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Abstract—This paper considers the problem of distributed
detection for massive multiple-input multiple-output (MI MO)
wireless sensor networks (WSNs). Neyman-Pearson (NP) crite-
rion based fusion rules are developed at the fusion center (FC)
that also incorporate the local probabilities of detectionand false
alarm of the constituent sensor nodes. Closed form expressions
are obtained for the probabilities of detection and false alarm at
the FC for various signaling schemes employed by the sensors.
The fusion rules and analysis are extended to the scenario with
imperfect CSI. Furthermore, signaling matrices are determined
for the massive MIMO WSN to enhance detection performance.
The asymptotic detection performance of the WSN is analyzedfor
the large antenna regime, which yields pertinent power scaling
laws with respect to the number of antennas at the FC. Simulation
results demonstrate the improved performance of the proposed
schemes and also validate the theoretical findings.

Index Terms— Distributed detection, massive multiple-input
multiple-output (MIMO), wireless sensor networks (WSNs),
Neyman-Pearson criterion.

I. I NTRODUCTION

Massive multiple-input multiple-output (MIMO) technol-
ogy, also known as very large-scale MIMO, has attracted
significant research interest as a potential solution to meet the
ever-increasing demand for higher data rates in next generation
wireless communication systems [2], [3]. A massive MIMO
system employs a large antenna array comprising of hundreds
of antennas at the base station (BS) to simultaneously serve
a large number of users utilizing the same time-frequency
resources [4], thereby leading to a significant increase in the
spectral efficiency. Additionally, one can leverage simplified
linear signal processing techniques at the massive MIMO base
station [5] without compromising on the spectral efficiency,
thus making them attractive for practical implementation.
Moreover, it facilitates a reduction in the transmit power
of the users, thereby simplifying hardware design [6]. As
a result, there has been a growing interest in incorporat-
ing massive MIMO technology in wireless sensor networks
(WSNs), which have been extensively deployed for sensing
and surveillance applications because of their robustnessto
faults, cost effectiveness and flexibility of deployment [7], [8].
Due to the stringent power and bandwidth constraints in a
WSN, the sensor nodes generally compress their observations
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in the form of one-bit local decisions prior to transmission
to the fusion center (FC) [9], [10] for distributed detection
[11], [12]. The local decisions are subsequently processedby
the FC to arrive at a global decision regarding the event of
interest. A brief review of the existing research in the area
of distributed detection and its extension to WSNs employing
massive antenna arrays is presented next.

A. Review of Existing Work

Distributed detection over a multiple access channel (MAC)
was first investigated in [13]. Berger et al. [14] have examined
the performance of decentralized detection for both parallel as
well as multiple access channels with noncoherent modulation
and censoring, where the FC has a single antenna. In [15],
the authors have demonstrated the optimality of the energy
detector for a Rayleigh fading scenario for MAC with an
infinite number of non-identical sensors in MIMO WSNs. Dis-
tributed detection over MIMO channels with a finite number
of sensors was initially considered in [16], which presented a
power allocation scheme based on the J-divergence criterion in
order to optimize the detection performance at the FC. Authors
in [17], [18] presented the optimal detection rules and the
corresponding performance analysis for cooperative spectrum
sensing in multiuser MIMO cognitive radio networks, consid-
ering both perfect and imperfect CSI scenarios. Cheng et al.
in [19] study the detection performance of a distributed sensor
network based on quantized outputs of the local sensor signals.
The work in [20] proposed various computationally efficient
albeit sub-optimal fusion rules for decision fusion in MIMO
WSNs over a coherent MAC. The work in [21] proposed
algorithms for the optimal transmission of analog observations,
rather than local decisions, in an amplify and forward-based
WSN, that maximized the negative exponent of the probability
of error at the FC. In [22], the authors determine the optimal
decision rules for distributed detection in a scenario wherein
the sensors transmit their amplified analog observations toa
multi-antenna FC using a fixed transmission gain, followed by
analysis to characterize the probabilities of detection and false
alarm for different availabilities of channel state information
(CSI). The work in [23] considers a distributed WSN, where
single-antenna sensors observe an unknown deterministic pa-
rameter and simultaneously transmit their phase-shifted and
noisy analog observations to the FC over a coherent MAC. The
authors in [24] consider a distributed detection system where
the sensors transmit their analog observations to the FC with
multiple antennas over coherent MAC using the amplify-and
forward scheme. The performance of the system is evaluated
in terms of the error exponent of the probability of error



2

and is compared when the channels between the sensors and
the FC are AWGN, Rayleigh and Ricean fading, respectively.
However, as described in [8], such schemes based on the
transmission of analog observations require a large bandwidth
and tend to employ classical signal processing schemes that
are complex.

Recently, a few works have investigated the impact of
employing a massive antenna array at the FC in WSNs. The
authors in [25] have studied the estimation and detection
performance of a coherent amplify-and-forward WSN with a
massive antenna array at the FC, where the performance of
the Neyman-Pearson (NP) detector, energy detector, and linear
minimum mean squared error (LMMSE) estimator are deter-
mined analytically. Decentralized estimation of a correlated
random parameter vector in a massive MIMO system over a
coherent MAC using the MMSE estimator has been studied
in [26]. In [27], the authors have investigated the effects
of transceiver hardware impairments, both at the massive-
antenna FC and single-antenna sensor nodes, on the detection
performance of the FC. In [28], sub-optimal fusion rules with
reduced complexity, i.e., linear-filter and deflection-maximizer
widely linear (WL) rules, are derived for WSNs where the FC
is employed with a large number of antennas. The recent study
in [29] derives sub-optimal fusion rules for a Rician fading
MAC utilizing only statistical CSI.

In the conference version of this paper [1], we have
presented NP criterion based fusion rules where antipodal
signaling scheme was utilized for both perfect and imperfect
CSI scenarios. Further, closed form expressions were derived
to characterize the resulting system probabilities of detection
and false alarm at the FC. In this work, the analysis is extended
to non-antipodal signaling along with the derivation of closed
form expressions of system probabilities of detection and false
alarm at the FC. Moreover, signaling matrices are derived
considering perfect as well as imperfect CSI for both antipodal
and non-antipodal signaling schemes. In addition, asymptotic
system performance is analyzed for a large number of antennas
at the FC and probability of error expressions are obtained for
the preceding scenarios. The main contributions of this work
are summarized below.

B. Main Contributions

The main contributions of this paper in the context of
distributed detection in a massive MIMO WSN are as follows.

• This work considers a multiple observation vector model in
contrast to [28], where binary phase-shift keying (BPSK)
modulation was employed to map the decision of each
sensor. Here, each sensor transmits decision vectors over
one or more signaling intervals corresponding to its local
decision, unlike [21], [23], [24] that are based on the trans-
mission of analog observations. Thus, the sensor decisions
in this work are prone to error during transmission with a
finite probability, in turn making this model more general.

• Low-complexity fusion rules for the low communication
channel SNR regime are derived based on linear filtering
at the FC while also incorporating the probabilities of de-
tectionPD and false alarmPFA for local sensor decisions,

which is absent in [21], [23], [24] that are based entirely on
the transmission of analog observations. Antipodal as well
as non-antipodal signaling formats are considered for the
decision vectors in our analysis. Further, the FC combines
the analog signal outputs of the different sensors in contrast
to the work in [19] that considers quantized outputs of
sensor signals.

• Closed-form analytical expressions are determined to char-
acterize thePD, PFA performance of the proposed fusion
rules at the FC. The above analysis including the decision
rules and the corresponding performance is also extended
to a scenario with imperfect CSI, whereas [21], [23], [24]
consider only perfect CSI.

• The asymptotic system performance is characterized in the
large antenna regime, from which it can be inferred that
the transmit power of each sensor can be scaled down
proportional to the number of antennas at the FC for perfect
CSI and similarly, proportional to the square root of the
number of antennas for imperfect CSI scenarios.

• Further, the signaling matrices are derived for the WSN to
maximize the detection performance at the FC for all the
scenarios. It is worth noting that most of the existing works
reviewed in Section I-A consider either on-off keying [7],
[14], [16], [29] or BPSK modulation [8], [20], [28] while
deriving the pertinent detection rules. In contrast, this work
presents a comprehensive analysis wherein the fusion rules
are derived for both antipodal and non-antipodal signaling
schemes, thus making it suitable for a large number of
applications.

