likelihood ratio test (GLRT)
based robust generalized likelihood detector (RGLD), which
are robust against the uncertainty in the nominal estimates of
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the channel coefficients for a scenario with known uncertainty
statistics. An analytical framework is developed to characterize
the theoretical performance of the proposed RECD scheme
and derive the expressions for the probability of detection
(Pp) and probability of false alarm (Pr,). Also, the work
in this paper considers a general scenario with multiple an-
tennas, while [10]-[12], [14]-[16], [23] are restricted to single
antenna scenarios. Next we present the composite hypothesis
based robust detector (CHRD), for primary user detection in
scenarios with unknown CSI uncertainty statistics. Further, we
also derive closed form expressions to determine the proba-
bility of detection (Pp) and probability of false alarm (Pp.4)
performance of the proposed CHRD scheme. Also, the analysis
for the Pr 4, Pp in our work is carried out by averaging with
respect to the distributions of both the CSI uncertainty and
also the available nominal channel estimate, unlike the work
in [26]. The subsequent section presents a novel deflection
coefficient based optimization framework to derive the optimal
beacon matrices for the proposed robust detection schemes,
with known/unknown uncertainty covariance statistics, which
further enhance the detection performance. Simulation results
demonstrate the improvement in the detection performance
achieved by the proposed spectrum sensing schemes and also
validate the analytical results.

This paper is organized as follows. Section II describes
the multiuser MIMO system model for cognitive radio net-
works. Section III presents the robust estimator-correlator
detector (RECD) and the robust generalized likelihood de-
tector (RGLD) with known CSI uncertainty statistics and the
associated detection and false alarm probabilities. Next, in
Section IV we present the composite hypothesis based robust
detector (CHRD) with unknown CSI uncertainty statistics.
Closed form expressions for the Pp and Pr4 to analytically
characterize the detection performance of the proposed scheme
are also derived therein. Section V describes the optimization
framework to derive the optimal beacon sequence with both
known and unknown CSI uncertainty statistics. Simulation
results are given in Section VI followed by the conclusion in
Section VII.

Throughout this paper we use boldface uppercase/lowercase
letters to denote matrices/vectors, respectively. All the vectors
are column vectors. The operations (- )*, (+)7, (+)# and E{-}
denote the conjugate, transpose, conjugate transpose and expec-
tation operators. The random vector x, when defined as x ~
CN{(p, R) follows a complex Gaussian distribution with mean
p and covariance R. Similarly, x ~ x2 implies that x follows a
central chi-squared distribution with n degrees of freedom. The
L, norm of a vector and the trace of a matrix are represented
by || - || and Tr(-) respectively. The matrix D(a) denotes the
diagonal matrix with elements of the vector a along its prin-
cipal diagonal. The identity matrix of dimension N x N is de-
noted by I and the various detector test statistics are denoted
by T'(-). Finally, the functions T'(- ), T'(-,-) and Q(-) denote
the Gamma function, the incomplete Gamma function and the
Gaussian @)-function respectively.

II. SYSTEM MODEL

Consider a spectrum sensing scenario with a primary user
base-station and a secondary user. Further, we assume a mul-
tiple-input multiple-output (MIMO) cognitive radio network
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with NV, transmit antennas at the primary user base-station
and N, receive antennas at the secondary user. The baseband
system model for the scenario described above at the nth time
instant is given as,

y(n) = Hx(n) + n(n),

where y(n) € CN+*! is the receive signal vector at the

secondary user corresponding to the primary user base-sta-
tion broadcast beacon signal x(n) € C¥*! and the
vector (n) € CM>1 is the additive spatio-temporally
white Gaussian noise at the secondary user with covariance
R = E{g(n)n(n)} = o¢%Iy,. Each H € CY*": is the
MIMO channel matrix between the primary user base-station
and the secondary user. The system model considered follows
in the same spirit as those in works such as [17], [18], [22],
[25]. From the Cognitive Radio system model described above,
the signal y; (n) for the kth receive antenna can be equivalently
expressed as,

vi(n) = x" (n)hy, + g (n),

where (-)* denotes the complex conjugate and the vectors
th e C™*M: 1 < k < N, constitute the rows of the channel
matrix H = [hy, hy,...,hy, ]". Let the L broadcast beacon
vectors x(1),x(2),...,x(L) be concatenated to form a beacon
matrix X = [x(1),%(2),...,x(D)]¥ € CE*N:. The con-
catenated signal yj corresponding to the I symbols can be
equivalently represented as,

v = Xhy, + 1, (1)

where yi. = [yr(1), ¥£(2), ...,y (L) € CE*1 is the signal
at the kth receive antenna corresponding to the broadcast
beacon matrix X. Similarly, the concatenated noise vector
e = [m(1),ne(2),...,me(L)]¥ € CL*1 has covariance
matrix R, = E{nunf’} = o2I.. In practical wireless sce-
narios it is significantly challenging to obtain accurate CSI as
described previously. Hence, we model the channel matrix H
by incorporating the CSI uncertainty as,

H=H+U, )
where H = [hy, hy, ..., hy, ]¥ is the available nominal CSI
and the matrix U € CV~*#¢ denotes uncertainty in the channel
matrix H. The uncertainty matrix U = [uy, us,...,uy, |7
where each row vector ukH e C*M 1 < k < N, follows a
complex Gaussian distribution i.e., uy ~ CA(0, R, ) with the
uncertainty covariance matrix R,, = E{uguf} € CNexNe,
The concatenated system model in (1), incorporating the uncer-
tainty model described in (2), can be equivalently obtained as,

3

In the next section we describe robust spectrum sensing
schemes, which consider CSI uncertainty, for primary user
detection in multiuser MIMO cognitive radio networks, with
known uncertainty covariance statistics.

b

i = X(hy + ug) + ny.

