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Architecture

o Base network of VGG-16.

o Auxiliary structure for detection.
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Architecture
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Architecture

o Convolutional layers in Auxiliary network are 1x1 convolution with
stride 2.

o They create feature maps with decreasing sizes.
o These varying sizes feature maps are used for scale variance of objects.
o Detector and classifier will be applied on each feature map.

o Let a feature map be of size mxnxp

The detector will be a convolutional layer with filter of 3x3xp.

Aditya Nigam (SCEE, IIT-Mandi) aditya@iitmandi.ac.in Lecture, February - May, 2019



Understanding Detector and Classifier

Convolution
and Pooling

—

—

Final conv
feature map

Fully-connected
layers

Class scores

Fully-connected
layers

—

Box
Coordinates

Aditya Nigam (SCEE, IIT-Mandi) aditya@iitmandi.ac.in

Lecture, February - May, 2019




Understanding Detector and Classifier

[ Fully-connected
layers
Convolution
and Pooling Class scores
T
\'\_
L Fully-connected
layers
,/'/
_—
Final conv
feature map
Box
Coordinates |
/

Detection
Head

Aditya Nigam (SCEE, IIT-Mandi) aditya@iitmandi.ac.in Lecture, February - May, 2019




Understanding Detector and Classifier
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Training

o SSD input is a image having ground truth boxes.

| —»Image
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Training
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Training

o For a particular feature map from auxiliary network.
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Training

j ground truth boxes
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Training

o There will be huge number of bounding boxes.

o We handle them by matching.

o The it" default box is matched to j ground truth box using Jaccard
Index that is IOU (Intersection over Union).
If IOU > 0.5,x; =1
Else, x;j = 0

—_

For 15! class For 2"d class

Aditya Nigam (SCEE, IIT-Mandi) aditya@iitmandi.ac.in Lecture, February - May, 2019



Training

(]
ox, ¢y

o Corresponding every default box d;, we calculate a predicted box /;
having 4 parameters cx, cy, w and h
cx =Centre x coordinate
cy =Centre y coordinate
w =width
h =height
o Every box also contains class scores.
Let there be p class scores
Total number of parameters per box=p + 4
o Let a feature map be mxn size.
Total number of parameters = (p + 4).m.n.#default boxes
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Loss Function

o Let N be the number of total boxes with Jaccard Index > 0.5.
o We have 2 losses

o Location Loss
o Confidence Loss

o L(X7 c, /7g) = %[Lconf(xp C) + aL/OC(Xa /7g)]
N = number of matched boxes

x = pixel under consideration

¢ = class scores

| = predicted boxes

g = Ground truth boxes

© © © o0 o
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Loss Function

o Calculate Smooth L1 loss between each parameter of Predicted box /;
and Ground Truth box gj.
(17— gf¥)SmoothL1 (17 — g7 )SmoothL1
(1" — g/")Smoothl1 (1h — gjh)SmoothLl

o Multiply each with x;; = 0,1 and add all.
o Repeat above steps Vi € Pos
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Loss Function

o Normalization: First we will normalize the box parameters.

(g7 —d™) A (g7 —d7)
g = ""gw g =~ dp
g g
= log(gw) = /Og(%)

o d =Default boxes

o cx,cy =Centre of boxes
o w, h =Width and height of boxes

° Similarly we will normalize the parameters of predicted box
/cx /cy IW /h

A |
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Loss Function

o Calculate Smooth L1 loss between each parameter of Normalised
Predicted box /; and Normalised Ground Truth box g;.

(e — g)SmoothL1 (7 — &) SmoothL1
(™ — £%)SmoothL1 (i — g Smoothl1

o Multiply each with x;; = 0,1 and add all.
o Repeat above steps Vi € Pos
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Loss Function

o Confidence loss: For each box i/, we have p confidence scores CIP,
where,
c! = Confidence of class 1
¢ = Confidence of class 2

P — Confidence of class p

o Softmax loss over
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Loss Function

o We have to maximize confidence of matched predictions (Pos).

o At same time minimize the confidence of remaining predictions (Neg).

N
Lconf(X7 C) == Z XZ)IOg(élp) - Z /Og(elo)
i€Pos i€Neg
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Choosing Scales

o Let there be m feature maps. m = 6 in paper.
o k be the map we want to find the scale of box in k € [1, m].
o Let Sy be scale at k" map
o S,in =Minimum Scale= 0.2 Smax =Maximum Scale= 0.9
Sk = Spin + M(k —1)
m-—1
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Aspect Ratio

For ki scale, we have,

Qo
wi, w2, ..., wi widths hi h2, ... ha heights
o Choose a value of a, such that a, € [1,2 .3, 2 5 3
hy = = wi = Sk\/ar
o Lleta, =1
Aspect Ratio =1

o Leta, =2

= Wi = Skv/2

Aspect Ratio=2:1
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Number of Default Boxes

o For a given scale we can choose 5 different aspect ratios.
o For aspect ratio = 1, we add another box having S, = /S Sk+1

o Hence, we have 6 Default Boxes per feature map location.
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Hard Negative Mining

o Number of negative samples will be much greater than positive
samples.

o Sort the negative samples using confidence score for each default box.

o Pick the top ones to keep the ratio of negative to positive to atmost
3:1
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Non Maximum Suppression

o Sort all boxes of a class using confidence scores.
o Calculate Jaccard Index of first box with every other box.

o If overlap > 0.45, remove the other box.
o Otherwise keep the other box.

o Repeat the above process for each box in sorted order.
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Results on VOC

Method mAP | FPS | batch size | # Boxes | Input resolution
Faster R-CNN (VGG16) | 73.2 7 1 ~ 6000 ~ 1000 x 600
Fast YOLO 52.7 155 1 98 448 x 448
YOLO (VGG16) 66.4 21 1 98 448 x 448
SSD300 4.3 | 46 1 8732 300 x 300
SSD512 76.8 19 1 24564 512 x 512
SSD300 4.3 59 8 8732 300 x 300
SSD512 76.8 22 8 24564 512 x 512
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Thank You.
Any Questions.



