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|Supervised learning
|

* Notation
— Features  x
— Targets y

— Predictions y

Learning algorithm
— Parameters 6

Change 6

Program (“Learner”
g ( ) Improve performance

Characterized by
some “parameters” 0

Procedure (using 6)
that outputs a predictiorn
Il

Feedback /
Target values
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Linear regression

(c) Alexander Ihler
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“Predictor”:
Evaluate line:
r = 0o+ thz

return r

- Define form of function f(x) explicitly
+ Find a good f(x) within that family
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| Notation
I

f/(x) —0Og + 0121 + 60209+ ...

Define “feature” X, =1 (constant)
Then

glo) =0aT LTl

L = [1’x17"'7$n]

(c) Alexander Ihler
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Measuring error
|

. Error or “residual
Observation Y

Prediction 7/

(c) Alexander Ihler
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|Mean squared error
I

* How can we quantify the error?
1 ) ,
MSE - = (@) — (2@ )2
SE, J(9) = — E (Y —g())

:_Z @) —g. T2
m -

* Could choose somethlng else, of course...
— Computationally convenient (more later)
— Measures the variance of the residuals
— Corresponds to likelihood under Gaussian model of “noise”

1 1 9
G exp {@(y — ) }

(c) Alexander Ihler

N(y; Naog):
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MSE cost function
|

MSE, J(8 Z(y — (xD))?
I D _g.0)Ty2
= Z(y 0z
J
* Reuwrite using matrix form (1) (1)
T R
Q:[O()a'-'agn] X — . ) .
T — . . .
y= [y(l)m’y(m)] OB
1
J(O) = —(@" - 0X") - (g —0X")T

# Python / NumPy:
e =Y —X.dot( theta.T);
J=eT.dot(e)/m #=np.mean(e **2)

(c) Alexander Ihler
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|Supervised

learning

! * Notation

— Features  x
— Targets y

Predictions y
Parameters 6

|

Program (“Learner”)

Characterized by
some “parameters” 0

Procedure (using 6)

Learning algorithm

Change 6
Improve performance

that outputs a predictiorn
Il

Feedback /
Target values
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Visualizing the cost function

c) Alexander |pler

o 05 T 5 2 25 3
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|Finding good parameters

I i . L
* Want to find parameters which minimize our error...

« Think of a cost “surface”: error residual for that 6...

0ot J(9)

f = argmin J ()

bel

(c) Alexander Ihler
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Linear regression:
Gradient descent & stochastic
gradient descent
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|Gradient descent
I
* How to change 6 to

improve J(6)?
J(H) ? * Choose a direction in
which J(#) is decreasing

(c) Alexander Ihler
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|Gradient descent
I

2760y ° Howtochange 6 to
00 improve J(6)?
J(Q) * Choose a direction in
which J(#) is decreasing

+ Derivative 0J(0)
o0

+ Positive => increasing
* Negative => decreasing

(c) Alexander Ihler
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|Gradient descent in more dimensions
I

. * Gradient vector
0o v = [27@) 27@)

| 96 06
—VJ(@)

* Indicates direction of
steepest ascent
0, (negative = steepest
>
descent)

(c) Alexander Ihler
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|Gradient descent
I

* Initialization Initialized
» Step size Do A

— Can change as a function of iteration . o _, v, J(0)
 Gradient direction Ywhile (af[VJ||>€)

+ Stopping condition

aJ ()

J(9> 00

ft) Alexander lhler
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|Gradient for the MSE

|
* MSE _ N0 g T2
16 = 360 -8-297)

ei(0
e VJ=? , .]() |
J(9) = — Z(y(ﬁ _ 9096(]) _ 9137(3) )2
J
9J _ 0 1 o 2
6, = 200 m > (e(0))

J

S Y ()

1 0
= rnz]: 2¢;(0) 3—9063‘(9)

(c) Alexander Ihler
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|Gradient for the MSE

|
+ MSE _ l G _pg..HT\2
J(0) = - E (y 0-z)

e;i(6
¢ V=2 .]( )
1 . 1
J(8) = — Z(y(J) _ 9058(]) _ elw(J) )2
j
oJ oJ
12N o) 2N o)
= [m; e; Oz’ — ij e;(0)z! ]

(c) Alexander Ihler
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|Gradient descent
I