III. ROBUST SPECTRUM SENSING WITH KNOWN
UNCERTAINTY STATISTICS
Let the beacon matrix X; = [x;(1),%;(2),...,x;(L)]7 €
CE*Ne where x;(n) € CV¢*1,1 < n < L denote the beacon
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signals from the primary user base-station and + = 0,1 corre-
spond to the absence, presence of the primary users respectively.
From (3) it follows that the signal y, at the kth receive antenna
is given as,

Ho 1 yr = Xo(hy + uk) + 15

Hitye = Xa(hg + ug) + 1y, “)

where the hypotheses Ho and H; correspond to the absence
and presence of the primary user respectively for the binary hy-
pothesis testing problem towards primary user detection. For
example, in a practical wireless scenario, the beacon matrix
Xy = 0y« n, denotes the absence of primary transmission i.e.,
when the spectral band is vacant. This non-antipodal signaling
model is well suited to the context of a cognitive radio scenario
where the non-zero beacon matrix X; denotes the presence of
the primary user signal while the all zero beacon matrix X de-
notes the absence of the primary user signal. We now present the
RECD scheme for robust spectrum sensing in MIMO cognitive
radio scenarios.

A. Robust Estimator-Correlator Detection (RECD)
The observation vectors yx in (4), corresponding to the hy-

potheses Hgy, H1 are distributed as,

Ho Ve ~ CN(O, R”])

Hl Y~ CN(thk7F)7
where I’ = XlRuX{{—i-R77 e CI*L and R, € CN+*Nr isthe
uncertainty covariance matrix. Let the concatenated observation
matrix Y corresponding to the N, receive antennas be defined
asY = [y1,y2,---,¥n,] € CEXNr Thelikelihood ratio L(Y)

corresponding to the concatenated observation matrix Y can be
expressed as,

L(Y)
g ( [Tt s m))
[Ty p(yii Ho) )

5

r

(kaRﬁlm —(¥& — Xlﬁk)Hr—l(Yk_lelk)) +c

kol
21
I

yi (R, B AT Xy hy) it 25T Xy,
1

ES
il

&)
Ry

where the constant ¢ = N.,log(W) and the operator = repre-
sents an equivalence to a constant factor. Using the matrix in-
version identity from [27] in (5), the likelihood ratio L{Y') can
be simplified to obtain the robust estimator-correlator detector
(RECD) test statistic,

N,
TRECD (Y) = Z (2y,€II"1X1hk

E=1

+yi R, X RXTT k). (6)

Therefore the optimal Neyman-Pearson criterion based LRT,
which maximizes the probability of detection Pp for a given
probability of false alarm Pr 4 can be obtained as,
Ha
Trecn(Y) 2 7,

Ho

)
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where the presence/absence of the primary user signal is deter-
mined depending on whether the test statistic Trrep(Y) ex-
ceeds or falls short of the detection threshold ~. The proposed
RECD exploits the statistical properties of the CSI uncertainty,
thereby leading to an improvement in the accuracy of primary
user detection. Consider the specific case when the CSI uncer-
tainty covariance matrix R, is given as R,, = oIy, and the
beacon matrix X; corresponding to the alternative hypothesis is
an orthogonal matrix with X;X# = LI. Under these assump-
tions the matrix T in (5) is seen to be given as, I' = JEYI with

= Lo} 4o} Similarly, let the matrix V = R, ' X, R, X{'.
Therefore V = 021 with 02 = Loio, 2. The Lemma below
characterizes the asymptotic PD versus Pr 4 performance of the
RECD scheme described above for spectrum sensing.

Lemma 1: The probabilities of detection and false alarm, de-
noted by Pp and Pr4 respectively, for the RECD detector in
(7) towards robust spectrum sensing for a large number of re-
ceive antennas N, are given as,

2 — (0 +2LN,)

Pp = X 8
P =@\ " AETainy ©
2, — 2LN,
Poa=Q|2—n—1|, 9
where 8 = S0 STF 03 2(1+ 0, )2 xf (1) hy 2.

Proof: Tt can be seen that the test statistic Trgep (YY) in
(5) can be equivalently written as,

Trecn(Y)

\gERINGE

<2kaI‘71X1flk + ynglleuX{{FAYk)

= (ka.H( )thk+yk( Ty 7 >ka>
Uk;lN,, L . *
= 2SS (b s ) (o )
Y k=1 =1
~o0,%02 ’Xfl(l)flk 2)
N

r

i(ka—J X (l)hk> (ym—l—a;zxff(l)ﬁk), (10)

11=1

ES
Il

TrecD (Yrt)

where yy; is the Ith component of the vector y; defined as
Y = [Ukir---sYsi>---,ysz]T. The component test statistic
Trecp (yki) defined above follows a chi-squared distribution
with two degrees of freedom, described as,

1
Ho : —ZTRECD(ykl) ~X3
0'77
2
Hq: G_—QTRECD(ykl) ~ x5 (61),

~

respectively. The quantity X'; (8;) denotes the non-central chi-
squared distribution with two degrees of freedom, and non-cen-
trality parameter 6; = o 2(1+ 0, %)?[x{" (1)h|?. The distribu-
tions of the scaled test statlstlc Trecp(Y) for the N, received
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vectors stacked as Y = [y1,y2,...,¥n, ] corresponding to the
two hypotheses Hg, 71 can be equivalently derived as,

