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Abstract—This paper considers the problem of distributed in the form of one-bit local decisions prior to transmission
detection for massive multiple-input multiple-output (MIMO)  to the fusion center (FC) [9], [10] for distributed detectio
wireless sensor networks (WSNs). Neyman-Pearson (NP) ait [11], [12]. The local decisions are subsequently processed

rion based fusion rules are developed at the fusion center (&) . . .
that also incorporate the local probabilities of detectionand false the FC to arrive at a global decision regarding the event of

alarm of the constituent sensor nodes. Closed form expressis interest. A brief review of the existing research in the area
are obtained for the probabilities of detection and false arm at  of distributed detection and its extension to WSNs emplgyin
the FC for various signaling schemes employed by the sensors massive antenna arrays is presented next.

The fusion rules and analysis are extended to the scenario thi

imperfect CSI. Furthermore, signaling matrices are determined A Review of Existing Work

for the massive MIMO WSN to enhance detection performance. o ] .

The asymptotic detection performance of the WSN is analyzefbr Distributed detection over a multiple access channel (MAC)
the large antenna regime, which yields pertinent power scalg was first investigated in [13]. Berger et al. [14] have exaadin
laws with respect to the number of antennas at the FC. Simulan  the performance of decentralized detection for both peira
results demonstrate the improved performance of the proposd  ye|| a5 multiple access channels with noncoherent moduati

schemes and also validate the theoretical findings. d . h the EC h inal t In 115
Index Terms— Distributed detection, massive multiple-input and censoring, where the as a single antenna. In [15],

multiple-output (MIMO), wireless sensor networks (WSNs), the authors have demonstrated the optimality of the energy

Neyman-Pearson criterion. detector for a Rayleigh fading scenario for MAC with an
infinite number of non-identical sensors in MIMO WSNSs. Dis-
I. INTRODUCTION tributed detection over MIMO channels with a finite humber

Massive multiple-input multiple-output (MIMO) technol-©f sensors was initially considered in [16], which presdrae
ogy, also known as very large-scale MIMO, has attract&®Wer allocation scheme based on the J-divergence critario
significant research interest as a potential solution totthee Order to optimize the detection performance at the FC. Astho
ever-increasing demand for higher data rates in next géaera " [17], [18] presented the optimal detection rules and the
wireless communication systems [2], [3]. A massive MIMcFOrresponding performance analysis for cooperative sject
system employs a large antenna array comprising of hundr&§8Sing in multiuser MIMO cognitive radio networks, consid
of antennas at the base station (BS) to simultaneously sefyif19 both perfect and imperfect CSI scenarios. Cheng et al.
a large number of users utilizing the same time-frequent/[19] study the detection performance of a distributecssen
resources [4], thereby leading to a significant increaséén tNetwork based on quantized outputs of the local sensorlsigna
spectral efficiency. Additionally, one can leverage sifigdi 1€ Work in [20] proposed various computationally efficient
linear signal processing techniques at the massive MIM@ pglbeit sub-optimal fusion rules for deC|3|on- fusion in MIMO
station [5] without compromising on the spectral efficigncy/VSNS over a coherent MAC. The work in [21] proposed
thus making them attractive for practical implementatiot/g0rithms for the optimal transmission of analog obseove,
Moreover, it facilitates a reduction in the transmit poweidther than local decisions, in an amplify and forward-dase
of the users, thereby simplifying hardware design [6]. AY/SN, that maximized the negative exponent of the probgbilit
a result, there has been a growing interest in incorporQE—error at the FC. In [22], the authors determine the optimal
ing massive MIMO technology in wireless sensor networldecision rules for distributed detection in a scenario whrer
(WSNSs), which have been extensively deployed for sensilfif Sensors transmit their amplified analog observatiorss to
and surveillance applications because of their robusttessTulti-antenna FC using a fixed transmission gain, followgd b
faults, cost effectiveness and flexibility of deploymeri; [8].  2nalysis to characterize the probabilities of detecticth fafse
Due to the stringent power and bandwidth constraints in&@rm for different availabilities of channel state infation
WSN, the sensor nodes generally compress their obsersati§p>')- The work in [23] considers a distributed WSN, where

single-antenna sensors observe an unknown determingstic p
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and is compared when the channels between the sensors angvhich is absent in [21], [23], [24] that are based entirely on
the FC are AWGN, Rayleigh and Ricean fading, respectively. the transmission of analog observations. Antipodal as well
However, as described in [8], such schemes based on theas non-antipodal signaling formats are considered for the
transmission of analog observations require a large battdwi  decision vectors in our analysis. Further, the FC combines
and tend to employ classical signal processing schemes thatthe analog signal outputs of the different sensors in cettra
are complex. to the work in [19] that considers quantized outputs of

Recently, a few works have investigated the impact of sensor signals.
employing a massive antenna array at the FC in WSNs. The Closed-form analytical expressions are determined to-char
authors in [25] have studied the estimation and detection acterize thePp, Pr4 performance of the proposed fusion
performance of a coherent amplify-and-forward WSN with a rules at the FC. The above analysis including the decision
massive antenna array at the FC, where the performance ofrules and the corresponding performance is also extended
the Neyman-Pearson (NP) detector, energy detector, agarlin  to a scenario with imperfect CSI, whereas [21], [23], [24]
minimum mean squared error (LMMSE) estimator are deter- consider only perfect CSI.
mined analytically. Decentralized estimation of a coeda « The asymptotic system performance is characterized in the
random parameter vector in a massive MIMO system over a large antenna regime, from which it can be inferred that
coherent MAC using the MMSE estimator has been studied the transmit power of each sensor can be scaled down
in [26]. In [27], the authors have investigated the effects proportional to the number of antennas at the FC for perfect
of transceiver hardware impairments, both at the massive- CSI and similarly, proportional to the square root of the
antenna FC and single-antenna sensor nodes, on the detectionumber of antennas for imperfect CSI scenarios.
performance of the FC. In [28], sub-optimal fusion ruleshwit « Further, the signaling matrices are derived for the WSN to
reduced complexity, i.e., linear-filter and deflection-mnaizer maximize the detection performance at the FC for all the
widely linear (WL) rules, are derived for WSNs where the FC scenarios. It is worth noting that most of the existing works
is employed with a large number of antennas. The recent studyreviewed in Section I-A consider either on-off keying [7],
in [29] derives sub-optimal fusion rules for a Rician fading [14], [16], [29] or BPSK modulation [8], [20], [28] while
MAC utilizing only statistical CSI. deriving the pertinent detection rules. In contrast, thigkv

In the conference version of this paper [1], we have presents a comprehensive analysis wherein the fusion rules
presented NP criterion based fusion rules where antipodal are derived for both antipodal and non-antipodal signaling
signaling scheme was utilized for both perfect and impeérfec schemes, thus making it suitable for a large number of
CSI scenarios. Further, closed form expressions wereeatkriv - applications.
to characterize the resulting system probabilities of cieie ~ « Simulation studies are presented to compare the perfor-
and false alarm at the FC. In this work, the analysis is exddnd mance of the proposed schemes with the existing tech-
to non-antipodal signaling along with the derivation ofsgd nigues and also to validate the theoretical findings.
form expressions of system probabilities of detection aiskef
alarm at the FC. Moreover, signaling matrices are derivgdl Organization
considering perfect as we_II as imperfect CSI fo_r_both arui_mo The outline of the paper is as follows. Section Il describes
and non-antipodal signaling schemes. In addition, asytigpto,