• Simulation studies are presented to compare the perfor-
mance of the proposed schemes with the existing tech-
niques and also to validate the theoretical findings.

C. Organization

The outline of the paper is as follows. Section II describes
the multiple observation vector based system model for a
massive MIMO WSN, where the sensors transmit vectors
corresponding to their local decisions over a MAC that are
prone to errors with finite probability. Section III derivesthe
likelihood ratio test (LRT)-based detection rules for the sce-
nario with perfect CSI, along with the closed-form expressions
for PD andPFA. The LRT based detection rules incorporating
CSI uncertainty are obtained in Section IV. Results charac-
terizing their performance are also presented therein. Section
V develops the framework to obtain transmission matrices,
followed by the large antenna array analysis in Section VI
and detection performance analysis in Section VII. Simulation
results are presented in Section VIII, followed by conclusions
in Section IX.

D. Notation

For convenience, the notation used throughout the paper is
summarized below. Boldface lowercase lettersx are used to
denote vectors, wherexn represents thenth component ofx
andx(i) is the vector obtained at theith iteration.0N denotes a
N×1 vector with all its entries being zero. Similarly, boldface
uppercase lettersX are employed to denote matrices, where
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[X]m,n represents the(m,n)th component of matrixX and
X(i) denotes the matrix evaluated at theith iteration. The
matrix IN represents an identity matrix of sizeN × N . The
operatorsE{·}, R{·}, (·)T , (·)H , exp{·}, ||·||, vec(·), vec−1(·)
and ⊗ denote the expectation operator, real part, transpose,
conjugate transpose, exponential function, Euclidean norm,
vec operator, inverse vec operator and Kronecker product
respectively. Pr(·) represents the probability and Pr(A|B)
denotes the conditional probability of the eventA given B.
Similarly, p(.) is used to represent the probability density
function (PDF) andp(A|B) denotes the conditional pdf of
A given B. The random vectorx ∼ CN (µ,R) follows a
complex Gaussian distribution with meanµ and covariance
matrix R. The quantityQ denotes the GaussianQ -function,
which is defined asQ(x) = 1√

2π

∫∞
x

exp(− y2

2 )dy.

II. SYSTEM MODEL

Consider a distributed detection framework where multiple
sensors observe the phenomenon generating a signal of inter-
est, the source of which is assumed to be located at a known
location. This scenario can be modeled as a distributed binary
hypothesis testing problem, where the null hypothesisH0 and
the alternative hypothesisH1 denote the absence and presence
of the signal of interest, respectively. The WSN comprises of
K single-antenna sensors and a FC with a large antenna array
of M antennas, such thatM ≫ K, as shown in Fig.1. The
sensors communicate with the FC over a flat fading coherent
MAC. Depending on the local binary decision, thekth sensor,
1 ≤ k ≤ K, transmits the symbolsxk(1), xk(2), . . . , xk(L)
overL signaling intervals, which are represented by the vector
xk = [xk(1), xk(2), . . . , xk(L)]

T ∈ CL×1. The transmitted lo-
cal binary decision vectors are eitherxk = uk,0 or xk = uk,1,
indicating the absence or presence of the signal of interest,
respectively. Let the local detection performance of thekth
sensor be characterized by its probabilities of detection(PD,k)
and false alarm(PF,k), defined as

PD,k = Pr(xk = uk,1|H1),

PF,k = Pr(xk = uk,1|H0).
(1)

The signaly(l) ∈ CM×1 received at thelth, 1 ≤ l ≤ L,
signaling interval at the FC can be represented as

y(l) =
√
puGx(l) + n(l), (2)

wherepu denotes the average transmit power of each sensor
and x(l) = [x1(l), . . . , xK(l)]T ∈ CK×1 is the vector
comprising of the symbols transmitted by theK sensors at the
lth signaling interval. The additive noise vectorn(l) ∈ CM×1

is distributed asn(l) ∼ CN (0, σ2
nIM ) and the MIMO channel

matrix between the FC andK sensors is represented by
G ∈ CM×K . The channel coefficient between themth,
1 ≤ m ≤ M , antenna at the FC and thekth sensor, i.e.,
gmk = [G]mk, can be characterized as

gmk = hmk

√

βk, (3)

wherehmk denotes the small-scale fading coefficient between
themth antenna and thekth user that is assumed to be inde-
pendent and identically distributed (i.i.d.) complex Gaussian

Fig. 1. System model of the massive MIMO wireless sensor network
consisting ofK single-antenna sensors, communicating with a fusion center
equipped withM receive antennas.

with zero mean and unit variance, i.e.,hmk ∼ CN (0, 1). The
large-scale fading coefficientβk represents the pathloss and
log-normal shadowing effects. It is assumed to be fixed over
several coherence intervals and is hence invariant acrossm.
Therefore, the resulting channel matrixG can be modeled as

G = HD1/2, (4)

where the diagonal matrixD ∈ C
K×K denotes the matrix with

the large-scale fading coefficientsβk, 1 ≤ k ≤ K, along its
principal diagonal, i.e.,[D]kk = βk. The small-scale fading
coefficient matrixH ∈ CM×K , with its elements[H]mk =
hmk, is defined above in (3). Therefore, the received signal
matrix Y = [y(1), . . . ,y(l), . . . ,y(L)] ∈ CM×L at the FC
for the L received signal vectorsy(l), described in (2), can
be represented as

Y =
√
puGX+N, (5)

whereX = [x(1), . . . ,x(L)] ∈ CK×L is the concatenated
transmitted signal matrix corresponding to theL composite
signal vectorsx(l), 1 ≤ l ≤ L, and the noise matrix
N ∈ CM×L is obtained by stacking theL circularly symmetric
AWGN vectorsn(l), 1 ≤ l ≤ L, such that its elements are dis-
tributed asni,j(l) ∼ CN (0, σ2

n). The elements of the channel
matrix G are assumed to be modeled as independent random
variables which follow the complex Gaussian distribution,i.e.,
gmk ∼ CN (0, βk), under favorable propagation conditions
[5], [30]. This follows from the assumption that the sensors
in the massive MIMO WSN are spatially separated by large
distances. Moreover, different column vectors of the channel
matrix G associated with the different sensors are assumed
to be mutually independent. Therefore, using the law of large
numbers it follows that

1

M
GHG ≈ D, for M ≫ K. (6)

Hence, the channel vectors corresponding to the different
sensors are asymptotically pairwise orthogonal for the scenario
with a large antenna array employed at the FC coupled with
favorable propagation conditions. Using the above framework
for massive MIMO WSN, the subsequent sections present the
fusion rules for various scenarios.

III. F USION RULE WITH PERFECTCSI

In this section, fusion rules are derived for a scenario
with perfect CSI considering for both antipodal and non
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antipodal signaling schemes. Employing the Neyman-Pearson
(NP) criterion that aims to maximize the detection probability
for a given probability of false alarm, the log likelihood ratio
(LLR) T (Y) for the observation matrixY defined in (5), and
the corresponding test are given as

T (Y) = ln

[

p(Y|H1)

p(Y|H0)

]

H1

≷
H0

γ, (7)

where γ denotes the decision threshold. The quantities
p(Y|H1) andp(Y|H0) in the above expression (7) represent
the probability density functions (PDFs) of the received matrix
Y under the alternative and null hypotheses, respectively. Uti-
lizing the independence of the transmitted signal vectors,i.e.,
x(l) across theL different signaling intervals, the simplified
expression for the LLR test in (7) can be expressed as

T (Y) =

L
∑

l=1

ln

[
∑

x(l) p (y(l)|x(l))Pr(x(l)|H1)
∑

x(l) p (y(l)|x(l))Pr(x(l)|H0)

]

(8)

=

L
∑

l=1

ln









∑

x(l)

exp
(

− ‖y(l)−√
puGx(l)‖2

σ2
n

)

Pr(x(l)|H1)

∑

x(l)

exp
(

− ‖y(l)−√
puGx(l)‖2

σ2
n

)

Pr(x(l)|H0)









, (9)

where the PDF ofy(l) for a givenx(l), i.e., p (y(l)|x(l)),
follows the Gaussian distribution, given as

p(y(l)|x(l))= 1

(πσ2
n)

M
exp

[−1

σ2
n

‖y(l)−√
puGx(l)‖2

]

. (10)

However, it can be observed that the LLR test in (9) is
computationally complex and numerically unstable. This is
due to the summation over2K exponential terms with a large
dynamic range in the numerator as well as in the denominator
[20], [28]. Therefore, to presentT (Y) in a more stable form
which is amenable to numerical implementation, it can be
approximated by a two step procedure. In the first step, the
received signal is processed with the help of linear matched
filtering to obtain the outputs corresponding to the individual
sensors. Subsequently, the second step derives a final decision
by combining the individual sensor decisions. A similar two
step approach is used in [28] that presents different linear
processing techniques, namely the matched filter (MF), zero
forcing (ZF) and minimum mean squared error (MMSE)
techniques, to characterize the performance of the massive
MIMO WSN. However, the work in this paper focuses on
a comprehensive analysis that includes obtaining the proba-
bilities of detection, false alarm and error, the corresponding
power scaling laws, and also the structure of the transmission
matrices, which are lacking in [28]. The analysis for ZF is
similar and is shown in Appendix A.