N, L
1 - 1
7—[0 : _ZTRECD (Y) = Z Z _ZTRECD (ykl) ~ XgLNr
Tn k=11=1 77
) N Lo )
H1:U—2TRECD(Y): Z?TRECD@M)NX'QLNT(@)’ (b
v k=11=1"7

where the non-centrality parameter § = Z;y;l Zler 6;. The
chi-squared distribution corresponding to the two hypotheses in
(11) has 2L N,. degrees of freedom. Using the asymptotic prop-
erty of the chi-squared random variable for a large number of
receive antennas [V, [6], the moments of the scaled test statistic
Trecep(Y) corresponding to the two hypotheses in (11) can be
equivalently obtained as,

1

E {_QTRECD (Y), HO} = QLNT
O'n
1

var {?TRECD (Y), 7‘[0} = 4LN,«
n
1

E {U—ZTRECD(Y); Hr} =60+ 2LN,

5

1
var {U_QTRECD (Y), 7‘[1} = 2(9 + ZLNT). (12)
ol

Using the results in (12), the analytical expression for the detec-
tion probability Pp of the proposed RECD can be equivalently
obtained as,

Pp = Pr{Trecp(Y) >~';H1}
— pr {%TRECD(Y) > %;%1}
(6 +2LN,)
56 1 2LN,)

where +/ is the detection threshold and (- ) denotes the stan-
dard Gaussian Q-function [6], [28]. Similarly, the probability of
false alarm Pr 4 can be obtained as,

Prpa = Pr{Trecn(Y) > ~';Ho}
1 /
= Pr {_ZTRECD(Y) > 7—2;7'[0}
0'77 a,

n
2, — 2LN,
=0 VALN,

B. Robust Generalized Likelihood Detector (RGLD)

We now employ the generalized likelihood ratio test (GLRT)
paradigm to develop the robust generalized likelihood detector
(RGLD) for primary user detection in MIMO cognitive radio
networks with CSI uncertainty. Let the vector rj be defined as
ry = yi — X1hy corresponding to the alternative hypothesis
H;y. Thus, the signal described in (3) corresponding to the L
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concatenated sensed samples at the kth receive antenna of the
total NV, receive antennas can be equivalently written as,

rp, = Xju, + N
=Xy Ij
A N~

) (13)

where z; = [ul, 7] € CE+Ne)x1 denotes the concatenated
unknown random vector and the identity matrix Iy, is of dimen-
sion L x L.

Lemma 2: The GLRT-based test statistic Tgrrr (Y) corre-
sponding to the uncertainty covariance matrix R.,, is given as,

N,
Trarp(Y) = Z —27 R "2 + v Ry, (14)

k=1
where z;, = [uF,9T]7 and R, € CEFNe>L+Nt ig the block

diagonal matrix with R,,, R, along its principal diagonal.

Proof: The likelihood of the observation vector yj, param-
eterized by zj, corresponding to the alternative hypothesis 4
can be derived as,

p(yrizr, Ha) = exp (—zf R 'zi),  (15)

TN R,
where R, € CETNexXL+Nt denotes the covariance matrix of
zj,, given as,
H Ru
R, :E{zkzk } = [

On,xr
)
Orxn,

R,

and |R.| denotes the determinant of the matrix R.. The pa-
rameterized vector zj, is obtained on maximizing the likelihood
D(¥k: 2k, H1) in (15) which can be formulated as the standard
weighted minimum L» norm optimization problem [27],

Hp -1
kRz Zj
rk:Azk.

min .
s.t.

The solution of the above convex optimization problem yields
the estimate of z;, as,

7, = R.AY (AR, AH) !
Employing the GLRT framework, the RGLD test statistic

TraLp(Y) for the primary user detection problem in cognitive
radio scenarios can be derived as,

Ny A
TRGLD (Y) = log <Hk—1 p(Yk, Zy, Hl))

N,
[TiZ1 p(yk; Ho)
N, _
Hk:l ﬁmz‘ exp(fzkHRz ]-Zk)

T2 sovmomyy exp(-Y Ry 'yi)
N.

=Y 'R
k=1

where the operator = denotes equivalence to a constant factor.
This completes the proof. O

The inherent ability of the proposed RECD and RGLD
schemes to exploit the CSI uncertainty for primary user de-
tection in spectrum sensing scenarios provides a performance
edge over the conventional uncertainty agnostic matched filter
detector. In the next section we further relax the CSI uncer-
tainty model and consider the uncertainty covariance statistics
to be unknown. We then derive the corresponding composite

=log

;lik + ngglyka
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hypothesis based robust detector (CHRD) for spectrum sensing
in MIMO cognitive radio scenarios.