: the multiple observation vector based system model for a
system performance is analyzed for a large number of ansenna

at the FC and probability of error expressions are obtained ]{nassive MIMO WSN, where the sensors transmit vectors
P y P corresponding to their local decisions over a MAC that are

;hri EL?:]:rend;:gesdczg?gxs' The main contributions of thISkWOpr)rone to errors with finite probability. Section Il derivise
' likelihood ratio test (LRT)-based detection rules for the-s
nario with perfect CSl, along with the closed-form expressi

B. Main Contributions for Pp and Pr 4. The LRT based detection rules incorporating

The main contributions of this paper in the context ofS! uncertainty are obtained in Section IV. Results charac-

distributed detection in a massive MIMO WSN are as followd€'izing their performance are also presented thereintidiec

. . . . V develops the framework to obtain transmission matrices,
« This work considers a multiple observation vector model i

contrast to [28], where binary phase-shift keying (BPSPfI llowed by the large antenna array analysus n Se_c_t|on Vi
i e nd detection performance analysis in Section VII. Siniotat
modulation was employed to map the decision of eac

. g results are presented in Section VI, followed by conausi
sensor. Here, each sensor transmits decision vectors VEE . tion IX

one or more signaling intervals corresponding to its locl
decision, unlike [21], [23], [24] that are based on the trans )
mission of analog observations. Thus, the sensor decisidhs Notation
in this work are prone to error during transmission with a For convenience, the notation used throughout the paper is
finite probability, in turn making this model more generalsummarized below. Boldface lowercase letterare used to

« Low-complexity fusion rules for the low communicationdenote vectors, where,, represents theth component ok
channel SNR regime are derived based on linear filterimmdx(?) is the vector obtained at thith iteration.0 5 denotes a
at the FC while also incorporating the probabilities of deV x 1 vector with all its entries being zero. Similarly, boldface
tection Pp and false alarnPr 4 for local sensor decisions, uppercase letterX are employed to denote matrices, where



Pp1,Pr1)

( A
[X]m.n represents thém,n)th component of matriXX and (z)

X denotes the matrix evaluated at ti# iteration. The T baa P
matrix Iy represents an identity matrix of sizZ€ x N. The ’ 7‘«1:“
operatorZ{-}, %{-}, ()7, (), exp{-}, ||||, ved-), vec ' (") L)
and ® denote the expectation operator, real part, transpose,
conjugate transpose, exponential function, Euclidearmnor

vec operator, inverse vec operator and Kronecker product

N . __.l.f----":'
respectively. RF) represents the probability and (RiB) W """""
denotes the conditional probability of the evettgiven B. IK(I)
Similarly, p(.) is used to represent the probability densitfig. 1.  System model of the massive MIMO wireless sensor owrdw
function (PDF) andp(A|B) denotes the conditional pdf of consisting of K' single-antenna sensors, communicating with a fusion cente
. P equipped withM receive antennas.
A given B. The random vectox ~ CAN(u,R) follows a
complex Gaussian distribution with mean and covariance
matrix R. The quantity@ deToteiothe Gaussiaf}-function, wjith zero mean and unit variance, i.é,,x ~ CA(0,1). The
which is defined ag)(z) = —= [, exp(—%)dy. large-scale fading coefficien, represents the pathloss and
log-normal shadowing effects. It is assumed to be fixed over
Il. SYSTEM MODEL several coherence intervals and is hence invariant aeross

Consider a distributed detection framework where multipiEherefore, the resulting channel matf can be modeled as
sensors observe the phenomenon generating a signal of inter G = HD'/?, (4)
est, the source of which is assumed to be located at a known
location. This scenario can be modeled as a distributedhpinavhere the diagonal matri® € C*** denotes the matrix with
hypothesis testing problem, where the null hypothégjsand the large-scale fading coefficients, 1 < k < K, along its
the alternative hypothesig; denote the absence and presend¥incipal diagonal, i.e.[D]x; = 8x. The small-scale fading
of the signal of interest, respectively. The WSN comprises goefficient matrixH € CY**, with its elementsH],,, =
K single-antenna sensors and a FC with a large antenna artay:, is defined above in (3). Therefore, the received signal
of M antennas, such that/ > K, as shown in Fig.1. The matrix Y = [y(1),...,y(]),...,y(L)] € CM*" at the FC
sensors communicate with the FC over a flat fading coherd@t the L received signal vectorg(l), described in (2), can
MAC. Depending on the local binary decision, thih sensor, be represented as
1<k < K,_transmits the symbolsk(l),xk@),...,zk(L) Y = /p.GX + N, (5)
over L signaling intervals, which are represented by the vector
xp = [zr(1), 2(2), ..., 2 (L)]T € CEX1. The transmitted lo- where X = [x(1),...,x(L)] € CK*L is the concatenated
cal binary decision vectors are eithef = uy o or x;, = uy;, transmitted signal matrix corresponding to thecomposite
indicating the absence or presence of the signal of interegignal vectorsx(l),1 < ! < L, and the noise matrix
respectively. Let the local detection performance of ke N € CM*Z is obtained by stacking the circularly symmetric
sensor be characterized by its probabilities of detedtidn,) AWGN vectorsn(l),1 <1 < L, such that its elements are dis-
and false alarm{Pr ), defined as tributed asn; ; (1) ~ CN(0,02). The elements of the channel
matrix G are assumed to be modeled as independent random
Pp = Pr(xp = up1[H), (1) variables which follow the complex Gaussian distributioe.,
Ppj = Pr(x = u,1[Ho). gmi ~ CN(0,Bx), under favorable propagation conditions
The signaly(l) € CM*! received at thdth, 1 < | < L, [5], [30]. This follows from the assumption that the sensors
| ac in the massive MIMO WSN are spatially separated by large
distances. Moreover, different column vectors of the cleann
y() = vpuGx(1) + n(l), (2) matrix G associated with the different sensors are assumed

wherep, denotes the average transmit power of each sené%rbe mutually independent. Therefore, using the law ofdarg

and x(1) = [x1(]),...,zx(D)]T € CKE*! is the vector numbers it follows that

comprising of the symbols transmitted by thesensors at the LGHG ~D, for M > K. (6)

Ith signaling interval. The additive noise veciofl) ¢ C**! M

is distributed asi (1) ~ CA(0,021,,) and the MIMO channel Hence, the channel vectors corresponding to the different
matrix between the FC andd sensors is represented bysensors are asymptotically pairwise orthogonal for theade

G ¢ CMxK_ The channel coefficient between theth, Wwith a large antenna array employed at the FC coupled with
1 < m < M, antenna at the FC and thgh sensor, i.e., favorable propagation conditions. Using the above frantkwo

signaling interval at the FC can be represented as

gmk = |G]mr, can be characterized as for massive MIMO WSN, the subsequent sections present the
fusion rules for various scenarios.

whereh,,,;. denotes the small-scale fading coefficient between IIl. FUSION RULE WITH PERFECTCSI

the mth antenna and thkth user that is assumed to be inde- In this section, fusion rules are derived for a scenario

pendent and identically distributed (i.i.d.) complex Gsias with perfect CSI considering for both antipodal and non



antipodal signaling schemes. Employing the Neyman-Paarso\/(,/p.G" Gx(1),02 G G). Under the favorable propaga-
(NP) criterion that aims to maximize the detection prokigbil tion conditions stated in (6), the equivalent system model f
for a given probability of false alarm, the log likelihoodiica theith filter output vectorz(l) = [21(1), ..., zx (1)]T € CE*!
(LLR) T(Y) for the observation matriY’ defined in (5), and can be expressed as

the corresponding test are given as

Vi z(l) = /P MDx(l) + (1), (12)
T(Y)=In [%} 5 7, (7) whereii(l) € CK*! distributed asCN(0,MDo?2) repre-

sents thelth column vector of the noise matrilN. Sim-
where v denotes the decision threshold. The quantitiélarly, from (11) and (12), the filter output vectar, =
p(Y|H1) andp(Y|Ho) in the above expression (7) representy (1), ..., zx(L)]T € CL*! corresponding to théith user
the probability density functions (PDFs) of the receivedn®a over L signaling intervals can be equivalently written as
Y under the alternative and null hypotheses, respectively. U .