The output matrixZ = [z(1), . . . , z(L)] ∈ C
K×L obtained

after matched filtering the received matrixY in (5) is

Z = GHY =
√
puG

HGX+ Ñ, (11)

where Ñ = GHN ∈ CK×L denotes the equivalent noise
matrix after filtering. From (11), it can be noticed that for
a given vectorx(l), the lth column z(l) of the filter ma-
trix Z follows the complex Normal distribution described as

CN (
√
puG

HGx(l), σ2
nG

HG). Under the favorable propaga-
tion conditions stated in (6), the equivalent system model for
the lth filter output vectorz(l) = [z1(l), . . . , zK(l)]T ∈ CK×1

can be expressed as

z(l) =
√
puMDx(l) + ñ(l), (12)

where ñ(l) ∈ CK×1 distributed asCN (0,MDσ2
n) repre-

sents thelth column vector of the noise matrix̃N. Sim-
ilarly, from (11) and (12), the filter output vectorzk =
[zk(1), . . . , zk(L)]

T ∈ CL×1 corresponding to thekth user
overL signaling intervals can be equivalently written as

zk =
√
puMβkxk + ñk. (13)

The lth componentzk(l) of the filter output vectorzk can now
be modeled aszk(l) ∼ CN (

√
puMβkxk(l),Mβkσ

2
n). Hence,

it can be equivalently represented as a parallel access channel
(PAC) between the sensors and the FC, as a consequence of
the linear processing and the large antenna array employed at
the FC. Thus, exploiting the independence of the signal vectors
across theK sensors, the LLR test for distributed detection in
the massive MIMO WSN described in (13) under ideal CSI
can be formulated as

T (Z) = ln

[

p(Z|H1)

p(Z|H0)

]

= ln

[ K
∏

k=1

p(zk|H1)

p(zk|H0)

]

, (14)

where p(zk|H0) and p(zk|H1) denote the PDFs of the re-
ceived vectorzk under the null and alternative hypotheses,
respectively. Foruk ∈ {uk,0,uk,1}, the above LLR test can
be expressed as shown in (15).

The authors in [18] show that different signaling schemes
with the same transmit power have different detection per-
formances. Therefore, the performance of the proposed rules
is presented for antipodal as well as non-antipodal signaling
schemes. The subsequent subsections individually simplify
and analyze the performance of the test in (15) for both
signaling formats.

A. Antipodal Signaling

Consider the transmit signal vectorsuk,0 = −uk and
uk,1 = uk for the kth user, corresponding to the absence and
presence of the signal of interest, respectively. The PDFs of
the observation vectorzk for the antipodal signaling vectors
−uk,uk are given as

p(zk|xk=−uk)=
1

(πMβkσ2
n)

L
exp

(−‖zk+√
puMβkuk‖2

Mβkσ2
n

)

,

(17)

p(zk|xk = uk)=
1

(πMβkσ2
n)

L
exp

(−‖zk−√
puMβkuk‖2

Mβkσ2
n

)

.

(18)
Substituting the above PDFs in (15), the test statistic for this
case can be derived as shown in (16), which can be further
simplified to the expression below

TA(Z)=

K
∑

k=1

ln

[

PD,k + (1−PD,k) exp
(−4

√
pu

σ2
n

R(zHk uk)
)

PF,k + (1− PF,k) exp
(−4

√
pu

σ2
n

R(zHk uk)
)

]

,

(19)



5

T (Z) = ln

[ K
∏

k=1

p(zk|H1)

p(zk|H0)

]

=

K
∑

k=1

ln

[

p(zk|xk = uk,1)Pr(xk = uk,1|H1) + p(zk|xk = uk,0)Pr(xk = uk,0|H1)

p(zk|xk = uk,1)Pr(xk = uk,1|H0) + p(zk|xk = uk,0)Pr(xk = uk,0|H0)

]

(15)

TA(Z) =

K
∑

k=1

ln





PD,k exp
(

− ‖zk−
√
puMβkuk‖2

Mβkσ2
n

)

+ (1− PD,k) exp
(

− ‖zk+
√
puMβkuk‖2

Mβkσ2
n

)

PF,k exp
(

− ‖zk−
√
puMβkuk‖2

Mβkσ2
n

)

+ (1− PF,k) exp
(

− ‖zk+
√
puMβkuk‖2

Mβkσ2
n

)



 (16)

In order to analyze the performance of the detector, the above
test statistic can be further simplified for the low SNR regime
as described next [18]. Using the approximationse−v ≈ (1−
v) and ln(1+ v) ≈ v that hold for sufficiently small values of
v, the test statistic in (19) can be simplified as

TA(Z) =

K
∑

k=1

akR(zHk uk)
H1

≷
H0

γAP, (20)

whereak , PD,k−PF,k denotes the constant corresponding to
thekth sensor. It is worth noting that the low SNR assumption
is related to the SNR of the communication channel, i.e.,pu ≪
σ2
n. The above test considers a general case with imperfect

sensors, i.e.,PD,k 6= 1 andPF,k 6= 0 in contrast to the one in
[28], which considers an ideal scenario with perfect sensors for
the MRC and MMRC fusion rules. Further, the simplified test
statistic obtained above has a lower computational complexity
due to its linear structure in comparison to some of the tests
in [28] such as the decode-then-fuse approach based rules.
Also, the analysis above considers a general scenario with
transmission of multiple symbols overL signaling intervals.
The low SNR approximation based test statistic is applicable to
practical scenarios as WSNs are typically resource constrained
in terms of the transmit power [12], [31]. Furthermore, it
is often desirable to limit the transmit signal power of the
sensors in order to minimize the probability of unauthorized
interception/ detection [10]. The result below describes the
performance of the test in terms of the resultingPD andPFA.
It is worth noting that such analytical results have not been
given in the existing works such as [21], [23], [24].

Theorem 1. The probabilities of detection(PD) and false
alarm (PFA) corresponding to the test statistic in(20) for
distributed detection at the FC with perfect CSI under antipo-
dal signaling are

PD = Q

(

γAP − µTA|H1

σTA|H1

)

, (21)

PFA = Q

(

γAP − µTA|H0

σTA|H0

)

, (22)

where the quantitiesµTA|H0
, µTA|H1

and σ2
TA|H0

, σ2
TA|H1

repre-
sent the means and variances of the test statisticTA(Z) under
the null and alternative hypotheses, respectively, which are
obtained as

µTA|H0
=

K
∑

k=1

√
puakckMβk‖uk‖2, (23)

µTA|H1
=

K
∑

k=1

√
puakbkMβk‖uk‖2, (24)

σ2
TA|H0

=

K
∑

k=1

Mβka
2
k‖uk‖2

(

puMβk(1−c2k)‖uk‖2+
σ2
n

2

)

, (25)

σ2
TA|H1

=

K
∑

k=1

Mβka
2
k‖uk‖2

(

puMβk(1−b2k)‖uk‖2+
σ2
n

2

)

, (26)

where the constantsak and bk for the kth user are defined
as bk = 2PD,k − 1 and ck = 2PF,k − 1 and γAP denotes the
detection threshold in(20).

Proof: See Appendix A in [1].