* Initialization
Initialize @

» Step size
— Can change as a function of iteration bo {
- Gradient direction 0 0-aV,J0)

- Stopping condition }while (af[VJ|[>€)

1 ; NT
S () _p. "2
J(0) = — Ej:(y 6-207)
2 57 () DTy [0 )
VJ(Q)Z—EZ(?J =02V ) [ag ey
P Ve d
Error magnitude & Sensitivity to
direction for datum j each 6;

(c) Alexander Ihler
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Derivative of MSE
|

2 . T N

VJ(9) = - D =020y 292
i e \am o/

Error magnitude & Sensitivity to

direction for datum j each 6,
* Rewrite using matrix form (1) ey
Q:[@O,...,en] X: . ' 7:L
T . . .
y= [y ..y A g

2
VJ(O) =-—(y" —6x") X

e =Y —X.dot( theta.T); # error residual
DJ = - e.dot(X) * 2.0/m # compute the gradient

theta -= alpha * DJ # take a step

(c) Alexander Thier
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|Gradient descent on cost function
|

40

30

20

L L L 20
15 2 (L?thandgl‘lhpﬂ 2 4 6 8 10 12 14 16 18 20
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|Comments on gradient descent
I

* Very general algorithm
— we’ Il see it many times

» Local minima
— Sensitive to starting point

(c) Alexander Ihler
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|Comments on gradient descent
I

* Very general algorithm
— we’ Il see it many times
» Local minima
— Sensitive to starting point
« Step size
— Too large? Too small? Automatic ways to choose?
— May want step size to decrease with iteration

— Common choices:
» Fixed
* Linear: C/(iteration)
 Line search / backoff (Armijo, etc.)
Newton’ s method

@ (c) Alexander \\/
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Newton’s method

I Want to find the roots of f(x)
— “Root”: value of x for which f(x)=0

* Initialize to some point x
* Compute the tangent at x & compute where it crosses x-axis

0— f( ) . f(®)
f(z)= — = 7=z V()
*  Optimization: find roots of VJ(0) (“Step size” \ = 1/VVJ ; inverse curvature)
0—V.J(9) - v.J(9)
VVI0) = —5— =0 i

— Does not always converge; sometimes unstable
— If converges, usually very fast

— Works well for smooth, non-pathological functions, locally quadratic

(Multivariate:
V J(#) = gradient vector
V2 J(0) = matrix of 2" derivatives
a/b = a b-!, matrix inverse)
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Stochastic / Online Gradient Descent
. MSE

J(0) = % ST, i) =P —0- 272

e Gradient

1 . T L
VIO) = S V5O) V5O =D - 0-207) 1§
J

+ Stochastic (or “online”) gradient descent:
— Use updates based on individual datum j, chosen at random
~ Atoptima, E[VJ;(8)] =VJ(0) =0
(average over the data)

(c) Alexander Ihler
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|On|ine gradient descent  tniciaiizes

! » Update based on each datum at a time Po {

— Find residual and the gradient of its part
of the error & update 0 0-aV,J0)

}while (not done)

for j=1:m

30 15 * o o
20 10 .. [ J [ ]

5

0. [}

K

-10|

-15]
4(!1 ’0'.5 6 0‘5 01 %*) 1‘.5 ‘2 ((?‘glexandgrﬁfper ‘2 ‘4 VG ‘8 1‘0 1‘2 1‘4 1‘6 1‘5 20
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|On|ine gradient descent  tniciaiizes

! » Update based on each datum at a time Po {

— Find residual and the gradient of its part
of the error & update 0 0-aV,J0)

}while (not done)

for j=1:m

30 .
15 . .
[ )
20 10 ® [ J [ ]
5
[ J
0|
-5
-10|
-15]
-1 -0.5 0 0.5 01 1 15 2 ((?ilexandgrlhp&r 2 4 6 8 10 12 14 16 18 20
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|On|ine gradient descent  tniciaiizes

! » Update based on each datum at a time Po {

— Find residual and the gradient of its part
of the error & update 0 0-aV,J0)

}while (not done)

for j=1:m

L L L L L 20 L L L L n L L L L
0.5 01 1 15 2 (c?ilexandgrlhper 2 4 6 8 10 12 14 16 18 20
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|On|ine gradient descent