IV. ROBUST DETECTION WITH UNKNOWN UNCERTAINTY
COVARIANCE STATISTICS

A. Composite Hypothesis Based Robust Detector (CHRD)

In this section we compute a generalized likelihood ratio test
based composite hypothesis testing framework with unknown
uncertainty statistics. The primary user detection problem from
(1) can be equivalently recast as the hypothesis testing problem,

7’[02 INthk = 0
Hli INthk: 7£ O,

where Iy, is the /V; x N; identity matrix and the vector parame-
tershy,1 < k < N, form the rows of the channel matrix H. Let
the vectors hk\m hkll denote the maximum likelihood estimate
(MLE) of the vector parameter hy, corresponding to the null hy-
pothesis Hy, alternative hypothesis H; respectively, which can
be obtained [6] as,

flku = (XfIX1)—1 Xy

~ ~ 1 1 - ~
hyo =hyp — (X{Xy) I¥ {I (X{X,) IH} (In,hyp1)

=0. (16)
The concatenated received vector y, defined in (1), follows a
complex Gaussian distribution given as,

Ho: Yie ~ CN(O, Rﬂ)
Hityk ~ CN(thk\lan)a
corresponding to the hypotheses Hg, H1. Let the matrix Y
be obtained by stacking the received signal vectors yi, as Y
= [¥1,¥2,...-¥n,]. Hence, the test statistic Tearp(Y) for
the composite hypothesis testing based primary user detection
problem can be computed by applying the generalized likeli-
hood ratio test (GLRT) as,
Terrp(Y)
B 1Og<HiVﬁ1 p(yr; hthl))
- N,
121 p(yr: Ho)
N, P _ P
[1x2; exp <_(Yk —Xihy )R, (yx _thk\1)>

N, _
[T:71 exp(—yH Ry 'yi)

a7

=log

N,
Z hk|1X{{R;1X1hk|1

II-
M? i

ﬁﬁ hy, (18)

£
Il
iR

where the last equality holds due to the orthogonality property
of the beacon matrix, i.e., X{I X3 = Lly,. The test statistic
Teurn(Y) obtained above yields the primary user detection
rule that is robust against the uncertainty in the estimate of the
MIMO channel matrix. We now consider a general scenario
with non-isotropic CSI uncertainty covariance, i.e., the uncer-
tainty covariance is not necessarily of the form R, = o2L. It
can be noted that the non-isotropic CSI uncertainty covariance
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matrix considered in our formulation is more general and prac-
tical in comparison to the isotropic model considered in works
such as [29], [30]. We now characterize the theoretical perfor-
mance of the CHRD for composite hypothesis testing based pri-
mary user detection in MIMO cognitive radio scenarios. Using
(3) and the orthogonality property of the beacon matrix in (16),
the maximum likelihood estimate hy,; of the column vectors
hy, 1 < k < N, of the channel matrix H, corresponding to the
alternative hypothesis H;, can be equivalently written as,

~ -1
hyy = (X{X1) X{Tyx
1 N
= (X{X:) " XIXy(hg +u) + X{'n,

= hy + ug + ny, (19)

where ny, is defined as n, = X1 1 w1th covariance R,, =
E{ngn} = Lo}1y,. The CSI estimate h; € CV>1 follows
a complex Gaussian distribution hy, ~ CA(0, Iy, ). Thus, this
implies that the true channel coefficient vector hy, = ﬁk +uy is
also complex Gaussian distributed, leading to a Rayleigh fading
wireless channel, which is a standard assumption for fading
wireless scenarios. It follows from (19) that the maximum like-
lihood estimate hy,; has a complex Gaussian distribution, with
hyji ~ CN(0,A) where A = (1 + Lo2)Iy, + R, Let the
eigenvalue decomposition of A be VEVH | with the eigen-
value matrix ¥ = D([o7,03,...,0%,]"), where D(a) denotes
a diagonal matrix with the elements of vector a along the prin-
01pal diagonal. Therefore, the /th element hkm of the vector
hep = Bl Al )T € CN follows a
Gaussian distribution. Let z;; be defined as z5; = a_lhklll' The
test statistic in (18) can be equivalently described as,

Z}m

N Nf

ZZ ozl

where each z; is Gaussian distributed with 2, ~ CA(0,1).
Therefore, |zx|%,1 < k < N,,1 <1 < N, is distributed as a
X% random variable. Employing the above results, we now char-
acterize the performance of the composite hypothesis detector
corresponding to the test statistic Teprp (YY) in (20).

Theorem 1: The probability of false alarm Pr4 and proba-
bility of detection Pp of the CHRD detector based on the test
statistic Terp (Y) in (20), for primary user detection in MIMO
cognitive radio networks can be derived as,

_ g
PFA - QX%NTNt (;) 9

PD —KZZAlk

=1 k=1

Tourn(Y hkll

(20)

e2)

(k: 7>, (22)
l

where the coefficients A;  are the partial fraction constants
obtained using the residue method, T'(-,-) is the incomplete
Gamma function defined in (30) and the constant « is defined

N, —
as w = [ (0™
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Proof: The probability of false alarm Pr4 of the GLRT
test statistic Teprp (Y) can be derived as,

Prpa = Pr{Tcurp(Y) > ~v; Ho}
1
= Pr {_ZTCHRD(Y) > 12;7'[0}
Ty Oy

Y
=Pr {X%NTNt > F}

n

—0.. e
- QXE)NTNt <O’,Z7> '

Next, we derive the probability of detection Pp for the test
statistic Tcurp (Y). This can be expressed as,

Pp = Pr {TCHRD(Y) >, Hl} = / pT(t)dt’ (23)
vy

where pr(t) denotes the probability density function of the test
statistic Tourp(Y). Let 7 (w) denote the characteristic func-
tion of the test statistic Teprp (Y) corresponding to the alterna-
tive hypothesis H. The probability density function pr(t) can
be expressed in terms of ®7({w) as,

= [7 Sp(w)exp ¥tdw t>0
t = 27 ffoo T I fatl
prl) {0 t<0.