B. Non-Antipodal Signaling

Consider now the non-antipodal signaling scenario, i.e.,
uk,0 = 0 and uk,1 = uk indicating thekth user’s decision
corresponding to the null and alternative hypotheses, respec-
tively. Therefore, the conditional PDFs ofzk in (13) with the
non-antipodal signaling constellation above is expressedas

p(zk|xk = 0) ∼ CN (0,Mβkσ
2
nI), (27)

p(zk|xk = uk) ∼ CN (
√
puMβkuk,Mβkσ

2
nI). (28)

Using the substitutionz′k = zk − √
puMβk

uk

2 and defining
Z′ = [z′(1), . . . , z′(L)] ∈ CK×L, the conditional PDFs ofz′k
corresponding toxk = {0,uk} follow as

p(z′k|xk = 0) ∼ CN (−√
puMβkuk/2,Mβkσ

2
nI), (29)

p(z′k|xk = uk) ∼ CN (
√
puMβkuk/2,Mβkσ

2
nI), (30)

which are similar to (17), (18). Hence, the testTN(Z
′) under

non-antipodal signaling can be determined similar to (19) as

TN(Z
′)=

K
∑

k=1

ln

[

PD,k + (1−PD,k) exp
(−2

√
pu

σ2
n

R(z′Hk uk)
)

PF,k + (1−PF,k) exp
(−2

√
pu

σ2
n

R(z′Hk uk)
)

]

.

(31)

Following the procedure used in (20), the above test statistic
can be simplified to yield the closed-form expression below

TN(Z
′) =

K
∑

k=1

akR(z′Hk uk)
H1

≷
H0

γNP, (32)

whereak , PD,k − PF,k andγNP is the detection threshold.
The pertinent detectors and the analysis for the non-antipodal
signaling format considered above have not been given in [28].
Note : The probabilities of detection (PD) and false alarm

(PFA) for the above mentioned test under non-antipodal
signaling can be obtained by replacing the quantitypu in (23),
(24), (25) and (26) bypu

4 .
The analysis in this section considered perfect CSI to be

available at the FC. However, in practical scenarios, the CSI
at the FC is obtained via channel estimation, which leads to
errors in the estimated CSI. The next section determines the
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fusion rules and also presents the pertinent analysis consider-
ing CSI uncertainty in massive MIMO WSNs.

IV. FUSION RULES UNDERCSI UNCERTAINTY

For scenarios with CSI uncertainty, the true channel matrix
G can be characterized as

G , Ĝ− E , (33)

where Ĝ ∈ C
M×K represents the estimate of the channel

matrix and the matrixE = [e1, . . . , eK ] ∈ CM×K denotes the
error matrix pertaining to the channel estimate similar to [32],
[33]. Similar to [6], consider the transmission of the orthogonal
pilot matrix Φ ∈ Cτp×K , i.e., ΦHΦ = IK , for the purpose
of channel estimation. It is assumed thatτp symbols are used
as pilots andτd symbols are used for transmitting data, such
that τp + τd ≤ τc, whereτc denotes the coherence interval.
The system model for channel estimation from the transmitted
pilots is

Yp =
√
ppGΦT +Np, (34)

wherepp denotes the pilot power, i.e.pp , τppu. Therefore,
the MMSE estimate ofG is

Ĝ =
1

√
pp

YpΦ
∗
(

σ2
n

pp
D−1 + IK

)−1

. (35)

As shown in [6], the resulting estimatêgk and the correspond-
ing errorek are distributed as

ĝk ∼ CN (0, β̃kIM ),whereβ̃k , ppβ
2
k/(σ

2
n + ppβk), (36)

ek ∼ CN (0, γe,kIM ),whereγe,k , σ2
nβk/(σ

2
n + ppβk). (37)

Therefore, the equivalent system model for (5), incorporating
the CSI uncertainty, can be obtained as

Y =
√
pu(Ĝ− E)X+N =

√
puĜX+W, (38)

where W ∈ CM×L denotes the equivalent noise matrix
defined as,W , N−√

puEX. It follows from the distributions
of column vectors inN, E , given in (36), (37), respectively,
that thelth column vector of the noise matrixW, i.e., w(l)
follows the complex Gaussian distribution with zero mean and
covariance matrixRw(l) = E{w(l)wH(l)} = σ2

wIM with
σ2
w = pu

∑K
k=1 |uk,i(l)|2γe,k+σ2

n. Similar to (13), on matched
filtering with the estimated channel matrix and exploiting
1
M ĜHĜ ≈ D̃ under favorable propagation conditions, where
D̃ is a diagonal matrix with[D̃]kk = β̃k, the equivalent system
model for the filter output vector̃zk ∈ CL×1 corresponding
to thekth user is

z̃k =
√
puMβ̃kxk + w̃k. (39)

Hence, the NP-based test statistic for distributed detection with
CSI uncertainty in the massive MIMO WSN is derived as

TR(Z̃) = ln

[

p(Z̃|H1)

p(Z̃|H0)

]

(40)

Considering the binary transmit vector constellation
{uk,0,uk,1} for the transmit vectorxk, the test above reduces
to the one shown in (41). The fusion rules corresponding to
antipodal and non-antipodal signaling scenarios are provided
below.

A. Fusion rules for Antipodal/ Non-Antipodal Signaling

For the antipodal signaling vectorsxk,0 = −uk and
xk,1 = uk corresponding to the null and alternative hypothe-
ses, respectively, the resulting PDFs forz̃k are determined as

p(z̃k|xk = −uk) ∼ CN (−√
puMβ̃kuk,Mβ̃kσ

2
wIL), (42)

p(z̃k|xk = uk) ∼ CN (
√
puMβ̃kuk,Mβ̃kσ

2
wIL). (43)

On substitution of the PDFs above, the test obtained in (41)
simplifies to

TR,A(Z̃)=

K
∑

k=1

ln





PD,k+(1−PD,k) exp
(

−4
√
pu

σ2
w

R(z̃Hk uk)
)

PF,k+(1−PF,k) exp
(

−4
√
pu

σ2
w

R(z̃Hk uk)
)



 ,

which further reduces to the computationally efficient form
shown below in the low SNR regime

TR,A(Z̃) =

K
∑

k=1

akR(z̃Hk uk)
H1

≷
H0

γAI . (44)

For the specific scenario withPD,k = Pd andPF,k = Pf , ∀k,
i.e., all the constituent sensors in the WSN have identical local
sensing performance, the test statistic further reduces to

TR,A,I(Z̃) =

K
∑

k=1

R(z̃Hk uk). (45)

Theorem 2. The detection performance of the test in(44)
for a massive MIMO WSN with CSI uncertainty can be
characterized in terms of the resultingPD, PFA as

PD=Q

(

γAI − µTR,A|H1

σTR,A|H1

)

, PFA=Q

(

γAI − µTR,A|H0

σTR,A|H0

)

, (46)

where γAI is the detection threshold in(44). The quantities
µTR,A|H0

, µTR,A|H1
and σ2

TR,A|H0
, σ2

TR,A|H1
are given similar to

the expressions in(23), (24), (25), (26), respectively, withβk,
σ2
n replaced byβ̃k, σ2

w, respectively and are given as

µTR,A|H0
=

K
∑

k=1

√
puakckMβ̃k‖uk‖2, (47)

µTR,A|H1
=

K
∑

k=1

√
puakbkMβ̃k‖uk‖2, (48)

σ2
TR,A|H0

=

K
∑

k=1

Mβ̃ka
2
k‖uk‖2

(

puMβ̃k(1−c2k)‖uk‖2+
σ2
w

2

)

, (49)

σ2
TR,A|H1

=

K
∑

k=1

Mβ̃ka
2
k‖uk‖2

(

puMβ̃k(1−b2k)‖uk‖2+
σ2
w

2

)

, (50)

with bk = 2PD,k − 1 and ck = 2PF,k − 1.