lizing the independence of the transmitted signal vecices, 2, = /PuM Brxi + Dy (13)

x(1) across thel different signaling intervals, the simplified The jth component (1) of the filter output vectog,, can now
expression for the LLR test in (7) can be expressed as  pe modeled as; ({) ~ CN(/PuM Bray(l), M Bro2). Hence,
L M Pr(x(1 it can be equivalently represented as a parallel accessiehan
T(Y) = Zln Zx(l)p(ya)b‘( ) Prix()[#1) (8) (PAC) between the sensors and the FC, as a consequence of
= ZX(Z)P (y(D)[x(1)) Pr(x(1)[Ho) the linear processing and the large antenna array empldyed a

_ly()—FaGx®)|? the FC. Thus, exploiting the independence of the signabvect
XL: gl:) P ( on )Pl’(x(l)|’H1) © across they sensors, the LLR test for distributed detection in
= In , (9)  the massive MIMO WSN described in (13) under ideal CSI
1)— /P Gx(1)]|2
1=1 E(l:) exp (_—”y() \/g = )Pr(x(l)|7—[0) can be formulated as
K

where the PDF ofy(l) for a givenx(l), i.e., p (y(1)|x(1)), T(Z) = |n{p(Z|H1)] = |n{H M} (14)
follows the Gaussian distribution, given as P(Z[Ho) k=1 p(zx[Ho)

1 -1 where p(zi|Ho) and p(zx|H1) denote the PDFs of the re-
p(Y(l)|X(l)):'(7mz)M exp [U_2|Y(l)\/p_uGX(l)||2] - (10)  ceived \Eec!corz)k undeE th|e n)uII and alternative hypotheses,
, " " i respectively. Fomy, € {uy,ux 1}, the above LLR test can
However, it can be observed that the LLR test in (9) igeg expressed as shown in (15’)_
computationally co_mplex and numerit_:ally unsta_ble. This is The authors in [18] show that different signaling schemes
due to the summation over* exponential terms with a large it the same transmit power have different detection per-
dynamic range in the numerator as well as in the denominajgfyances. Therefore, the performance of the proposed rule
[20], [28]. Therefore, to preserif(Y) in a more stable form s yrasented for antipodal as well as non-antipodal siggali
which is amenable to numerical implementation, it can h&names The subsequent subsections individually siynplif

approximated by a two step procedure. In the first step, tha, analyze the performance of the test in (15) for both
received signal is processed with the help of linear matchg%na”ng formats.

filtering to obtain the outputs corresponding to the indigt

sensors. Subsequently, the second step derives a finaiothecis

by combining the individual sensor decisions. A similar twé- Antipodal Signaling

step approach is used in [28] that presents different linearConsider the transmit signal vectors,, = —u; and
processing techniques, namely the matched filter (MF), zeiQ ; = uy, for the kth user, corresponding to the absence and
forcing (ZF) and minimum mean squared error (MMSEpresence of the signal of interest, respectively. The POFs o
techniques, to characterize the performance of the massiie observation vectaz; for the antipodal signaling vectors
MIMO WSN. However, the work in this paper focuses on-uy,u; are given as

a comprehensive analysis that includes obtaining the probztlZ xp=—g)= 1 N (*||Zk+\/p_uMﬂkukH2)

bilities of detection, false alarm and error, the corresiiog DA%k 1k » (M Bro2)k Mpyo2 ’

power scaling laws, and also the structure of the transamissi (17)

matrices, which are lacking in [28]. The analysis for ZF is — |z —/PaM Bru||?

similar and is shown in Appendix A. p(zk|xr = ug)= (7 MByo2)L €xp ( M Bro2 )
The output matrixzZ = [z(1),...,z(L)] € CK* obtained " " (18)

after matched filtering the received matiik in (5) is Substituting the above PDFs in (15), the test statistic li@ t

- case can be derived as shown in (16), which can be further
Z=G"Y = /p.G"GX +N, (11) simplified to the expression below (o)

whereN = GYN e CK*L denotes the equivalent noise % N P

matrix after filtering. From (11), it can be noticed that fory, ()= $"In Pps + (1-Pp ) exp (55 R(z; uk))]7

a given vectorx(l), the ith columnz(l) of the filter ma- = | Prg+ (1= Pry)exp (CP R (2 uy,))

U’H.

trix Z follows the complex Normal distribution described as (29)



~In { H g } Z' { p(zrlxi = Wi )P = W [M) + plze X0 = Weo)PHx: = WrolHy) | g
p(zi|Ho) (zr|xK = g 1)Pr(xg = ug1|Ho) + p(2k XK = uk,0)PH(xK = ug0/Ho)
. sz VPuMBiu | . _ llzet/PuM Brug ||
Ta(Z) = iln Posew ( Bt ) + (1 Powesp ( ) (16)
Pt Pr.i exp ( lze— \]/\/%i\igkUkHQ) +(1- PF,k) exp ( . “Zk+@££§kUk“2)

In order to analyze the performance of the detector, theeabO\é o2

2 2
test statistic can be further simplified for the low SNR regin 7al#o ZMﬂkak”ukH (p“Mﬂk(l Rl ey ) (25)
as described next [18]. Using the approximatiens$ ~ (1 — =1

v) and In(1+v) ~ v that hold for sufficiently small values of > _N~,, MB(1-02) 26
v, the test statistic in (19) can be simplified as T Z Braillus* (p“ Br( Mus P+ ) (26)

where the constants; and b, for the kth user are defined

Zak% Zk uy) VAPv (20) as b, =2Pp — 1 and ¢, = 2Pr, — 1 and yap denotes the
7o detection threshold if20).
whereay, £ Pp ;. — Pr. denotes the constant correspondingto  pgof: See Appendix A in [1]. -

the kth sensor. It is worth noting that the low SNR assumption
|s related to the SNR of the communication channel, p.g < B.. Non-Antipodal Signaling

. The above test considers a general case with imperfect
sensors i.e.Pp . # 1 and Pgy, # 0 in contrast to the one in Consider now the non-antipodal signaling scenario, i.e.,
[28], which considers an ideal scenario with perfect senfor  Wro = 0 anduy;; = u;, indicating thekth user's decision
the MRC and MMRC fusion rules. Further, the simplified tegtorresponding to the null and alternative hypotheseseesp
statistic obtained above has a lower computational contglextively. Therefore, the conditional PDFs of in (13) with the
due to its linear structure in comparison to some of the tegt@n-antipodal signaling constellation above is expressed
1, 26 such s ne Secode he s 9pTon LS WS- (s =0) ~C(0, M kD), @)

