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|Supervised learning

|
* Notation

— Features  x
— Targets y
— Predictions y
— Parameters 0 Learning algorithm
Change 0
@ 99’
SocEAnE(CECREnCES) Improve performance

Characterized by
some “parameters” 0

Procedure (using 0)
that outputs a prediction
¥

Features

Feedback /
Target values
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|Linear regression
|

. “Predictor”:
Evaluate line:
> _
z r =060+ 0121
WD
2
< return r
& &
2

10 20
Feature x

+ Contrast with classification
— Classify: predict discrete-valued target y

(¢) Alexander Thler
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|Perceptron Classifier (2 features)
|
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Visualizing for one feature “x”:
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X (c) Alexander Thler X
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|Perceptrons
|

» Perceptron = a linear classifier
— The parameters 6 are sometimes called weights (“w”)
- real-valued constants (can be positive or negative)
— Define an additional constant input “1”

* A perceptron calculates 2 quantities:
— 1. Aweighted sum of the input features
— 2. This sum is then thresholded by the T(.) function

» Perceptron: a simple artificial model of human neurons
+ weights = “synapses”
« threshold = “neuron firing”

(¢) Alexander Thler
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| Notation
|

* Inputs:

— Xo =1 (aconstant input)

— X = [[Xor X4y Xgy weveevrennn , X,]] : feature vector (row vector)
»  Weights (parameters):
— 05 04, Oy e 0.,
— we have n+1 weights: one for each feature + one for the constant
— 0= 16y, 04, 05, «........... , 0,11 : parameter vector (row vector)

* Linear response
— OpXg+0xy +...0,x, =x.6" then threshold

F = X.dot( theta.T ); # compute linear response
Yhat = np.sign(F) # predict class +1 or -1
Yhat = 2*(F>0)-1 # manual “sign” of F
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|Perceptron Decision Boundary
|

= 1 (fg.x >0)
) {
= -1 (otherwise)

The pacsptcnis dafned by dockion algoben

(¢) Alexander Thler
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|Example, Linear Decision Boundary
I

Aditya Nigam (SCEE, IIT-Mandi)

8 =0 6, 6,)

=(1, 5 -5)
X2
]
O
X4
From P. Smyth
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|Example, Linear Decision Boundary
I

0 =(6y, 0, 0,
=1, .5 -5)
0.x =0
Xy (/
& 7/ =>5-%X-5%X+1-1=0
/s
// =>-5%,=-5%,-1
/ \=> X2=X1+2
Ve
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7
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7
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|Example, Linear Decision Boundary
I

8 =(6y, 6, 6,)
=(1, 5, -5)

6.x <0

=>x,+2< X,

(this is the //\ ) 50
equation for / -

decision =>x, +2> X
region -1) ~ 7 (deci1sion ’
b region +1)
7/
7 ©
Ve X4

Ve
From P. Smyth
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| Separability
|

+ Adata set is separable by a learner if
— There is some instance of that learner that correctly predicts all the data
points
» Linearly separable data
— Can separate the two classes using a straight line in feature space
— in 2 dimensions the decision boundary is a straight line

Linearly separable data Linearly non-separable data

Feature 2, X,
Feature 2, X,

Decision boundary

Feature 1, X, Feature 1, X,

(¢) Alexander Thler
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|Class overlap
|

» Classes may not be well-separated ;
» Same observation values possible | e
under both classes 5
— High vs low risk; features {age, income}

— Benign/malignant cells look similar

* Common in practice

* May not be able to perfectly distinguish between classes
— Maybe with more features?
— Maybe with more complex classifier?

+ Otherwise, may have to accept some errors

(c) Alexander Ihler

Aditya Nigam (SCEE, IIT-Mandi) aditya@iitmandi.ac.in Lecture, February - May, 2019



| Another example
|

(c) Alexander Ihler
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|Non-linear decision boundary
|

(c) Alexander Ihler
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Representational Power of Perceptrons

N What mappings can a perceptron represent perfectly?
A perceptron is a linear classifier

thus it can represent any mapping that is linearly separable
— some Boolean functions like AND (on left)

but not Boolean functions like XOR (on right)

|

(¢) Alexander Thler
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| Adding features
|

* Linear classifier can’t learn some functions

1D example: y=T(bx+c)

Not linearly separable

Add quadratic features [ ]
y=T(ax>+bx+c)

Linearly separable in new features...