Proof: See Appendix B.
Once again the same differences apply with respect to the

work in [28] as mentioned in Section III-A and Section III-B
for scenarios with perfect CSI for the antipodal and non-
antipodal signaling schemes. Moreover, the analysis in terms
of PD andPFA is not presented in the existing works such
as [21], [23], [24]. Similar to Section III-B, for non-antipodal
signaling using the constellation{0,uk}, one can employ the
substitution z̃′k = z̃k − √

puMβk
uk

2 . The output after the
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TR(Z̃) = ln

[ K
∏

k=1

p(z̃k|H1)

p(z̃k|H0)

]

=

K
∑

k=1

ln

[

p(z̃k|xk = uk,1)Pr(xk = uk,1|H1) + p(z̃k|xk = uk,0)Pr(xk = uk,0|H1)

p(z̃k|xk = uk,1)Pr(xk = uk,1|H0) + p(z̃k|xk = uk,0)Pr(xk = uk,0|H0)

]

. (41)

above substitution, for this scenario with CSI uncertaintyis
now obtained as

z̃′k =
√
puMβ̃k

(

xk −
uk

2

)

+ w̃k, (51)

with the corresponding PDFs for̃z′k under the null and
alternative hypotheses obtained as

p(z̃′k|xk = 0) ∼ CN (−√
puMβ̃kuk/2,Mβ̃kσ

2
wI), (52)

p(z̃′k|xk = uk) ∼ CN (
√
puMβ̃kuk/2,Mβ̃kσ

2
wI). (53)

Substituting the PDFs above in (41) and simplifying, the test
statistic for the non-antipodal signaling scenario is given as

TR,N(Z̃
′) =

K
∑

k=1

akR(z̃′Hk uk)
H1

≷
H0

γNI , (54)

where ak , PD,k − PF,k and γNI represents the detection

threshold, which further reduces toTR,N,I(Z̃
′) =

K
∑

k=1

R(z̃′Hk uk)

under identical local sensor performance. ThePD, PFA per-
formance can be obtained similar to Theorem 2 by replacing
pu by pu

4 in (47), (48), (49) and (50), respectively.

V. SIGNALING MATRICES

This section presents the optimization framework to deter-
mine the transmit signal matricesX = [x1,x2, . . . ,xK ]T ∈
C

K×L, where xk ∈ {uk,0,uk,1}, to further improve the
performance of the proposed detectors for a massive MIMO
WSN. This design problem that can lead to a performance
improvement has not been considered in existing works such
as [10], [11], [28]. Let the concatenated vectoru ∈ CKL×1,
corresponding to the transmit vectorsu1,u2, . . . ,uK , be
defined asu = vec(UT ) = [uT

1 ,u
T
2 , . . . ,u

T
K ]T . One can

now maximize the deflection coefficientd2(u) [34], which
determines the detection performance under Gaussian noise,

d2(u) ,

(

E{T (Z);H1} − E{T (Z);H0}
)2

var{T (Z);H0}
, (55)

where E{T (Z);H1}, E{T (Z);H0} denote the respective
means under the two hypotheses and var{T (Z);H0} repre-
sents the variance of the test statisticT (Z) corresponding to
the null hypothesis. It can be further noted that this approach
is valid in the low SNR communication regime for which
the resulting simplied linear test statistics in (20), (32), (44)
and (54) are Gaussian distributed. The procedure to obtain
the transmit signal matrices for perfect and imperfect CSI
scenarios is described below.

A. Perfect CSI

For the antipodal signaling scenario withuk,0 = −uk and
uk,1 = uk, substituting the expressions forµTA |H0

, µTA |H1
,

σ2
TA |H0

from Theorem 1 in (55), the deflection coefficient
d2A(u) for u = uA = vec(UT

A), can be determined as

d2A(uA) =
(µTA |H1

− µTA |H0
)2

σ2
TA |H0

=

(
∑K

k=1

√
puMβkak(bk − ck)‖uk‖2

)2

∑K
k=1 Mβka2k‖uk‖2

(

puMβk(1− c2k)‖uk‖2 + σ2
n

2

)

=
(uH

A ΓLuA)
2

(uH
A ΨLuA)2 + uH

A ΘLuA
, (56)

whereΓL = Γ ⊗ IL, ΨL = Ψ⊗ IL, ΘL = Θ⊗ IL and the
matricesΓ ∈ CK×K , Ψ ∈ CK×K , Θ ∈ CK×K are diagonal,
with their principal diagonal elements determined as

[Γ]k,k=
√
puMβkak(bk − ck), [Ψ]k,k=

√
puMβkak

√

1− c2k,

[Θ]k,k =
σ2
n

2
Mβka

2
k. (57)

For a detailed proof of the above expressions, the reader is
referred to Section I of the technical report in [35]. Since the
expression in (56) is non-convex, direct maximization of the
deflection coefficient in (56) is difficult to achieve. Therefore,
for a tractable solution, the optimization objective can be
modified as shown below

max.
uH

A (ΓLuAu
H
A ΓL)uA

uH
A (ΨLuAu

H
A ΨL +ΘL)uA

= max.
uH

A ΞuA

uH
A ΩuA

, (58)

where Ξ = ΓLuAu
H
A ΓL, Ω = ΨLuAu

H
A ΨL + ΘL. It

can be observed that the objective function in (58) can be
further simplified in a manner similar to the standard form
corresponding to a two-way partitioning problem [33] as

max.
uH

A ΞuA

uH
A Ω1/2Ω1/2uA

= max.
sHA Ω−1/2ΞΩ−1/2sA

sHA sA

= max.
sHA QsA

sHA sA
, (59)

whereQ = Ω−1/2ΞΩ−1/2 and sA = Ω1/2uA . Let uA be
initialized asu(0)

A = vec
(

(

U
(0)
A

)T
)

, where the matrixU(0)
A

represents a semi-orthogonal matrix at the0th iteration. There-
fore, the iterative optimization problem in theith iteration
to obtain the transmission matrix that further improves the
detection performance of the proposed schemes for a massive
MIMO WSN can be stated as below.

Theorem 3. The transmission matrixU(i)
A for the ith

iteration in the distributed detection scenario with per-
fect CSI and antipodal signaling is given asU(i)

A =
(

vec−1
(

(

Ω(i−1)
)−1/2

s
(i)
A

))T

, wheres(i)A is the solution of
the optimization problem below

max.
s
(i)
A

s
(i)H
A Q(i−1)s

(i)
A

s
(i)H
A s

(i)
A

, (60)
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whereQ(i−1)=
(

Ω(i−1)
)−1/2

Ξ(i−1)
(

Ω(i−1)
)−1/2

and s
(i)
A =

(

Ω(i−1)
)1/2

u
(i)
A . The matricesΞ(i−1),Ω(i−1) are obtained by

substitutingu(i−1)
A in lieu of uA in the expression(58).

The solution of the vectoru(i)
A at theith iteration is obtained

by solving the optimization problem in (60) and is given as
u
(i)
A = κ

(

Ω(i−1)
)−1/2

ν
(i−1), where ν

(i−1) represents the
eigenvector of unit length corresponding to the maximum
eigenvalue of the matrixQ(i−1) and κ represents the total
power ofu(i)

A .
Alternative solution : The solution to the optimization

problem in (56) can also be obtained numerically as follows.
The epigraph form of the optimization problem is

max.
u

(i)
A

t

subject to d2A
(

u
(i)
A

)

≥ t. (61)

Let u(i−1)
A denote the value ofuA obtained in the(i−1)th

iteration. The first order Taylor series approximation of the
objective functiond2A

(

u
(i)
A

)

close tou(i−1)
A ∈ CKL×1 can be

expressed as

d2A
(

u
(i)
A

)

=d2A
(

u
(i−1)
A

)

+∇d2A
(

u
(i−1)
A

)T (
u
(i)
A −u

(i−1)
A

)

, (62)

where the expression for gradient∇d2A
(

u
(i−1)
A

)

is given in
(63). The equivalent quadratic constrained linear programto
determine the vectoru(i)

A in the ith iteration is

max.
u

(i)
A

t

subject to d2A
(

u
(i)
A

)

≥ t

u
(i)H
A u

(i)
A ≤ κ, (64)

where κ represents the total beacon power andd2A
(

u
(i)
A

)

denotes the first order Taylor series approximation given in
(62). The above problem can be solved using a practical
convex solver such as CVX [36]. At convergence, the value
of sA is denoted bys∗A from which the vectoru∗

A and the
signal matrixU∗

A can in turn be obtained using the relations
mentioned above.

Similarly, for the non-antipodal signaling case where the
kth sensor transmit signal vectors are0,uk, the deflection
coefficientd2N(uN) for the test statistic in (32) is simplified as

d2N(uN) =
(uH

N Γ̌LuN)
2

(uH
N Ψ̌LuN)2+uH

N Θ̌LuN
, (65)

where Γ̌, Ψ̌ and Θ̌ represent the diagonal matrices, such
that Γ̌L = 1

2 ΓL, Ψ̌L = 1
2 ΨL, Θ̌L = ΘL in (65).