, B N 2
transmission of multiple symbols ovér signaling intervals. plzrlxi = ug) ~ CN(VpuM By, MByo, ). (28)
The low SNR approximation based test statistic is apple#bl Using the substitutior, = z;, — /puM B8k and defining
practical scenarios as WSNs are typically resource canstta 7/ = [z/(1),...,2'(L)] € CK*E, the cond|t|onal PDFs of;,
in terms of the transmit power [12], [31]. Furthermore, itorresponding toc, = {0, u,} follow as
is often desirable to limit the transmit signal power of the , 5
sensors in order to minimize the probability of unauthatize p(zg|xk = 0) ~ CN(=v/puM Brui/2, MBroy 1),  (29)
interception/ detection [10]. The result below describes t  p(z},|xr = ux) ~ CN (vpuM Brug/2, M Bro2I),  (30)
performance of the test in terms of the resultilg and P 4. which are similar to (17), (18). Hence, the t&&(Z’) under

It is worth noting that such analytical results have not beep
given in the existing works such as [21], [23], [24]. 1on- antipodal signaling can be determined similar to (19) a
K Pp i+ (1=Pp i) exp (= 2@9‘{@ Huy))

Theorem 1. The probabilities of detectiofP,) and false Tn(Z')=

alarm (Pr4) corresponding to the test statistic i¢20) for killn Prj, + (1= Pry) exp (= meﬁ(zk uy,))
distributed detection at the FC with perfect CSI under amtip (31)
dal signaling are
VAP — M, Following the procedure used in (20), the above test dtatist
Pp=Q (?), (21) can be simplified to yleld the closed- form expression below
Pra=Q (YAPU_ f“TAIHo ) (22) Zakfﬁ z uy,) z > e, (32)
TalHo

N whereay, £ Pp i, — PF,;C and ~np IS the detection threshold.
where the quantitieg, s, i3, and 03, 3, U%A_ml '®Pre-  The pertinent detectors and the analysis for the non-addipo
sent the means and variances of the test stati§{i@) under  gjgnaling format considered above have not been given ih [28
the null and alternative hypotheses, respectively, whigh a Note : The probabilities of detectionp) and false alarm

obtained as X« (Pr4) for the above mentioned test under non-antipodal
_ M 2 2 signaling can be obtained by replacing the quantifyn (23),

P The analysis in this section considered perfect CSI to be

_ —anby M By g2, 24) available at the FC. However, in practical scenarios, theé CS

HInlH: l; VPutibi M || @4 at the FC is obtained via channel estimation, which leads to

errors in the estimated CSI|. The next section determines the



fusion rules and also presents the pertinent analysis densi A. Fusion rules for Antipodal/ Non-Antipodal Signaling

ing CSI uncertainty in massive MIMO WSNs. For the antipodal signaling vectors,, = —uj and

Xk,1 = uy, corresponding to the null and alternative hypothe-

IV. FUSION RULES UNDERCS| UNCERTAINTY ses, respectively, the resulting PDFs #qrare determined as
For scenarios with CSI uncertainty, the true channel matrix

G can be characterized as P(zk[xk = —ug) ~ CN(—/puM Bruy, MBrol L),  (42)
G2 G — €&, (33) p(ik|xk = uk) ~ CN(\/p_uMﬁkuk, MﬁkaiIL). (43)

where G € CM*K represents the estimate of the chann&n substitution of the PDFs above, the test obtained in (41)
matrix and the matrix€ = [ei,. .., ex] € CM*K denotes the Simplifies to
error matrix pertaining to the channel estimate similar3®][ . X Pp x+(1—Pp 1) exp ( \/’T”i)%(z]C uk))
[33]. Similar to [6], consider the transmission of the ogbaal TR,A(Z)ZZ In 1

; ; K H — P+ (1—Pp ) ex \/ZT”ER(Z uy)
pilot matrix ® € C™»*% | i.e., ®"“ ® = I, for the purpose k=1 .k F.k) €XP K Uk

of channel estimation. It is assumed thgtsymbols are used which further reduces to the computationally efficient form
as pilots andry; symbols are used for transmitting data, suckhown below in the low SNR regime
that 7, + 74 < 7., wherer. denotes the coherence interval.

The system model for channel estimation from the transchitte TRA Z arR(Z Zk uy,) WA, (44)
pilots is
Y, = /p,G®" + N, (34)

_ A For the specific scenario witRp ;, = P; and P, = Py, Vk,
wherep,, denotes the pilot power, i.¢,, = 7,p,. Therefore, je. all the constituent sensors in the WSN have identazll

the MMSE estimate ofs is sensing performance, the test statistic further reduces to
A 1 * U’r27, -1 -
G = —\/p_pr@ <ED + IK) . (35) Tran(Z Zm i (45)
As shown in [6], the resulting estimagg, and the correspond- ) ]
ing errorey, are distributed as Theorem 2. The detection performance of the test (#¢)

A . - 0 for a massive MIMO WSN with CSI uncertainty can be
&k ~ CN(0, Belar), where Sy = py B/ (0, + ppBr), (36)  characterized in terms of the resultingy, Pra as

e ~ CN(O,'y&kIM),Where'y&k £ 0-721676/(0’721 +ppﬁk) (37) B VAl — T alHs _ YAl = KT alHo
Pp=Q( ———— |, Pra=Q| ————

Therefore, the equivalent system model for (5), incorpogat
the CSI uncertainty, can be obtained as

), (46)

OTralH1 OTralHo

where v, is the detection threshold if44). The quantities

Y = \/ZZ(G &)X +N= \/IZGX-FW, (38)  [TkalMor HTral#a and O’T o O’T A, are given similar to
ML . . the expressions |(23) (24& (25), (26) respectively, withB,
whgre W ¢ A(C denotes the equivalent noise rnatr|>§72 replaced byj, o 2 respectively and are given as
defined asw = N—, /p,£X. It follows from the distributions

of column vectors inN, &, given in (36), (37), respectively,

that thelth column vector of the noise matriW, i.e., w(l) HTralHo = Z VPuarce M B |k %, (47)

follows the complex Gaussian distribution with zero mead an k=1

covarlance matrlwa(l) = E{w()wH ()} = o021 with X b M J 5 48
2 = pu S5 Jugi (D)o s +o2. Similar to (13), on matched /' 7ral* = ;\/p_“ak kM By l[uxll, (48)

fllterlng with the estimated channel matrix and exploiting K 2
1 ~H ~ ~
G G ~ D under favorable propagation conditions, WhergTRA‘HO ZMﬂkaillukHQ(puMﬂk(l 2) ||| 2+ 2 ) (49)
D is a diagonal matrix Wltr[uD]kk = ﬁk, the equivalent system =
model for the filter output vectoz;, € CX*! corresponding

K 5 B 2
fo thekth user is Oty =M Brad [ [A(pu M B (1=b]) s |+ 222, (50)
7k = \/DuMBixy + Wi, (39) =
L L a ith by =2Pp — 1 =2Pp; — 1.
Hence, the NP-based test statistic for distributed detestith 0 0% .k — 1 ande ok
CSI uncertainty in the massive MIMO WSN is derived as Proof: See Appendix B. [ ]
3 (Z[H) Once again the same differences apply with respect to the
Tr(Z) =In {1271] (40) work in [28] as mentioned in Section IlI-A and Section 11I-B
P(Z[Ho) for scenarios with perfect CSI for the antipodal and non-

Considering the binary transmit vector constellatioantipodal signaling schemes. Moreover, the analysis imger
{uy 0, ux,1} for the transmit vectoxk,, the test above reducesof Pp and Pr4 is not presented in the existing works such
to the one shown in (41). The fusion rules corresponding &s [21], [23], [24]. Similar to Section IlI-B, for non-antigal
antipodal and non-antipodal signaling scenarios are geavi signaling using the constellatiof0, uk} one can employ the
below. substitutionz), = zp — \/p.MpBr%. The output after the



Tr(Z) = In [ H p(Zk|H1)] _ i n {p(iﬂxk = uy,1 )Pr(xi = ug,1|H1) + p(Zr|xx = up0)Pr(xr = ugolH1)
-~ p(zk[Ho) P(Zk|xk = g 1)Pr(xs = up1[Ho) + p(ze|xn = up,0)Pr(x = ugolHo) |

(41)

above substitution, for this scenario with CSI uncertaiisty U%AWU from Theorem 1 in (55), the deflection coefficient

now obtained as d3 (u) for u = ua = veqU?%), can be determined as

~r P . ﬁ ~ _ 2

Zy, = \/p_uMﬂk (Xk B ) + wg, (51) di(uA) _ (HTA|H;2 /J’TA|H0)
with the corresponding PDFs foz, under the null and K Tal#o 2
alternative hypotheses obtained as _ (X1 v/PuM Brag (b, — ci)|lug]?)