The characteristic function ®7(w) for the CHRD test statistic
corresponding to the alternative hypothesis H; is derived as,

Pr(w) = E {exp(jwTcurp(Y))}

N. N,
=F {exp (jw Z Z lez;:lzkl> } (25)

=1 k=1

24

=

t

N,
H E {exp(jwa? |2k \2)}
k=1

1
1 (1= 2jofw)™

Il
-

— =

(26)
l

where (25) follows from the simplification of the test statistic
Teurp(Y) described in (20). The characteristic function
7 (w) obtained in (26) follows from the fact that each |z
follows a chi-squared distribution with 2 degrees of freedom
as described earlier. Employing (26) above, the probability
density function pr(t) of the test statistic Tegrp(Y) defined
in (24) can be equivalently expressed as,

1 oo M 1

— _ jwt) d
o (172]% R exp(—jwt) dw

pr(t)

Ny ] N, N; 1
T () =1 ot
2 ) -t . 1 \N,
m=1 <20m =1 (jw - W)
P(w)

N; N,

A
K F} {ZZ i~ 1k l’;)k }
]

=1 k=1

N; N,

K Z Z Al,k}—:tl

=1 k=1
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where the coefficients A; 3 correspond to the partial frac-
tion expansion of #(w) and the constant s is defined as
k= [N, (52-)"". The coefficients A;; can be obtained
using the standard residue method for partial fraction expansion

[31] and can be explicitly expressed as, N
1 ) v
202

N,
L R U T
Hn:l(.ﬂ‘*’ 20—2)

where (G = ﬁ Computing the inverse Fourier transform
of the expression in (27), the probability density function pr(t)
of the test statistic Tcarp (YY) in (20), corresponding to the al-
ternative hypothesis H;, can be obtained as,

dNr—k jw

N , (28)

t

Ny Ny A o(—1\kk—1e 207,
prit) = n 30 Y ARCULC U0 )
I=1 k=1

where u(t) is the unit step function defined as,

(1 t>0
“(t)_{o t<0.

Hence, the probability of detection Py for the composite hy-
pothesis detector can be derived by substituting the above ex-
pression for pr(¢) in (23) as,

(o] Alk‘ ktk 1 2_012_u(t)
Po= [ 33 5 at
Y =1 k=1
N; N, k o] t
Arx(—1) ko1 " EeT
_NZZW/ t [ le/(t)dt
=1 k=1 v
N: N 3
NN~y (F207)R v
=rd D A Tk g,e )
=1 k=1 1

where 7 is the threshold for detection and T'(.,.) denotes the

incomplete Gamma function [28], defined as,

T(s,y) = /oo t*retu(t)dt. (30)
v

O

Further, we now derive the probability of detection Pp for

the restrictive case of an isotropic CSI uncertainty covariance
matrix, i.e., $ = o?Iy, with af =02Vl <i<N,.

Lemma 3: For an isotropic covariance matrix i.e., with 3 =

21, the probability of detection for the detector in (18) reduces

to,
0 Pp = QX%NTM (%) ) @D

Proof: The characteristic function ®7(w) in (26) and
the corresponding probability density function pr(¢) of the
test statistic Toprp(Y) in (20), for the covariance matrix
¥ = ¢21, can be obtained as,

1 N,.N;
trlw) = <m> ’

N.N;
1 k}
{ w_QUQ)

pr(t) = Ko Z ApF-,
Yeth—le™ 307 u(t)

k1)1 :

N,ANt Ak(*

= Ko (32)

k=1
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respectively, where the constant kg is defined as kg =

(525 )"~Nt. The partial fraction constants 4y in (32) can now

be equivalently obtained as,

gN-Ns—k 1
Ap =B lim - —
=ty | djwNr N R (jw — Qig)N"Nt

1, k=N,N,;
_{0’ k#]\TAY (33)
where the constant 3, is defined as 8 = m Using the

expression for pr(t) from (32), the corresponding probability of
detection Pp for this scenario with a diagonal covariance matrix
N, N

R, can be derived as,
q,
PD_”OZA’“ v ( 202>‘

Substituting the expression for the coefficient 4, from (33), the
above expression for Pp can be simplified as,

o= oy T (V0 5p)
N, N, -1

e Z k'(%)

- Qxa\ Ny (%) ’

where (34) follows from the following property of the Gamma
function [28],

(34

g—1 g™
T(g,s)=(g—1)e? Z pou
m=0

O

In the next section we develop the framework to obtain the

optimal beacon sequence which can further enhance the detec-
tion performance of the proposed spectrum sensing schemes.

V. OPTIMAL BEACON FORMULATION
This section presents a deflection coefficient based opti-
mization framework to derive the optimal beacon sequence
X1, which can further improve the primary user detection per-
formance for scenarios with known/unknown CSI uncertainty
statistics.

A. Known Uncertainty Covariance R.,,
Let the stacked vector ¥ € CEN+*1 be defined as

F=[],...rF, ..., r% ]7 for1 < k < N, corresponding
to the N, receive antennas. The equivalent system model

considering this stacked observation vector ¥ can be derived as,

= (In, ® X;) vec(UT) 44, (35)
N————

X

where X = (Iy, ® X;) € CLEN-*NeNe the identity ma-
trix I, has dimensions &V, x N, and ® denotes the matrix
Kronecker product. The vector vec(UH) € CNr-Nex1 jg the
column vector obtained by stacking the columns of the un-
certainty matrix U¥ and has the covariance matrix Ryy =
E{vec(UH)(vec(UENH} = Iy & R, € CNrNexNoNe
Similarly, the concatenated noise vector 7} is obtained as
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7 = [n1,m5,...,m%,]7 with the noise covariance matrix
R; = E{ii"'} = In, @ R,, € CN-IXNoL The result below
derives the optimal beacon matrix X; for this scenario.