The transmission matrixUN for the non-antipodal signaling
scenario can be obtained as the solution of the optimization
problem below.

max.
sHN Q̌sN

sHN sN
, (66)

whereQ̌ = Ω̌−1/2Ξ̌Ω̌−1/2 and sN = Ω̌1/2uN. The solution
can be determined via iterative maximization of the cost func-
tion above similar to that for the antipodal scenario described
in Theorem 3 or the subsequent alternative procedure.

B. Imperfect CSI

The transmission matrices considering CSI uncertainty for
distributed detection in massive MIMO WSNs are obtained be-
low. Consider the antipodal signaling scenario with signaling
vectorsuk,0 = −uk, uk,1 = uk indicating the absence and
presence of the signal of interest, respectively. The framework
to obtain the signaling matrix is presented next.

Considering the uncertainty in the acquired CSI, the deflec-
tion coefficientd2R,A(uR,A) defined in (55), for the test statistic
in (44), can be expressed as

d2R,A(uR,A) ,
(µTR,A|H1

− µTR,A|H0
)2

σ2
TR,A|H0

=

(
∑K

k=1

√
puMβ̃kak(bk−ck)‖uk‖2

)2

∑K
k=1 Mβ̃ka2k‖uk‖2

(

puMβ̃k(1 − c2k)‖uk‖2 + σ2
w

2

)

=
(uH

R,AΓ̆LuR,A)
2

(uH
R,AΨ̆LuR,A)2 + uH

R,AΘ̆LuR,A
, (67)

whereµTR,A|H0
, µTR,A|H1

, andσ2
TR,A|H0

for the test statistic in

(44) are given in (47), (48) and (49), respectively. LetΓ̆L =
Γ̆ ⊗ IL, Ψ̆L = Ψ̆ ⊗ IL and Θ̆L = Θ̆ ⊗ IL, where thekth
principal diagonal elements of the matricesΓ̆, Ψ̆, andΘ̆ are
obtained by replacingβk by β̃k andσ2

n by σ2
w in (57).

The vectors∗R,A is obtained via an iterative solution of the
cost function given below, similar to that of Theorem 3

max.
sHR,AQ̆sR,A

sHR,AsR,A
, (68)

where Q̆ = Ω̆−1/2Ξ̆Ω̆−1/2, vector sR,A = Ω̆1/2uR,A ∈
CKL×1. The vectoru∗

R,A and the transmit matrixU∗
R,A are in

turn obtained froms∗R,A using the relationsu∗
R,A = Ω̆−1/2s∗R,A

andU∗
R,A = (vec−1(u∗

R,A))
T , respectively.

Along similar lines, the transmission matrixU∗
R,N for non-

antipodal signaling using constellation{0,uk} under CSI
uncertainty can be obtained froms∗R,N evaluated as the solution
of the optimization problem given as

max.
sHR,NQ̃sR,N

sHR,NsR,N
, (69)

where the matrixQ̃ = Ω̃−1/2Ξ̃Ω̃−1/2 and the principal
diagonal entries of the diagonal matricesΓ̃, Ψ̃ and Θ̃ are
obtained by replacingpu by pu

4 , βk by β̃k andσ2
n by σ2

w in
(57). The next section presents the performance analysis for
large antenna array in massive MIMO WSN.

VI. L ARGE ARRAY PERFORMANCEANALYSIS

The asymptotic system performance of the proposed rules
with a very large number of antennas at the FC, i.e., when
M → ∞, for the different detection scenarios considered
above, is obtained below. The resulting analytical expressions
and values for the asymptotic probabilities of detection and
false alarm can be compared with their non-asymptotic coun-
terparts determined previously to derive further insightsinto
the system performance.
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∇d2A
(

u
(i−1)
A

)

=

[

4ΓLuA
(

(uH
A ΨLuA)

2 + uH
A ΘLuA

)

− (uH
A ΓLuA)

(

4ΨLuA(u
H
A ΨLuA) + 2ΘLuA

)]

(uH
A ΓLuA)−1

[

(uH
A ΨLuA)2 + uH

A ΘLuA
]2

∣

∣

∣

∣

uA=u
(i−1)
A

. (63)

A. Large Array Performance Analysis under perfect CSI

Consider the power scalingpu = p̄u

M , where p̄u is the
average transmit power of each sensor. The result below
describes the asymptotic performance of the perfect CSI based
detector presented in (20) in the limit ofM → ∞.

Theorem 4. The asymptotic probabilities of detection(P a
D)

and false alarm(P a
FA) for the antipodal signaling based test

in (20) for distributed detection at the FC of the massive
MIMO WSN are

P a
D= lim

M→∞
Q

(

γAP

σTA|H1

−µ̃TA|H1

)

=Q

(

γAP

σTA|H1

−µ̃a
TA|H1

)

, (70)

P a
FA= lim

M→∞
Q

(

γAP

σTA|H0

−µ̃TA|H0

)

=Q

(

γAP

σTA|H0

−µ̃a
TA|H0

)

, (71)

where µ̃a
TA|H0

, µ̃a
TA|H1

denote the normalized means corre-
sponding to the null and alternative hypotheses, respectively,
which are given as

µ̃a
TA|H0

=

∑K
k=1

√
p̄uakckβk‖uk‖2

√

K
∑

k=1

βka2k‖uk‖2
(

p̄uβk(1−c2k)‖uk‖2+σ2
n

2

)

, (72)

µ̃a
TA|H1

=

∑K
k=1

√
p̄uakbkβk‖uk‖2

√

K
∑

k=1

βka2k‖uk‖2
(

p̄uβk(1−b2k)‖uk‖2+σ2
n

2

)

. (73)

Proof: See Appendix C.
Note : The corresponding asymptotic probabilities of de-

tection (P a
D) and false alarm(P a

FA) for the non-antipodal
signaling based test in (32) in the limitM → ∞ are
obtained by replacing̃µTA |H0

, µ̃TA |H1
with µ̃TN|H0

, µ̃TN|H1
,

respectively, which are given as

µ̃a
TN|H0

=

∑K
k=1

√
p̄u

2 akckβk‖uk‖2
√

K
∑

k=1

βka2k‖uk‖2
(

p̄u

4 βk(1−c2k)‖uk‖2+σ2
n

2

)

, (74)

µ̃a
TN|H1

=

∑K
k=1

√
p̄u

2 akbkβk‖uk‖2
√

K
∑

k=1

βka2k‖uk‖2
(

p̄u

4 βk(1−b2k)‖uk‖2+σ2
n

2

)

. (75)

This can be shown on lines similar to that of Theorem 4. The
asymptotic performance with imperfect CSI is detailed next.

B. Large Array Performance Analysis under Imperfect CSI

In practical scenarios, a signification amount of power is
utilized by the training symbols that are used to estimate the
CSI. Hence, the power scaling ofpp =

p̄p√
M

and pu = p̄u√
M

is considered for training and detection phases, respectively.
The probabilities of detection and false alarm in (46) are used
to obtain their asymptotic counterparts that are given in the
result below.

Theorem 5. For a given thresholdγAI, the asymptotic perfor-
mance of the detector in(44) with imperfect CSI is charac-
terized by the probabilities of detection(P a

D) and false alarm
(P a

FA) that are determined as

P a
D= lim

M→∞
Q

(

γAI

σTR,A|H1

−µ̃TR,A|H1

)

=Q

(

γAI

σTR,A|H1

−µ̃a
TR,A|H1

)

,

(76)

P a
FA= lim

M→∞
Q

(

γAI

σTR,A|H0

−µ̃TR,A|H0

)

=Q

(

γAI

σTR,A|H0

−µ̃a
TR,A|H0

)

,

(77)

The quantities̃µa
TR,A|H0

, µ̃a
TR,A|H1

are the normalized means of
(44) for the null and alternative hypotheses as shown below

µ̃a
TR,A|H0

=

∑K
k=1 p̄p

√
p̄uakckβ

2
k‖uk‖2

√

K
∑

k=1

p̄pβ2
ka

2
k‖uk‖2

(

p̄pp̄uβ2
k(1−c2k)‖uk‖2+σ4

n

2

)

,

(78)

µ̃a
TR,A|H1

=

∑K
k=1 p̄p

√
p̄uakbkβ

2
k‖uk‖2

√

K
∑

k=1

p̄pβ2
ka

2
k‖uk‖2

(

p̄pp̄uβ2
k(1−b2k)‖uk‖2+σ4

n

2

)

,

(79)

with bk = 2PD,k − 1 and ck = 2PF,k − 1.