(c) Alexander Thler
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| Adding features
|

* Linear classifier can’t learn some functions

1D example: y=T(bx+c)

Not linearly separable

Quadratic features, visualized in original feature space:
y=T(ax>+bx+c)

j More complex decision boundary: ax>*+bx+c =0
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Representational Power of Perceptrons

N What mappings can a perceptron represent perfectly?
A perceptron is a linear classifier

thus it can represent any mapping that is linearly separable
— some Boolean functions like AND (on left)

but not Boolean functions like XOR (on right)

|

‘What kinds of functions would we need to learn the data on the right?
(¢) Alexander Thler
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Representational Power of Perceptrons

N What mappings can a perceptron represent perfectly?
A perceptron is a linear classifier

thus it can represent any mapping that is linearly separable
— some Boolean functions like AND (on left)

but not Boolean functions like XOR (on right)

|

N

‘What kinds of functions would we need to learn the data on the right?
Ellipsiodal decision boundary: aXx,2+bx, +tcx2+dx,+texx,+f=0

(¢) Alexander Thler
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| Feature representations
|

» Features are used in a linear way
* Learner is dependent on representation

» Ex: discrete features
— Mushroom surface: {fibrous, grooves, scaly, smooth}
— Probably not useful to use x = {1, 2, 3, 4}
— Better: 1-of-K, x ={[1000], [0100], [0010], [0001] }
— Introduces more parameters, but a more flexible relationship

(¢) Alexander Thler
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| Effect of dimensionality
|

- Data are increasingly separable in high dimension — is this a good thing?

. “Good”
— Separation is easier in higher dimensions (for fixed # of data m)

— Increase the number of features, and even a linear classifier will eventually be
able to separate all the training examples!

. “Bad”
— Remember training vs. test error? Remember overfitting?

— Increasingly complex decision boundaries can eventually get all the training
data right, but it doesn’ t necessarily bode well for test data...

Predictive
Error Error on Test-Data™
— Error on Training Data
D _ Complexity
Underfitting D Overfitting
Ideal Range
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|Summary

| . o
* Linear classifier <& perceptron

 Linear decision boundary
— Computing and visualizing

+ Separability

— Limits of the representational power of a perceptron

* Adding features
— Interpretations
— Effect on separability
— Potential for overfitting

(¢) Alexander Thler
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Linear classification: Learning
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|Learning the Classifier Parameters
I

* Learning from Training Data:
— training data = labeled feature vectors
— Find parameter values that predict well (low error)
- error is estimated on the training data
 “true” error will be on future test data

+ Define an objective function J(0) :
— Classifier accuracy (for a given set of weights 9 and labeled data)

* Maximize this objective function (or, minimize error)
— An optimization or search problem over the vector (6, 6, 6;)

(¢) Alexander Thler
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|Training a linear classifier

*  How should we measure error?
— Natural measure = “fraction we get wrong” (error rate)

err@) = 1/m 2 &( y(i) = y(i) )
where 6( y(@i) = y(i) ) =0 ify(i)=y(i), and1 otherwise

Yhat = np.sign( X.dot( theta.T ) ); # predict class
err = np.mean( Y !=Yhat ) # count errors: empirical error rate

* But, hard to train via gradient descent
— Not continuous
— As decision boundary moves, errors change abruptly

T =-1 if £<0

1D example: T =+1if >0

(¢) Alexander Thler
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|Linear regression?
|

* Simple option: set 6 using linear regression

0/0 N o

* In practice, this often doesn’t work so well...
— Consider adding a distant but “easy” point
— MSE distorts the solution

o0 .-
o= |
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| Perceptron algorithm
|

* Perceptron algorithm: an SGD-like algorithm
While (~done)
For each data point j:
yvi)=T(8* x()) : predict output for data point j
0+ 0+ a(y(i)-y0())x() : “gradient-like” step

* Compare to linear regression + MSE cost
— Identical update to SGD for MSE except error uses
thresholded y(j) instead of linear response 6 x’ so:

— (1) For correct predictions, y(j)- y(j)= 0
— (2) For incorrect predictions, y(j) - y(j) = + 2

“adaptive” linear regression: correct predictions stop contributing

(¢) Alexander Thler
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| Perceptron algorithm
|

+ Perceptron algorithm: an SGD-like algorithm

While (~done)

For each data point j:

y0) =T(8*x())

0 8+ a(y()-ya))x()

Aditya Nigam (SCEE, IIT-Mandi)

: predict output for data point j

: “gradient-like” step

g
. °%%
y(.l) (L) ... s.
predicted . .'8030 .o
incorrectly: 2 s .
update « A,
weights
ke
(c) Alexander Thler -
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| Perceptron algorithm
|

+ Perceptron algorithm: an SGD-like algorithm

While (~done)

For each data point j:

y0) =T(8*x())

: predict output for data point j

0«0+ o (y@)-y3())xG) : “gradient-like” step

Aditya Nigam (SCEE, IIT-Mandi)

y()
predicted
correctly:
no update

)

(c) Alexander Thler
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| Perceptron algorithm
|

+ Perceptron algorithm: an SGD-like algorithm
While (~done)
For each data point j:
vi) =T(8* x()) : predict output for data point j
0«0+ o (y@)-y3())xG) : “gradient-like” step
(Converges if data are linearly separable)

y()
predicted
correctly:
no update

)

(¢) Alexander Thler
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|Surrogate loss functions
|

 Another solution: use a “smooth” loss — T
— e.g., approximate the threshold function '_—f(’x Y)

— Usually some smooth function of distance

- Example: “sigmoid”, looks like an “S” o(
T f(X,Y)

— Now, measure e.g. MSE
J(9) = %Z( o( f(2(D)) — @) )2 Classy = {0, 1} ...

— Far from the decision boundary: [f(.)| large, small error
Nearby the boundary: [f(.)| near 1/2, larger error

1D example: I ‘ .‘ ' . f

Classification error =2/9 MSE = (02 + 12+ 22 + 257 + .05% +.
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|Beyond misclassification rate

I . . . . [ ”
* Which decision boundary is “better”?
— Both have zero training error (perfect training accuracy)
— But, one of them seems intuitively better...

o ~
< e <
a o o N
2 ol 2
£ < o £}
= N g 1
2 a4 >
Y I =

..’.. o ._)

s

oo .
o e
Feature 1, X, Feature 1, X,

+ Side benefit of “smoothed” error function
— Encourages data to be far from the decision boundary
— See more examples of this principle later...

(¢) Alexander Thler
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| Training the Classifier
|

* Once we have a smooth measure of quality, we can find the
t))(e%sg( sett|n s for the arameters of

« Example: 2D feature space & parameter space

J=19

[arctan(A\/B), c]

(¢) Alexander Thler
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| Training the Classifier
|

* Once we have a smooth measure of quality, we can find the

best” sett|n sfor the

f(X1,X2)

« Example: 2D feature space &

arameters of

parameter space

[arctan(A\/B), c]

Aditya Nigam (SCEE, IIT-Mandi)

@ J=04

(¢) Alexander Thler
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|Tra|n|ng the Classifier

Once we have a smooth measure of quality, we can find the “best”
settings for the parameters of
f(X1,X2) =a*X1 +b*X2 +c

* Finding the minimum loss J(.) in parameter space...

Best Poi
(minimuip MSE)

(¢) Alexander Thler
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|Finding the Best MSE
|

* As in linear regression, this is now just optimization

* Methods:
— Gradient descent
- Improve loss by small Gradient Descent
changes in parameters
(“small” = learning rate)

— Or, substitute your favorite
optimization algorithm...
« Coordinate descent
« Stochastic search
» Genetic algorithms

(¢) Alexander Thler
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| Gradient Equations

N MSE (note, depends on function o(.) )

1 i i ;
J@=la.b.e]) = = 3 (o(aaf? b2l +e)—y D)2

- What’ s the derivative with respect to one of the

parameters?
—==>"2(- 2Dy — DY a5 (6 - (D) x5
da  m*% 4 1'
Error between class Sensitivity of prediction to
and prediction changes in parameter “a”