Theorem 2: The optimal beacon matrix X; for primary user
detection towards spectrum sensing, for a known uncertainty
covariance R, can be obtained as a solution of the optimization
problem,

]T

max. Tr(X;WXF)

st Tr(X X)) < Py, (36)

where W = S0 (hih#) — uN, R, € C¥*Ne | the quantity
14 1s an appropriate non-negative constant and P denotes the
total transmit beacon power.

Proof: To obtain the optimal beacon sequence, we em-
ploy the deflection coefficient d?(X; ) for the binary hypothesis
testing based primary user detection problem [6], defined as,

[B{Y; Ha} — BLY; Hol 3
Tr(cov{Y;H1}) ’

- A 2
HX vec (HH)H
2

(1>

d*(Xy)

Tr (XRyXH + Ry)

N R 2
L
- N, Tr(X R, X +R,)’

(37

where E{Y; #o}, E{Y; H1} denote the expected values of the
observation vector Y under the null hypothesis H, the alterna-
tive hypothesis H; respectively and cov{Y;H;} denotes the
covariance of Y under the alternative hypothesis ;. How-
ever, the direct optimization of the deflection coefficient above
is intractable since it is non-convex. Therefore, we consider
a simplified convex problem of maximizing the weighted dif-
ference of the distance between the hypothesis means and the
trace of the covariance. This yields a tractable problem which
can be solved to yield the closed form expressions for the op-
timal beacon matrices as shown below. Hence, the deflection
coefficient based optimization framework to obtain the optimal
beacon matrix X; for a scenario with known uncertainty co-
variance, towards maximization of the primary user detection
performance, can be formulated as,

N, .
max. Z HlelkHi — p(N,)Tr (XlRuX{I + Rn)
=1

st Tr(X:X{') < B. (38)

It can be observed that the optimization framework above is
a bi-criterion optimization problem [32] where the choice of
1 allows for a tradeoff between the uncertainty variance and
the separation between the vectors corresponding to the two
hypotheses. The optimization framework in (38) above can be
equivalently reduced to,

max. Tr(X;WXF)
st Tr(X X{) < Py,

where W = Z,Z:;l(flkflkH) — pN,R.,. The solution to the
above optimization problem is given by the beacon vectors

x1(i),1 <4 < L, defined as x; (i) = +/ %I/m(w(W), where

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 6, MARCH 15, 2016

Umaz (W) denotes the unit-norm principal eigenvector of the
matrix W. O

B. Unknown Uncertainty Covariance R,,

Let qi € CE*' be defined as qr = yi — Xlﬁk“ where
ﬁku is the MLE of h corresponding to the alternative hypothesis
‘#H, derived in (16). Hence, the equivalent system model for the
spectrum sensing scenario with the concatenated vector q =
lal,43,...,q% |7 € CEN-*! for the N, receive antennas can
be equivalently written as,

a = (Iy, ® Xy) vec(U") + 7,
N e’

X

where the matrix X and the concatenated noise vector 1) are as
defined in (35).

Lemma 4: The optimal beacon matrix X; for a CHRD based
robust spectrum sensing scenario with unknown CSI statistics
can be obtained as the solution of the optimization problem,

max. Tr (Xl ZX{I)

st Tr(XyX{) < Py, 39)

where Z = Y07, (hyhff)) € CVexNe,

Proof: Similar to the procedure in (37), the deflection coef-
ficient d%,; 5(X;) for the composite hypothesis based primary
user detection problem with an unknown uncertainty covariance
matrix, can be determined as,

- R 2 N, N 2
T o

dap(X1)= , (40
wze(X1) Tr(R;) NN, Tr(R,) (40)
where Hy g € CVr*Ne s defined as Hypp = [flm,
«oyhygg, .o h NT“}H . The optimization problem to obtain the

optimal beacon matrix X; that maximizes the performance of
the proposed detection scheme can be readily derived as,

max. Tr (Xlzxf’ )
s.t. Tr (X1X{I) S P(),

where Z = Zg;l(flkuﬁkH‘ 1). The above optimization problem
is a quadratic constrained quadratic program (QCQP) [32]
which can be solved by aligning each beacon vector as

x1(1) = 1/%umw(Z), 1 < i < L, along the principal

unit-norm eigenvector Vmay (Z) of the matrix Z corresponding
to the largest eigenvalue. This yields the optimal beacon matrix
X for the MIMO cognitive radio spectrum sensing scenario
with unknown CSI statistics. ]

VI. SIMULATION RESULTS

This section presents simulation results to illustrate the per-
formance of the spectrum sensing schemes proposed above for
MIMO cognitive radio scenarios. We consider a system where
the secondary user has IV, = 2 receive antennas and the primary
user base-station has N; = 2 transmit antennas. In Figs. 1-7,
we consider a non-antipodal signaling system with the beacon
matrix Xq € CP*? corresponding to the null hypothesis set
as Xy = 0 and the beacon matrix X; € C?* corresponding
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Fig. 1. Receiver operating characteristic (ROC) curves for the genie aided matched filter detector (MF genie), robust generalized likelihood detector (RGLD), ro-
bust estimator-correlator detector (RECD), composite hypothesis based robust detector (CHRD), energy detector (ED) in (43) and nominal estimate based matched
filter detector (MF) in (42) with SNR = —3 dB and o2 = 1 for (a) L = 2, (b) L = 4. (a) Case L, (b) Case II.
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Fig. 2. ROC curves for the genie aided matched filter detector (MF genie), robust generalized likelihood detector (RGLD), robust estimator-correlator detector
(RECD), composite hypothesis based robust detector (CHRD), energy detector (ED) in (43) and nominal estimate based matched filter detector (MF) in (42) with
L =4, 02 =1 for (a) SNR = -4 dB, (b) SNR = -2 dB. (a) Case I, (b) Case II.