- - K 2 2 _ 2 24 9%
D@ = 0) ~ AT /2, MBy2T), (62) Do Mkl (A1 — )P + )
~ ~ H 2
p(Z},|xx = ug) ~ CN (V/puM Brur /2, MBro?1).  (53) _ (upT'rua) (56)

(UE‘PLUA)Q + uE@LuA ’
Substituting the PDFs above in (41) and simplifying, the tes

.. . . . L. . wherel', =T'®1,, ¥, =¥ ®I;,, O, = O I, and the
statistic for the non-antipodal signaling scenario is gias . .
P 9 g 9 matricesI’ € CEXE ¥ ¢ CEXK @ ¢ CK*K are diagonal,

with their principal diagonal elements determined as

Lk p=vPuM Brax (b, — cx), [¥]kr=vPuM Brary/1 — Chs
2 py,— i %
wherea;, = Pp i — Ppj and yn represents the detectlon[Q]M = 21 M Bral. (57)

. K 2
threshold, which further reduces Z) =Y Rz _ . .
_ _ Tani(Z) kzz:l (2" u) For a detailed proof of the above expressions, the reader is
under identical local sensor performance. The, Pra per- referred to Section | of the technical report in [35]. Sinbe t

formance can be obtained similar to Theorem 2 by replaciggpression in (56) is non-convex, direct maximization af th

K
. Ha
TrN(Z') = Z arR(zy uy) E NI (54)
k=1 0

pu by &t in (47), (48), (49) and (50), respectively. deflection coefficient in (56) is difficult to achieve. Theyed,
for a tractable solution, the optimization objective can be
V. SIGNALING MATRICES modified as shown below
H H He
This section presents the optimization framework to deter-max. —“A (CruaupTrjua max. SAZUA - 5gy
mine the transmit signal matric€§ = [x1,xs,...,xx]" € uy (Pruaup ¥p + O )ua uy Qua

KXxL H
C fX , where ?khe {uk,o,laké}, to fur:cher improve the \yhere = — TLuaulTy, @ = T uaull ¥y + Oy, It
performance of the proposed detectors for a massive MIMQp, pe opserved that the objective function in (58) can be
WSN. This design problem that can lead to a performangener simplified in a manner similar to the standard form

improvement has not been considered in existing works s responding to a two-way partitioning problem [33] as
as [10], [11], [28]. Let the concatenated vectore CKLx1

corresponding to the transmit vectos,us,...,ux, be max uy Eup _ max sHQ~1/2EQ1/2%s,
defined asu = veqUT) = [uf,ul,... ,uk]T. One can “ullQ/2Q1/2u, ' sisa

now maximize the deflection coefficiemf(u) [34], which s Qsp

determines the detection performance under Gaussian, noise = max. sfisA’ (59)

2
a (E{T(Z); H1} — E{T(Z); Ho}) (55) whereQ = Q122012 andsa = Q'/%ua. Let up be
var{T(Z); Ho} ’ initialized asu” = vec((U,&O))T , where the matrixU<"

where E{T(Z): H,}, E{T(Z);H,} denote the respectiverepresent§ase_mi-orth_og_ongl matrix atmhigiteration. Th(_ere-
means under the two hypotheses and{V4Z); H,} repre- fore, thg iterative op.t|m.|zat|on problem in thi&h_ iteration
sents the variance of the test statisfi€Z) corresponding to to obtf':un the transmission matrix that further improves thg
the null hypothesis. It can be further noted that this ap@madetectlon performance of the proposed schemes for a massive

is valid in the low SNR communication regime for whichMIMO WSN can be stated as below.
the resulting simplied linear test statistics in (20), (34) Theorem 3. The transmission matrixUy’ for the ith
and (54) are Gaussian distributed. The procedure to obtg#yation in the distributed detection scenario with per-

the transmit signal matrices for perfect and imperfect C®ct CSI and antipodal signaling is given aU,(f) =
scenarios is described below.

d*(u)

] -~ ) T )
(veC‘1 ((Q(Z—U) Yz s,(j))) , wheres(” is the solution of
the optimization problem below

A. Perfect CSI

For the antipodal signaling scenario witl o = —u;, and max. DE®
uy 1 = uyg, substituting the expressions fary, 2,, i1, |3, SA Sa” Sa

i)VH ~ (i— i
si QU s (60)



whereQ(i-D= (Q(-1) "2 =(-1) ((-1) " ?ands{) = B. Imperfect CSI

. 1/2 i . . . . .. . . . .
(Q-1) / u(A). The matriceE€(~, Q(~1 are obtained by  The transmission matrices considering CSI uncertainty for

substitutingu,(f’l) in lieu of ua in the expressiorf58). distributed detection in massive MIMO WSNs are obtained be-
i ) o o . low. Consider the antipodal signaling scenario with sigmgl
The solution of the vectan,’ at theith iteration is obtained vectorsuy, o = —uy, u,; = wy, indicating the absence and

by solving the optirlniQZation problem in (60) and is given a§resence of the signal of interest, respectively. The freone
u;(AZ) =K (Q(i_l)) / v, wherev""1) represents the to obtain the signaling matrix is presented next.

eigenvector of unit length corresponding to the maximum Considering the uncertainty in the acquired CSlI, the deflec-
eigenvalue of the matrbQ(~") and » represents the total tion coefficientd2 ,(ur ) defined in (55), for the test statistic

power OfU/(f)- in (44), can be expressed as
Alternative solution : The solution to the optimization

2
problem in (56) can also be obtained numerically as follows. d%,A(uR,A) A (HTralHs = FTral#o)

The epigraph form of the optimization problem is U%R,A\Ho
2 2
max. ¢ _ (K| /BuM Brak (bx—cx) [ ug|?)
ull

- K Pt > o2
Sy MBrad w2 (puMBe(1 — &) luel? + %)

(ugAf‘L uR,A)Q

T UH g H & )
(g AW rurA)? + UR AOLURA

subject to dx (u,(f)) > t. (61)

Let u,(f_l) denote the value ofin obtained in the(i—1)th (67)
iteration. The first order Taylor series approximation o th
objective functiond2 (u,(f)) close t0u,(§71) € CKLx1 can be where g, , (210, fi1galn, @nd U%R’Amo for the test stativstic in
expressed as (44) are given in (47), (48) and (49), respectively. Lt =
2 (- ()Y _ g2 (. (i—1) 2 (1 (i=IN\T ¢ (i) (i—1) I'el,, ¥, =v¥®I,and®;, = O ® I, vyhere tr]ek:th

da(un’)=da(ux™ ")+ VA (g™ ) " (ua'—us ), (62) principal diagonal elements of the matricBs ¥, and® are
where the expression for gradieRtd2 (ul ") is given in obtained by replacing. by 8; andoy; by o7, in (57).
(63). The equivalent quadratic constrained linear program The vectorsg , is obtained via an iterative solution of the

determine the vectom,(f) in the sth iteration is cost function given below, similar to that of Theorem 3
g
max. t srAQSr A
ul® max. R'HAi, (68)
A SR,ASRA

subject to d2 (ul’) > ¢ o y C .
: /?Z.EHA ()i)_ where Q = Q1/22Q-1/2 vector sgpa = Q%ura €
u,’ u,y” <k,