Proof: See Appendix D.
Note : The corresponding performance metrics for the test

in (54) with non-antipodal signaling and imperfect CSI are
given similar to the antipodal case in Theorem 5 above, with
pu replaced bypu

4 . The closed form expressions for the same
are explicitly shown below.

µ̃a
TR,N|H0

=

∑K
k=1

√
p̄u

2 p̄pakckβ
2
k‖uk‖2

√

K
∑

k=1

p̄pβ2
ka

2
k‖uk‖2

(

p̄u

4 p̄pβ2
k(1−c2k)‖uk‖2+σ4

n

2

)

,

(80)

µ̃a
TR,N|H1

=

∑K
k=1

√
p̄u

2 p̄pakbkβ
2
k‖uk‖2

√

K
∑

k=1

p̄pβ2
ka

2
k‖uk‖2

(

p̄u

4 p̄pβ2
k(1−b2k)‖uk‖2+σ4

n

2

)

.

(81)

Proof of the above fact follows on lines similar to that of
Theorem 5. It is worth noticing from the above analysis that
using a large antenna array at the FC results in a significant
reduction in the energy consumption of the individual sensors,
i.e., proportional to 1

M in the perfect CSI scenario and1√
M

with CSI uncertainty. This in turn leads to prolonged battery
life of the sensor nodes, which is key to reliable operation of
the WSN.
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Fig. 2. Receiver operating characteristic (ROC) plot for comparing (a) Max-Log and MMRC in [28], MRC, LLR with the proposed detector (44) for
M = 50 antennas,K = 12 sensors,L ∈ {1, 2} and at SNRpu = −18 dB. (b) proposed detector in (44) forM ∈ {20, 50} antennas,K = 12 sensors,
L ∈ {1, 2, 3, 4} and at SNRpu = −18 dB. (c) theoretical and simulation performance of the detectors under perfect CSI in (20) and imperfect CSI in (44)
with K = 12 sensors,L ∈ {2, 4} and SNRpu = −18 dB.
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Fig. 3. (a)PD vs. M for perfect and imperfect CSI scenarios,PFA = .01, for a WSN withK = 12 sensors,L ∈ {2, 4} and SNRpu = −18 dB. (b)
ROC plot for comparing antipodal and non-antipodal signaling, for a WSN withK = 12 sensors,L ∈ {1, 3}, M ∈ {20, 50} and SNRpu = −18 dB. (c)
PD vs. µv for imperfect CSI scenario using detectorTR,A(Z̃), PFA = .01, for a WSN withK = 12 sensors,L ∈ {2, 4} andM ∈ {20, 100}.

VII. D ETECTION PERFORMANCEANALYSIS

The probability of error expressions for the various dis-
tributed detectors described above can be obtained as follows.
Let Pr(Hi|Hj) denote the conditional probability of deciding
hypothesisHi when hypothesisHj is true and Pr(Hi) repre-
sent the prior probability of hypothesisHi, wherei, j ∈ {0, 1}.
Hence, the resulting probability of error can be expressed as
[34]

Pe = Pr(H0|H1)Pr(H1) + Pr(H1|H0)Pr(H0). (82)

Let the prior probabilities corresponding to the null and alter-
native hypotheses take values Pr(H0) = 1−ζ and Pr(H1) = ζ.
The conditional probabilities Pr(H0|H1), Pr(H1|H0), can be
written in terms of the system probabilities of detection
PD and false alarmPFA as Pr(H0|H1) = (1 − PD) and
Pr(H1|H0) = PFA, respectively. Therefore, the expression
for Pe in (82) reduces to

Pe = ζ(1 − PD) + (1− ζ)PFA. (83)

Hence, using the result in Theorem 1, the probability of error
for the perfect CSI based test in (20) can be readily derived
as

Pe=ζ

(

1−Q

(

γAP−µTA |H1

σTA |H1

))

+(1−ζ)Q

(

γAP−µTA |H0

σTA |H0

)

, (84)

where µTA |H0
, µTA |H1

, σ2
TA |H0

and σ2
TA |H1

are as defined
therein. Similarly, the probability of error for the test statistic
in (44) under imperfect CSI with antipodal signaling is given
as,

Pe=ζ

(

1−Q

(

γAI−µTR,A|H1

σTR,A|H1

))

+(1−ζ)Q

(

γAI−µTR,A|H0

σTR,A|H0

)

, (85)

where the quantitiesγAI , µTR,A|H0
, µTR,A|H1

, σ2
TR,A|H0

and
σ2
TR,A|H1

are determined as in Theorem 2. A similar procedure
can be utilized to obtain the probabilities of error for the non-
antipodal signaling based tests in (32)/(54), corresponding to
perfect and imperfect CSI scenarios, respectively. Simulation
results to validate the performance of the proposed schemes
are presented next.

VIII. S IMULATION RESULTS

This section presents simulation results to compare the
performance of the proposed detectors for the massive MIMO
WSN in (20), (32), (44) and (54) with the conventional
schemes, namely the optimal log-likelihood ratio (LLR), stan-
dard maximal ratio combiner (MRC), Max-Log and modified
maximal ratio combiner (MMRC) detectors described in [28].
The detectors proposed in [28] are based on BPSK modulation
at the sensors to transmit their local decisions to the FC.
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A brief overview of the detectors proposed in [28] is as
follows. The optimal LLR rule maximizes the probability of
detection for a given probability of false alarm, employing
the NP criterion. The Max-Log detector is obtained by linear
filtering the received signal, followed by the use of standard
Max-Log approximation used in turbo decoders. The MRC
rule is derived using a low-SNR approximation of the LLR
obtained under the assumption of perfect sensor decisions,
i.e., Pr(x = 1K |H1) = Pr(x = −1K |H0) = 1. Finally,
the MMRC detector is a variation of the MRC detector
obtained by removing the dependency on the large-scale fading
coefficients.

For simulations, the sensors are assumed to be uniformly
distributed in an annular area around the FC, such that the
sensors are between the maximum and minimum distances
of rm = 1000 meters andrc = 100 meters from the FC,
respectively. A total ofK = 12 sensors are considered
and their local performance metrics, i.e.,PD,k and PF,k,
are assumed to be uniformly distributed in[0.95, 0.40] and
[0.01, 0.12], respectively. The large-scale fading coefficients
are modeled asβk = vk/(rk/rc)

α, similar to [6]. Furthermore,
the random variablevk follows the log-normal distribution, i.e.
10log10vk ∼ N (µv, σ

2
v), with µv andσv denoting the mean

and standard deviation, respectively,rk denoting the distance
between thekth sensor and the FC andα representing the
path-loss exponent. These parameters are set asµv = 4 dB,
σv = 2 dB and α = 2 [28]. For channel estimation, the
minimum length of the pilot symbols required, i.e.τp = K,
is utilized [6].

Fig. 2a plots the probability of detection(PD) versus the
probability of false alarm(PFA) of the proposed detector
in (44) for L = {1, 2}. It is observed that the proposed
scheme yields an improved performance in comparison to
the schemes presented in [28]. Moreover, the performance
of the proposed detector forL = 1 is similar to that of
the Max-Log detector and the LLR test. Fig. 2b shows the
performance of the proposed detector in Section IV-A for
imperfect CSI for different values of transmit vector size
L ∈ {1, 2, 3, 4}. It is clear that better detection performance
is achieved with an increase inL. This improvement is
achieved as a consequence of the multiple signaling intervals
utilized by the sensing nodes to transmit their local decisions.
Subsequently, employing the transmission matrix determined
in Section V leads to a further improvement in the detection
performance. Moreover, an increase in the number of antennas
at the FC leads to a remarkable improvement in the detection
performance, demonstrating the advantage of employing a
massive antenna array at the FC.

Fig. 2c compares the numerical results based on theoreti-
cal expressions of probabilities of detection and false alarm
obtained in Theorem 1 and Theorem 2 with their simulation
counterparts. It is evident from the figure that they are in
close agreement. Fig. 3a plots the probability of detection
(PD) versus the number of antennasM at the FC for a
fixed PFA = 0.01, for the scenarios with and without CSI
uncertainty. The trend shows a significant improvement in the
detection performance with increasing number of FC antennas.
Fig. 3b compares the probability of detection(PD) versus the
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Fig. 4. ROC plot for comparing detectorsTR,A(Z̃) with orthogonal and
signaling matrix obtained in Section V for imperfect CSI scenario, for a WSN
with K = 12 sensors,L ∈ {1, 2}, M = 20 and SNRpu = −18 dB.

probability of false alarm(PFA) of the proposed detectors
in (44) and (54) for both the antipodal and non-antipodal
signaling schemes, which clearly demonstrates the benefit
of employing the antipodal signaling scheme over the non-
antipodal counterpart. In addition, all the proposed detectors
are seen to benefit with an increase in the number of FC
antennas.