to the alternative hypothesis set as an orthogonal beacon matrix,
i.e., satisfying X Xy = LI;». In our simulations we consider
different levels of CSI uncertainty with o2 € {1,0.8,0.6} in the
CSI uncertainty covariance matrix R, = ¢2D([1,0.9]T). We
present the probability of detection Pp versus the probability
of false alarm Pp 4 for the proposed RECD, RGLD and CHRD
robust MIMO spectrum sensing schemes towards primary user
detection. The performance of the uncertainty agnostic matched
filter detector corresponding to the nominal CSI estimate is also
given in the figures, similar to the comparison between the ro-
bust and the non-robust techniques in [30], [33]. The proposed
schemes are also compared with the energy detector (ED). Addi-
tionally, in our simulations we present comparisons of the pro-
posed robust detection schemes with the genie aided matched
filter detector (MF genie) with perfect knowledge of the CSI un-
certainty, i.e., with knowledge of the true MIMO channel matrix
H. This serves as an upper bound for the proposed detection

techniques illustrating the best detection performance achiev-
able for the corresponding scenario. We now describe the genie
aided matched filter and the nominal CSI based matched filter
detector employed to benchmark the performance of the pro-
posed schemes.

A. Genie-Aided Matched Filter Detector (MF Genie)

The optimal detector with perfect CSI for an additive white
Gaussian noise scenario is given by the standard matched filter
detector [6]. This can be derived employing the likelihood ratio
test as,

Lgenie(Y)
_ 112 p(ye: Ha)
= log N,
11x2: p(ye; Ho)
N,

»

= (yiR,'yr — (vi — Xhp)"R, Y (yx — Xhy)) .
1

o
il
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Fig. 3. ROC curves for the genie aided matched filter detector (MF genie), robust generalized likelihood detector (RGLD), robust estimator-correlator detector
(RECD), composite hypothesis based robust detector (CHRD), nominal estimate based matched filter detector (MF) in (42) and energy detector (ED) in (43) for

SNR = —6dB, L = 4 and (a) 52 = 1, (b) 62 = 0.6. (a) Case L, (b) Case II.
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Fig. 4. Receiver operating characteristic (ROC) curves in logarithmic scale for the robust generalized likelihood detector (RGLD), robust estimator-correlator
detector (RECD), composite hypothesis based robust detector (CHRD), energy detector (ED) in (43) and nominal estimate based matched filter detector (MF) in
(42) with SNR = -3 dB,¢2 = 1,(a) L = 2 and (b) L = 4. (a) Case L, (b) Case 1.

From the likelihood ratio Lgenie(Y) above, the Neyman-
Pearson (NP) based matched filter detector and the test statistic
T'n1 F(genie) (YY) are given as,

Ny
TMF(genie) (Y) = Z yER;Ith
k=1

"
Zy. (4D
Ho
B. Matched Filter Detector (MF)

The joint log-likelihood ratio test for the matched filter de-
tector ignoring CSI uncertainty can be derived as,
Lyr(Y)

N,
121 p(yr; Ha)

= log
117, p(yx; Ho)

=z

(YI?RJIW —(¥r — Xflk)HRgl(Yk - kalk)) .
1

e
il

Therefore, the test statistic T (Y ) for the uncertainty agnostic
matched filter detector can be equivalently obtained as,

N,
Tur(Y) =Y yiR, Xh;. (42)
k=1

C. Energy Detector (ED)

The test statistic I'gp for the energy detector [5]-[7] for the
MIMO cognitive radio system model described in (1), is given
as,

N,
Ten(Y) = > yi v (43)
k=1

Consider the test statistic obtained for the CHRD in (18). Let the
beacon matrix X; € CE*N¢ corresponding to the alternative
hypothesis be of dimension 2 x 2, i.e., the number of transmit
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Fig. 5. Receiver operating characteristic (ROC) curves in logarithmic scale
for the robust generalized likelihood detector (RGLD), robust estimator-cor-
relator detector (RECD), composite hypothesis based robust detector (CHRD)
and nominal estimate based matched filter detector (MF) in (42) with L = 2,
SNR = —1 dB for 2 x 2 MIMO with R,, = D([1,0.9]7) and for 4 x 4
MIMO with R.,, = D([1,0.9,0.6,0.4]7).
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Fig. 6. ROC curves for the simulation based performance of the robust esti-
mator-correlator detector (RECD simulation) and the corresponding plots from
analytical expressions (RECD theory) for SNR = —3dB, L = 2,and R,, =
D(1,1).

antennas N; = 2 and the number of beacon vectors L = 2.
This makes the beacon matrix an orthogonal square matrix with
X{X; = X;X{ = 2I, and the resultant MLE hy,; of the
vector hy_corresponding to the alternative hypothesis #y re-
duces to hy; = %X{{yk. Hence the test statistic Tearn(Y)
for the CHRD in (18) can be equivalently written as,

N,

Teurp(Y) = Z flfuﬁku

=
2]
X

Yk Yks (44)

a
Il
—

which is identical to that of the conventional energy detector
given in (43).