(64) CKLx1 The vectorug , and the transmit matriXJy 5 are in

9,

where « represents the total beacon power aaiﬁi(u(Ai)) rn oE)tained fro_rlsgf “Si;‘g the relgtionﬂ,’;’A - Q_l/QSEvA
denotes the first order Taylor series approximation given #d Ura = (VeC '(ug )", respectively.
(62). The above problem can be solved using a practicaflond similar lines, the transmission matrlig  for non-
convex solver such as CVX [36]. At convergence, the valf@tiPodal signaling using constellatiof, uy} under CSI
of sa is denoted bys; from which the vectoru} and the uncertainty can _be obtained frgrﬁN evaluated as the solution
signal matrixUj can in turn be obtained using the relation8f the optimization problem given as
mentioned above. st Qsrn

Similarly, for the non-antipodal signaling case where the max. —m——-, (69)
kth sensor transmit signal vectors abeuy, the deflection SRNSRN
coefficientdy (un) for the test statistic in (32) is simplified asyhere the matrixQ = Q~'/220Q-/2 and the principal
(W up)? diagonal entries of the diagonal matricEs ¥ and © are
(65) obtained by replacing,, by 2=, ;. by 3x ando? by o2 in

(57). The next section presents the performance analysis fo

where ', ¥ and © represent the diagonal matrices, suclarge antenna array in massive MIMO WSN.
that f‘L = % I, \i’L = % v, G)L = 0O in (65)
The transmission matriUy for the non-antipodal signaling VI

scenario can be obtained as the solution of the optimization )
problem below. The asymptotic system performance of the proposed rules

st Qs with a very large number of antennas at the FC, i.e., when

(66) M — oo, for the different detection scenarios considered
above, is obtained below. The resulting analytical expoess

whereQ = Q122012 andsy = 2'/2uy. The solution and values for the asymptotic probabilities of detectiod an

can be determined via iterative maximization of the costfunfalse alarm can be compared with their non-asymptotic coun-

tion above similar to that for the antipodal scenario désati terparts determined previously to derive further insights

in Theorem 3 or the subsequent alternative procedure.  the system performance.

dj(un) =

(u,{f\ilLuN)QqLuﬁ(:)LuN ’

. LARGE ARRAY PERFORMANCEANALYSIS

max.
stlsy



[4I‘LUA ((u,lf\IlLuA)Q + uf@LuA) — (UEFLUA) (4‘I/LUA(U£‘{\I’LUA) + 2®LUA)]

(UEFLUA)fl [(UE‘PLUA)Q + ufG)LuA]Q uA:uE\Fl)'

Vdz (ui™Y) = (63)

A. Large Array Performance Analysis under perfect CSI Theorem 5. For a given thresholdy,;, the asymptotic perfor-
Consider the power scaling, = 2=, where j, is the mance of the detector i(44) with imperfect CSI is charac-

average transmit power of each sensor. The result beltftized by the probabilities of detectigi};) and false alarm

describes the asymptotic performance of the perfect CSicbaé/#) that are determined as

detector presented in (20) in the limit 8f — co.

. 3 Pa_ th YAl o~ _Q YAl _~a
Theorem 4. The asymptotic probabilities of detectigi#®p,) D70 500 \ ot HTra 1 | = Tl PTral# |

gnd false alalrm(.Pg 4) for the gntipodal signaling based test (76)
in (20) for distributed detection at the FC of the massive A A
MIMO WSN are Pp,= limQ( —[ ):Q( — % ),
A A ra M—oo OTralHo TralHo OTralHo TR’AH? )
P=Jim Q22 i, ) =@ 725~ , ). 70) 77
D M—oco UTA|’H1 TalH UTA|’H1 TA|H1
" ' AP P, The quantitiegiz, , 4, . fiz, 3, @re the normalized means of
PFAA}EPOOQ<UT » HTAWO)Q<—UT . HTAWO)’ (71) (44) for the null and alternative hypotheses as shown below
A 0 A 0
where_/l“TAmU, fiT,3, denote the_ normalized means corre- Zszlﬁp\/ﬁakaﬂillmllz
sponding to the null and alternative hypotheses, respagtiv. A1y a#o ™ - 5
which are given as ¢ 5 pogatllunl? (PopuSR(1—ch) o+ 5
~a ZK: \/ﬁuakckﬂkHukHQ B
N = . (72) (78)

K _ —
D1 Pov/Putibi B |2

~a .
HTpal#1 = = 7
p DD, 4

K 2
¢kzlﬂkai|uk|2(muci>|uk|2+%)
Sy V/PutcbiBellug ]

. (73)

ﬂ%AW'h: % (79)
o2
\/Zﬁ vl |2 (B o 25
e with by, = 2Pp, — 1 andc, = 2Pg;, — 1.
Proof: See Appendix C. | .
Note : The corresponding asymptotic probabilities of de- Proof: See Appendix D. .

tection (P%) and false alarm(P2,) for the non-antipodal Note:.The corres_ponding.perfqrmance _metrics for the test
signaling based test in (32) in the limi#/ — oo are IN (54) with non-antipodal signaling and imperfect CSI are
obtained by replacingiz, 7, fizy3, WIth fizysor fizuf#,s given similar to the antipodal case in Theorem 5 above, with
respectively, which are given as p. replaced by?:. The closed form expressions for the same
are explicitly shown below.

K \/Fa
" ko 3" axcn B s | 4 -
Ti = ’ “D.
N Ho K ; ] - I D i1 S Bparck By | u||?
3 A o5 54 1) o2+ Pialtto = , N
= 7 3> o870 w12 (B B2 (1=} s |2+ %)
S Yy by By a2 k=t
e k=12 CRORTETTR (75) (80)
Tn|H1 % B o2 ’ K _
Zﬂkail\ukIIQ(%ﬂk(lfbi)HukII%?") a >t Y5 Pparbi 57 u?
k=1 N K
This can be shown on lines similar to that of Theorem 4. The ZﬁpﬁiaiHukHQ(%ﬁpﬁi(l—bi)HUkHQ‘*‘%)
k=1

asymptotic performance with imperfect CSl is detailed next ©1)

B. Large Array Performance Analysis under Imperfect CSI proof of the above fact follows on lines similar to that of
In practical scenarios, a signification amount of power iBheorem 5. It is worth noticing from the above analysis that
utilized by the training symbols that are used to estimage tbsing a large antenna array at the FC results in a significant

CSI. Hence, the power scaling of = \’/% andp, = 5% reduction in the energy consumption of the individual sesso

is considered for training and detection phases, resggtivi.e., proportional to; in the perfect CSI scenario a —
The probabilities of detection and false alarm in (46) areduswith CSI uncertainty. This in turn leads to prolonged batter
to obtain their asymptotic counterparts that are given m tlife of the sensor nodes, which is key to reliable operatibn o
result below. the WSN.
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Fig. 2. Receiver operating characteristic (ROC) plot fomparing (a) Max-Log and MMRC in [28], MRC, LLR with the propexs detector (44) for
M = 50 antennas K = 12 sensorsL € {1,2} and at SNRp,, = —18 dB. (b) proposed detector in (44) fa € {20, 50} antennas/ = 12 sensors,
L € {1,2,3,4} and at SNRp, = —18 dB. (c) theoretical and simulation performance of the detscunder perfect CSl in (20) and imperfect CSl in (44)
with K = 12 sensorsL € {2,4} and SNRp,, = —18 dB.