+ Similar for parameters b, ¢ [replace x, with x, or 1
(constant)]

(¢) Alexander Thler
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| Saturating Functions
|

+ Many possible “saturating” functions

+ “Logistic” sigmoid (scaled for range [0,1]) is

o(z)=1/(1+exp(-z))

* Derivative is
at (to predict:

— thresholdzat0 or
d0(z) = o(z) (1-0(2)) threshold o (z) at % )

*  Python Implementation:

def sig(z): # logistic sigmoid
return 1.0/ (1.0 + np.exp(-z) ) # in[0,1] Forrange [-1, +1]:
def dsig(z): # its derivative at z p(z) =20(z)-1
return sig(z) * (1-sig(z)) ap(Z) =2 O'(Z) (1_0_(2))
Predict: threshold z or p at zero
(¢) Alexander Thler
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| Logistic regression
|

¢ Intepret o( 8 X’ ) as a probability thaty = 1
* Use a negative log-likelihood loss function
— If y=1, costis -logPrly=1] = -logo(8Xx’)
— If y=0, costis -logPrly=0] = -log(1-0(6x))

+ Can write this succinctly:
J(0) = —= 3"y 10g 5 (6:-D)+(1-yD) log(1- (0-21))
moi J \ ]

T T
Nonzero only if y=1 Nonzero only if y=0

(¢) Alexander Thler
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| Logistic regression
|

¢ Intepret o( 8 X’ ) as a probability thaty = 1
* Use a negative log-likelihood loss function
— If y=1, costis -logPrly=1] = -logo(8Xx’)
— If y=0, costis -logPrly=0] = -log(1-0(6x))

+ Can write this succinctly:
J(0) = —= 3"y 10g 5 (6:-2D)+(1-yD) log(1- (0-21))
m

+ Convex! Otherwise similar: optimize J(0) via ...

1D example: I ‘ " ® ¢ ’| l

Classification error = MSE = 2/9 NLL = - (log(.99) +log(.97) +...)/9
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| Gradient Equations

!, Logistic neg-log likelihood loss:

7O = - 3y 1og 5 (6:2)+(1-y D) log (1-0(6-2))

- What’ s the derivative with respect to one of the
parameters?

s o
I3k 0020) o0+ 6.

= —;zy“)(l —o(0-2®)) 2f? — (1 - yD) ...

(¢) Alexander Thler
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|Surrogate loss functions

I
* Replace 0/1 loss
with something easie

Ai(60) = 5(T(027) # y©)

* Logistic MSE

J

Ji(0) = 4(a(02) — y@)?

 Logistic Neg Log Likelihood \

log 2
(c) Alexander Thler
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|Summary

| . o
* Linear classifier <& perceptron

* Measuring quality of a decision boundary
— Error rate (0/1 loss)
— Logistic sigmoid + MSE criterion
— Logistic Regression

+ Learning the weights of a linear classifer from data
— Reduces to an optimization problem
— Perceptron algorithm
— For MSE or Logistic NLL, we can do gradient descent
Gradient equations & update rules

(¢) Alexander Thler
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| Multiclass linear models
|

* Define a generic linear classifier by

f(z;0) =argmax 6 - ®(z,y)
y

* Example: y € {-1, +1}

O(z,y)=y 1z ..

-1 o.w.

+1 O-lzxaz?..]>—-0-[1xz?...
Fla:0) = { | | | |
(Standard perceptron rule)

(c) Alexander Thler
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| Multiclass linear models
|

* Define a generic linear classifier by

f(z;0) =argmax 6 - ®(z,y)
y

* Example: y€{0,1,2,...}
O(z,y)=[1y=0]1z2® .. Ily=11z2%..]..]
0= [ [000 001 902 .. ] [010 911 912 . ] . ]
(parameters for each class c)
f(z;0) = argmax 6. -[1 z 2% ..
(predict class with largest linear response)

(c) Alexander Thler
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| Training multiclass perceptrons
|

* Multi-class perceptron algorithm
— Straightforward generalization of perceptron alg

* Multilogistic regression
—Take p(c | x) oc exp[ 6 D(x,c) ]
— Normalize by sum over classes c
— Straightforward generalization of logistic regression

(¢) Alexander Thler
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