In Fig. 3c, the probability of detection(PD) is plotted as
a function ofµv to characterize performance improvement.
It is clear that the proposed detector with higher values of
L has a lower performance loss in comparison to the ones
which employ shorter decision vectors. Fig. 4 compares the
receiver operating characteristics of the proposed schemes for
the transmission matrix described in Section V for the imper-
fect CSI scenario. It can be readily inferred that employing
the deflection-coefficient based transmission matrix leadsto
a significantly improved detection performance. Fig. 5a, 5b
and 5c show the large antenna performance of the proposed
detectors in (20) and (44). For the scenario with perfect CSI,
the power is assumed to scale aspu = p̄u

M , while for the
imperfect CSI scenario, this is set aspp =

p̄p√
M

in the training

phase andpu = p̄u√
M

in the reporting phase. It can be noticed
that the proposed detectors converge to their corresponding
theoretical expressions derived in Theorem 4 and Theorem
5, respectively, thus validating the analytical findings. Fig. 6
plots the probability of error as a function ofpu for a fixed
PFA = 0.001, for both perfect and imperfect CSI scenarios
and compares them with the theoretical results. It is observed
that the probability of error decreases with an increase in the
SNR. Moreover, the simulated probability of error plots arein
close agreement with the theoretical findings.

IX. CONCLUSION

This paper proposed and investigated the performance of
various schemes for distributed detection for a multiple obser-
vation vector model in a massive MIMO WSN. Simplified
fusion rules for low communication SNR scenarios were
determined based on the NP criterion considering also the
local detection performance of the individual sensors, for
various scenarios, such as with perfect/ imperfect CSI and for
antipodal/ non-antipodal signaling. Closed-form expressions
were derived to characterize the probabilities of detection PD
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Fig. 5. LargeM performance analysis for (a) proposed detector (20) and (44) for M ∈ {20, 100, 1000} antennas,K = 12 sensors,L = 4 and at SNR
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detector (20) and (44) forM ∈ {20, 100, 1000} antennas,K = 12 sensors,L = 2 and at SNRpu = −18 dB.
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and false alarmPFA as well as the signaling matrices to
further enhance detection performance. Further, asymptotic
performance upper bounds and the pertinent power scaling
laws were obtained via a large antenna array analysis for the
detection performance at the FC. Simulation results demon-
strated the improved performance of the proposed detectors
in comparison to existing schemes such as Max-Log, MRC
and MMRC. In the future, this framework can be extended to
a scenario with multiple FCs, each equipped with a massive
antenna array, to examine the effect of pilot contamination.
Furthermore, the problem of sensing of different parameters
with correlated sensor observations and sensor selection can
be considered.

APPENDIX A
FUSION RULE WITH ZERO FORCING PROCESSING

Using the filter matrixA = G(GHG)−1, the system model
in (13) can be equivalently reframed as

žk=M
[

(

AHy(1)
)

k
. . .

(

AHy(L)
)

k

]T

=
√
puMxk+ňk, (86)

where žk follows the Gaussian distribution ašzk ∼
CN (

√
puMxk,Mσ2

nβ
−1
k IL). Employing the similar proce-

dure as done for the matched filtering in (15), the test statistic
for antipodal signaling under low SNR conditions reduces to
TA(Ž) =

∑K
k=1 akR(žHk uk).

APPENDIX B
PROOF OFTHEOREM 1

The mean of the test statistic in (44) corresponding to the
null hypothesisH0 is given as

µTR,A|H0
=

K
∑

k=1

akR
(

E
{

(z̃Hk uk)|H0

}

)

=

K
∑

k=1

akR
(√

puMβ̃kE{xH
k |H0}uk

)

=

K
∑

k=1

akR
(√

puMβ̃k

(

uH
k PF,k − uH

k (1− PF,k)
)

uk

)

=

K
∑

k=1

√
puakckMβ̃k‖uk‖2. (87)

The meanµTR,A|H1
corresponding to the test statistic for

hypothesisH1 can be derived similarly. The varianceσ2
TR,A|H0

of the test statistic for hypothesisH0 can be expressed as

σ2
TR,A|H0

= E{T 2
R,A(Z̃)|H0} −

(

E{TR,A(Z̃)|H0}
)2
, (88)

wherein the first term can be determined as

E{T 2
R,A(Z)|H0} = E

{

[

K
∑

k=1

akR{z̃Hk uk}
]2∣
∣

∣
H0

}

=

K
∑

k=1

E

{

a2k
[

R{√puMβ̃kx
H
k uk + w̃H

k uk}
]2∣
∣H0

}

=

K
∑

k=1

(

puM
2β̃2

ka
2
k‖uk‖4 +Mβ̃ka

2
k‖uk‖2

σ2
w

2

)

. (89)

The final expression of varianceσ2
TR,A|H0

in (49) is obtained by
utilizing the mean obtained in (87) and the above expression
in (89). The varianceσ2

TR,A|H1
for the alternative hypothesis

H1 in (50) can be derived similarly.

APPENDIX C
PROOF OFTHEOREM 4

Under antipodal signaling, the PDF of the test statis-
tic (20) corresponding to the hypothesisHi is TA(Z) ∼
N (µTA |Hi

, σ2
TA |Hi

) which can be scaled to obtain the
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equivalent test statistic with unity variance as̃TA(Z) ∼
N (µ̃TA |Hi

, 1), where the new meañµTA |Hi
is defined as

µ̃TA |Hi
,

µTA |Hi

σTA |Hi

, wherei ∈ {0, 1}. (90)

From (23) and (25), the above meanµ̃TA |Hi
, for i = 0, is

µ̃TA |H0
=

∑K
k=1

√
puakckMβk‖uk‖2

√

K
∑

k=1

Mβka2k‖uk‖2
(

puMβk(1− c2k)‖uk‖2 + σ2
n

2

)

.

In the limit case ofM → ∞ and usingpu = p̄u

M , the above
expression reduces as

µ̃a
TA |H0

= lim
M→∞

µ̃TA |H0

∣

∣

∣

pu=
p̄u
M

= lim
M→∞

µTA |H0

σTA |H0

∣

∣

∣

∣

pu=
p̄u
M

= lim
M→∞

∑K
k=1

√

p̄u

M akckMβk‖uk‖2
√

K
∑

k=1

Mβka2k‖uk‖2
(

p̄u

M Mβk(1− c2k)‖uk‖2 + σ2
n

2

)

,

to obtain (72). Similarly, for hypothesisH1, the normalized
mean in (73) follows by replacingck by bk in the expression
above and considering the limit asM → ∞. It can be noted
that the last step above employs the assumptionM >> K,
i.e., K/M → 0, similar to standard works such as [5], [6],
[28]. WhenK/M → η, whereη is a constant, orK/M → ∞,
then the interference between the sensors dominates the signal
after linear processing, i.e., in (11) and when (38) is multiplied
by ĜH , in the massive MIMO system. Hence, the resulting
performance tends to that of a trivial detector withPD = 1/2
andPFA = 1/2.

APPENDIX D
PROOF OFTHEOREM 5

The normalized mean for the test statistic in (44) can be
determined using (47) and (49) as

µ̃TR,A|H0
=

∑K
k=1

√
puakckMβ̃k‖uk‖2

√

K
∑

k=1

Mβ̃ka2k‖uk‖2
(

puMβ̃k(1− c2k)‖uk‖2 + σ2
w

2

)

.

(91)

Substitutingpu = p̄u√
M
, pp =

p̄p√
M

in the above expression for
µ̃TR,A|H0

, which on considering the limiting value asM → ∞
yields the expression for the asymptotic normalized mean
in (92) to obtain (78). The corresponding expression for
µ̃a
TR,A|H1

in (79) can be determined similarly starting with
the expressions forµTR,A|H1

, σ2
TR,A|H1

given in (48), (50),
respectively.
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