1 = 1
0.8
o8 5 2
5 g °° s
8 5 5 0.6
g 06 g 8
8 a 8
S 5 i 5
£ g oep 5 04
o 04 —Ty, L=4 a a - = =L=4,M=100
---TnL=2 ——L=2M=100
! —Tha L=4 F / -
02' H H | == =Tra, L=2 0.4 H 0.2 —_—L=2M=20
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() (b) (©)
Fig. 3. (a)Pp vs. M for perfect and imperfect CSI scenaridBr 4 = .01, for a WSN with K = 12 sensors.L € {2,4} and SNRp,, = —18 dB. (b)
ROC plot for comparing antipodal and non-antipodal sigrglifor a WSN withK = 12 sensorsL € {1,3}, M € {20,50} and SNRp,, = —18 dB. (c)
Pp vs. py for imperfect CSI scenario using detectBg A(Z), Pra = .01, for a WSN with K = 12 sensorsL € {2,4} and M € {20, 100}.

2 2 1
VII. DETECTION PERFORMANCEANALYSIS Where fir, 1700, W1a|#, s O Ho and o7, ., are as defined

The probability of error expressions for the various didh€rein. Similarly, the probability of error for the tesasstic
tributed detectors described above can be obtained asviolioin (44) under imperfect CSI with antipodal signaling is give
Let P(H,|H,) denote the conditional probability of deciding®S:
hypothesisH; when hypothesi${; is true and Ri#;) repre- A= T a7, Al — T [ o
sent the prior probability of hypogheﬁﬁ, wherei, j € {0,1}. Pe=(C (1_Q (w)) +(1-0Q (w)’ (85)
Hence, the resulting probability of error can be expressed a
[34] where the quantitieSyar, zpajrer HTkalHis O'%R’A‘HO and

o5, .|n, &re determined as in Theorem 2. A similar procedure

Pe = Pr(Ho[H1)Pr(H1) + Pr(H1[Ho)Pr(Ho).- (82)  can be utilized to obtain the probabilities of error for thann
Let the prior probabilities corresponding to the null anttal antipodal signaling based tests in (32)/(54), correspunth
native hypotheses take value§®r) = 1—¢ and Pt#,) = ¢. Perfect and imperfect CSI scenarios, respectively. Sitiurla
The conditional probabilities PH,|H1), Pr(H1|H,), can be results to validate the performance of the proposed schemes
written in terms of the system probabilities of detectioA'® Presented next.
Pp and false alarmPr4 as P(Hq|H1) = (1 — Pp) and
Pr(Hi|Ho) = Pra, respectively. Therefore, the expression VIIl. SIMULATION RESULTS
for P, in (82) reduces to

OTralH1 OTralHo

This section presents simulation results to compare the

P.=((1—-Pp)+(1—¢)Pra. (83) performance of the proposed detectors for the massive MIMO
. ) o WSN in (20), (32), (44) and (54) with the conventional

Hence, using the result in Theo_rem 1, the probablllfty Of'e_”gchemes, namely the optimal log-likelihood ratio (LLRRrst

for the perfect CSI based test in (20) can be readily derived 4 maximal ratio combiner (MRC), Max-Log and modified

as maximal ratio combiner (MMRC) detectors described in [28].
YAP— T |1,y VAP~ T |Ho The detectors proposed in [28] are based on BPSK modulation

P Y (TR N A T poposatin 23

at the sensors to transmit their local decisions to the FC.

0Ty | H1 0T [Ho



A brief overview of the detectors proposed in [28] is as
follows. The optimal LLR rule maximizes the probability of
detection for a given probability of false alarm, employing
the NP criterion. The Max-Log detector is obtained by linear
filtering the received signal, followed by the use of staddar
Max-Log approximation used in turbo decoders. The MRC
rule is derived using a low-SNR approximation of the LLR
obtained under the assumption of perfect sensor decisions,
ie., Pfx = 1x|H1) = Prx = —1g|Ho) = 1. Finally,

the MMRC detector is a variation of the MRC detector

Prob. of Detection (PD)
o o
(o) [e0]

o©
I

0.2

_____

——————
......

= = = Sig. Matrix, L =2
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= = = Sig. Matrix, L =1
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0.2

0.4

0.6
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obtained by removing the dependency on the large-scaledadi
coefficients. . Fig. 4. ROC plot for comparing detectoffr a(Z) with orthogonal and
For simulations, the sensors are assumed to be unifornsiyhaling matrix obtained in Section V for imperfect CSlsado, for a WSN
distributed in an annular area around the FC, such that g K = 12 sensors[ € {1,2}, M = 20 and SNRp, = —18 dB.
sensors are between the maximum and minimum distances
of r,, = 1000 meters andr. = 100 meters from the FC, probability of false alarm(Pr4) of the proposed detectors
respectively. A total of K = 12 sensors are consideredn (44) and (54) for both the antipodal and non-antipodal
and their local performance metrics, i.€’p ; and Prj, signaling schemes, which clearly demonstrates the benefit
are assumed to be uniformly distributed in95,0.40] and of employing the antipodal signaling scheme over the non-
[0.01,0.12], respectively. The large-scale fading coefficientantipodal counterpart. In addition, all the proposed detsc
are modeled a8;, = vy /(ri/7:)%, similar to [6]. Furthermore, are seen to benefit with an increase in the number of FC
the random variable;, follows the log-normal distribution, i.e. antennas.
10l0g; i ~ N (e, 02), with 1, and o, denoting the mean In Fig. 3c, the probability of detectiofiPp) is plotted as
and standard deviation, respectively, denoting the distance a function of i, to characterize performance improvement.
between thekth sensor and the FC and representing the It is clear that the proposed detector with higher values of
path-loss exponent. These parameters are sgt, as 4 dB, L has a lower performance loss in comparison to the ones
o, = 2 dB anda = 2 [28]. For channel estimation, thewhich employ shorter decision vectors. Fig. 4 compares the
minimum length of the pilot symbols required, i-.g, = K, receiver operating characteristics of the proposed schéane
is utilized [6]. the transmission matrix described in Section V for the imper
Fig. 2a plots the probability of detectiofp) versus the fect CSI scenario. It can be readily inferred that employing
probability of false alarm(Pr4) of the proposed detectorthe deflection-coefficient based transmission matrix le@ads
in (44) for L = {1,2}. It is observed that the proposeda significantly improved detection performance. Fig. 5a, 5b
scheme yields an improved performance in comparison dad 5c¢ show the large antenna performance of the proposed
the schemes presented in [28]. Moreover, the performardstectors in (20) and (44). For the scenario with perfect, CSI
of the proposed detector fof = 1 is similar to that of the power is assumed to scale @s = E=, while for the
the Max-Log detector and the LLR test. Fig. 2b shows thigperfect CSI scenario, this is set as= f/% in the training
performance of the proposed detector in Section IV-A fi§hase angh, = 2= in the reporting phase. It can be noticed
imperfect CSI for different values of transmit vector sizgnat the propose]g detectors converge to their correspgndin
L € {1,2,3,4}. Itis clear that better detection performanceoretical expressions derived in Theorem 4 and Theorem
is achieved with an increase if.. This improvement is 5 respectively, thus validating the analytical findingi. /6
achieved as a consequence of the multiple signaling inervgsts the probability of error as a function of, for a fixed
utilized by the sensing nodes to transmit their local deaisi p.., — .001, for both perfect and imperfect CSI scenarios
Subsequently, employing the transmission matrix deteethingng compares them with the theoretical results. It is otegery
in Section V leads to a further improvement in the detectiqfat the probability of error decreases with an increasdin t

performance. Moreover, an increase in the number of ansenR\R. Moreover, the simulated probability of error plots are
at the FC leads to a remarkable improvement in the detectiggse agreement with the theoretical findings.

performance, demonstrating the advantage of employing a
massive antenna array at the FC.