In Figs. 1(a),(b), we compare the primary user detection
performance of the proposed robust estimator-correlator de-
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Fig. 7. ROC curves for the simulation based performance of the composite hy-
pothesis based robust detector (CHRD simulation) and the corresponding plots
from analytical expressions (CHRD theory) for SNR. = —2 dB, L = 2, and
R, = D(1,0.9).

tector (RECD) in (6), the robust generalized likelihood detector
(RGLD) in (14), the composite hypothesis based robust de-
tector (CHRD) in (18), with the energy detector (ED) in (43),
the nominal channel estimate based matched filter detector
(MF) in (42) and the true channel coefficient based genie aided
matched filter detector (MF genie) in (41) for L € {2,4}.
The proposed robust detection schemes can be seen to lead
to an improved detection performance in comparison to the
uncertainty agnostic matched filter detector. Further, RGLD
demonstrates a performance edge over the other schemes.
Across the figures, the primary user detection performance of
the proposed schemes improves with an increase in the number
of beacon vectors L, thereby decreasing the performance gap
with respect to the genie aided matched filter detector. Simula-
tion results also demonstrate that the detection performance of
the CHRD and the ED is identical for Ny = L = 2. This is due
to the fact that ED is a special case of the proposed CHRD for
N; = L = 2 as shown in Section VI-C.

Figs. 2(a), (b) present a performance comparison of the
competing spectrum sensing schemes for various SNR values
in the set {—4, —2} dB and L = 4 beacon symbols. Similarly,
Figs. 3(a), (b) present the Pp versus Pry4 performance with
different levels of CSI uncertainty considering the uncertainty
covariance matrices R.,, = ¢2D([1,0.9]T) with 62 € {1,0.6}.
The simulation results demonstrate a similar trend in the detec-
tion performance of the proposed robust detection schemes. It
can also be observed across the figures that the performance
gap between the proposed robust schemes and the uncer-
tainty agnostic matched filter detector along with the energy
detector (ED) widens with increasing CSI uncertainty. Fur-
ther, Fig. 4(a) and (b) present a Pr 4 versus Pp performance
comparison of the proposed robust detection schemes with
the uncertainty agnostic matched filter (MF) detector and the
energy detector (ED) on a logarithmic scale for improved
resolution and show a trend similar to Fig. 1.

Fig. 5 presents a performance comparison of the proposed
detection schemes for various values of the number of receive
and transmit antennas. We consider 2 x 2 MIMO scenario with
CSI uncertainty covariance matrix R, = D([1,0.9]T) and 4
x 4 MIMO scenario with CSI uncertainty covariance matrix
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Fig. 8. ROC curves for the optimal beacon matrix versus the orthogonal beacon matrix for the composite hypothesis based robust detector (CHRD) and matched
filter (MF) in (42) with SNR = —5 dB, and R,, = D(1,0.9) for (a) L = 2, (b) L = 4. (a) Case I, (b) Case II.

R, = D([1,0.9,0.6,0.4]T). The detection performance of the
proposed robust detection schemes significantly improves with
the increase in the number of receive and transmit antennas.

In Fig. 6 we plot the probability of detection (Pp) versus
the probability of false alarm (Pp 4) and compare the simulated
detection performance with the analytical performance curves
generated from the derived expressions for Pp in (8) and Pr 4
in (9) for the RECD with L = 2, SNR = -3 dBand R, =
D([1,1]T). It is evident from the figure that the detection per-
formance of the proposed RECD technique obtained through
simulations is in close agreement with the results obtained via
theory. Similarly, in Fig. 7 we compare the detection perfor-
mance from the expressions for Pp in (22) and Pry4 in (21)
corresponding to the CHRD with the simulation results for a
scenario with L = 2, SNR = —1 dB and 02 = 1. The sim-
ulated detection performance of the CHRD scheme coincides
with the analytical results.

Fig. 8(a), (b) present the Pp versus Pp 4 performance con-
sidering the optimal beacon matrix derived in Section V for the
scenarios with a known uncertainty covariance and unknown
uncertainty covariance. The detection performance for the
sub-optimal orthogonal beacon sequence is also given therein.
Fig. 8 clearly demonstrate a performance improvement for the
derived optimal beacon sequence based spectrum sensing in
comparison to the orthogonal beacon sequence.

VII. CONCLUSION

This paper considers the problem of primary user detection
for MIMO cognitive radio scenarios with CSI uncertainty.
In this context, novel detection schemes such as the robust
estimator-correlator detector (RECD) and the robust gener-
alized likelihood detector (RGLD), which are robust against
CSI uncertainty, have been proposed for scenarios with known
uncertainty statistics. Further, for the scenario with unknown
CSI uncertainty statistics, we developed a GLRT based com-
posite hypothesis robust detector (CHRD) for spectrum sensing
in MIMO cognitive radio networks. Closed form analytical
expressions have been derived to characterize the theoretical
detection performance of the proposed RECD and CHRD

schemes. Subsequently, an optimization framework has also
been presented to obtain the optimal beacon sequences which
further enhance the performance of the proposed detectors.
Simulation results were presented to illustrate the improved de-
tection performance of the proposed robust detection schemes
which consider CSI uncertainty in MIMO cognitive radio net-
works. It has also been shown that the optimal beacon matrix
significantly boosts the detection performance towards MIMO
spectrum sensing. The proposed framework can be further
extended considering other additional challenging aspects such
as noise uncertainty in future works.
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