Fig. 2c compares the numerical results based on theoreti-
cal expressions of probabilities of detection and falsenala This paper proposed and investigated the performance of
obtained in Theorem 1 and Theorem 2 with their simulatiorarious schemes for distributed detection for a multipleesb
counterparts. It is evident from the figure that they are wation vector model in a massive MIMO WSN. Simplified
close agreement. Fig. 3a plots the probability of detectidnsion rules for low communication SNR scenarios were
(Pp) versus the number of antenndd at the FC for a determined based on the NP criterion considering also the
fixed Pr4 = 0.01, for the scenarios with and without CSllocal detection performance of the individual sensors, for
uncertainty. The trend shows a significant improvement @& tlvarious scenarios, such as with perfect/ imperfect CSl and f
detection performance with increasing number of FC antennantipodal/ non-antipodal signaling. Closed-form expmss
Fig. 3b compares the probability of detectiof,) versus the were derived to characterize the probabilities of detecitp

Prob. of False alarm (PFA)

IX. CONCLUSION
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Fig. 5. LargeM performance analysis for (a) proposed detector (20) any fgt4M € {20, 100, 1000} antennasK = 12 sensors,L = 4 and at SNR

pu = —15 dB. (b) proposed detector (20) and (44) fof € {20, 100, 1000} antennasX = 12 sensors,L = 2 and at SNRp,, = —15 dB. (c) proposed
detector (20) and (44) foM € {20,100, 1000} antennasK = 12 sensorsL = 2 and at SNRp, = —18 dB.
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APPENDIX B
o4t PROOF OFTHEOREM1
) The mean of the test statistic in (44) corresponding to the
5 03 null hypothesisH, is given as
i}
S 02 = H
_g ’ HTra|Ho = ZakmOE{(zk uk)|H0})
o = P, (Sim), T, L =2 k=1
0.1 o P.(Theory), Tra, L=2 -
——P.(Sim), Tx, L =2 K .
e eyt = > @ (v M BE{ o)
0
35 30 25 20 -15  -10 -5 k=1
pu (dB) K
Fig. 6. P. vs. py for perfect and imperfect CSI scenarios using detectors = Z a;@)‘i(dpuMﬂk (ukHPRk — ukH(l — PFﬁk))llk)
T4 andTg 4, respectively, for a WSN with = 12 sensors,L = 2 and 1
M = 20. x
3 2
= VPuarcr M B, (87)
k=1

and false alarmPr4 as well as the signaling matrices to
further enhance detection performance. Further, asyiptéfthe meanyur, %, corresponding to the test statistic for
performance upper bounds and the pertinent power scalimgpothesisH; can be derived similarly. The variano%R,AmO
laws were obtained via a large antenna array analysis for thfethe test statistic for hypothestg, can be expressed as
detection performance at the FC. Simulation results demon-

5 5 2
strated the improved performance of the proposed detectors ?TralHo = E{TF%A(Z”HO} — (B{Tra(2)[H0o})", (88)
in comparison to existing schemes such as Max-Log, MRgherein the first term can be determined as
and MMRC. In the future, this framework can be extended to ” ,
a scenario with multlple_ FCs, each eqmpped with a massive E{Té,A(Z)IHo} _ ]E{ [Zakfﬁ{ikHuk}} ‘Ho}
antenna array, to examine the effect of pilot contamination P
Furthermore, the problem of sensing of different paranseter K
with correlated sensor observations and sensor selecéion ¢ — ZE{ai [m{\/p—uMkakHuk n WkHuk}]Q\Ho}
be considered. 1
K o2
R =" (pudr* B} uel + M} w252 ). (89)

el
Il

1
FUSION RULE WITH ZERO FORCING PROCESSING i ] ) ) ) )
The final expression of varlantbéRA 1, IN (49) is obtained by

Using the filter matrixA = G(G” G) ™', the system model utilizing the mean obtained in (87) and the above expression
in (13) can be equivalently reframed as in (89). The variancer%mml for the alternative hypothesis
T H, in (50) can be derived similarly.
=M [(AHy(l))k o (AHy(L))k} =/PuMx+1i, (86)
APPENDIXC
PROOF OFTHEOREM4

Under antipodal signaling, the PDF of the test statis-
ttic (20) corresponding to the hypothesi$; is Ta(Z) ~
)Q/(;LTAWNU%A%) which can be scaled to obtain the

where z, follows the Gaussian distribution ag, ~
CN (/PuMxy, Mo, '11). Employing the similar proce-
dure as done for the matched filtering in (15), the test si@tis
for antipodal signaling under low SNR conditions reduces
Ta(Z) = ¥y xRz ).



equivalent test statistic with unity variance &% (Z) ~
N (i, ;. 1), Where the new meapy, |3, is defined as

(3]

A MTAH; [4]

BTy, = —,
JTAlHi

From (23) and (25), the above mean, |, for i =0, is
>y y/Puacr M By x|

wherei € {0,1}. (90)
5]

(6]

BTp 1o =

K o2 -
5 MBuad el (M Be(1 - Dl + %)

In the limit case ofM — oo and usingp,, = 2=, the above
D M g
expression reduces as (8]
- . . . HTa|Ho
a = lim = lim —/——= [9]
F1a 40 M—o00 HTalHo =B M—o0 07, 1740 pu=5%
K Pu 2
. > k1 \/ 5 @M B[l ug| (10]
= lim ,
M—o0

/3 ailla Pu o2
kZM k i” k||2(%Mﬁk(1 Ci)HukHQ + Tn) [11]
=1

to obtain (72). Similarly, for hypothesi#, the normalized [12]
mean in (73) follows by replacing, by b, in the expression
above and considering the limit @¢ — oo. It can be noted [13;
that the last step above employs the assumplibn>> K,
i.e., K/M — 0, similar to standard works such as [5], [6]
[28]. When K /M — n, wherer is a constant, oK /M — oo,
then the interference between the sensors dominates tine sig
after linear processing, i.e., in (11) and when (38) is pligd  [1°]
by G¥, in the massive MIMO system. Hence, the resulting
performance tends to that of a trivial detector with = 1/2
and Ppy =1/2.

114]

[16]

APPENDIXD
PROOF OFTHEOREMbS

The normalized mean for the test statistic in (44) can be

[17]

determined using (47) and (49) as (18]
— Sk v/PutkcrM B Jug|*
HTgalHo= .

K _ B 2 [19]

3 M a2 (pu M AL~ ) sl + )

=1

(92) [20]
. . _ 711. _ 13]) . .

Substitutingp,, = p—M,pp = A7 in the above expression for

itk al10» Which on considering the limiting value a4 — oo
yields the expression for the asymptotic normalized me#i!
in (92) to obtain (78). The corresponding expression for
Ty a1 in (79) can be determined similarly starting with
the expressions fofir, 3., 07,,, diven in (48), (50), (22]
respectively.
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