! * Update based on each datum at a time

— Find residual and the gradient of its part
of the error & update

Initialize

Do {

for j=1:m
0 0-aV,J()
}while (not done)

30

15 . .
20 10 L [

[
5
J

0|

-5

-10|

-15]
-1 -0.5 0 0.5 01 1 15 2 (c?ilexandgrlhper 2 4 6 8 10 12 14 16 18 20
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|On|ine gradient descent  tniciaiizes

! » Update based on each datum at a time Po {

— Find residual and the gradient of its part
of the error & update 0 0-aV,J0)

}while (not done)

for j=1:m

L L L L L 20 L L L L n L L L L
0.5 01 1 15 2 (c?ilexandgrlhper 2 4 6 8 10 12 14 16 18 20
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|On|ine gradient descent  tniciaiizes

! » Update based on each datum at a time Po {

— Find residual and the gradient of its part
of the error & update 0 0-aV,J0)

}while (not done)

for j=1:m

L L L L L 20 L L L L n L L L L
0.5 01 1 15 2 (c?ilexandgrlhper 2 4 6 8 10 12 14 16 18 20
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|On|ine gradient descent
| ] o Initialized
Ji(0) = (9 — 020" Do
. = — @ _ -:z;(')T . 1:(j)x(j)... for j=l:m
VJ;(0) 20y =02V ) - [ 0 T1 ] 9(—0-aV9Jj(0)

« Benefits }while (not converged)

— Lots of data = many more updates per pass
— Computationally faster

» Drawbacks
— No longer strictly “descent”
— Stopping conditions may be harder to evaluate
(Can use “running estimates” of J(.), etc.)

* Related: mini-batch updates, etc.

(c) Alexander lhler
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Linear regression:
direct minimization
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MSE Minimum

» Consider a simple problem
— One feature, two data points
— Two unknowns: 6, 6,
— Two equations:
y(l) =0+ 91:8(1)
y(2) =0 + 91$(2)

+ Can solve this system directly:
QT:QXT :> é:yT(XT)71

* However, most of the time, m>n
— There may be no linear function that hits all the data exactly
— Instead, solve directly for minimum of MSE function

(c) Alexander Ihler
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SSE Minimum
|

VIO =—(@y" -0x") X =

<

+ Reordering, we have

) L
y'X-0X"T-X = 0
y" X =0XT X
0 = ¥y XXX

« X (XT X)'is called the “pseudo-inverse”

 If XT is square and independent, this is the inverse
* If m>n: overdetermined; gives minimum MSE fit

(c) Alexander Ihler
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|Python SSE
|

» This is easy to solve in Python / NumPly...
0 = y XXX

3+
=<
|

= np.matrix( [[yl], .. , [ym]l] )
# X = np.matrix( [[x1_0 .. x1_n], [x2_0 .. x2 n], ..] )

% Solution 1: “manual”
th = y.T * X * np.linalg.inv(X.T * X);

o0

Solution 2: “least squares solve”
th = np.linalg.lstsq(X, Y);

(c) Alexander Ihler
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Normal equations

|
VI@)=0 = (" -6X") X = 0

 Interpretation:
— (y - 6X) = (y - yhat) is the vector of errors in each example
— Xare the features we have to work with for each example
— Dot product = 0: orthogonal

yT =y .y
W) gm)]

(c) Alexander Ihler
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Normal equations

|
VI@)=0 = (" -6X") X = 0

* Interpretation:
— (y - 6X) = (y - yhat) is the vector of errors in each example
— X are the features we have to work with for each example
— Dot product = 0: orthogonal

* Example: y=[1 33
=01 11" g—[1.00 0.57)
) (@) Ly = [1 2 4]T

e=(y—9)=[-057 085 —0.28]T

(c) Alexander Ihler
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|Effects of MSE choice

» Sensitivity to outliers

162 cost for this one datum

Heavy penalty for large errors

0 0
..ll l“
(c) Alexander Ihler
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L1 error

.
o*
D

1&. Q

ALTTT L)

14 16

(c) Alexander Ihler
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L2, original data

L1, original data

L1, outlier data

00 = [y — )
J
= ly—0-2"
J

Prea,

*
an®
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|Cost functions for regression
I

by : (y—19)* (MSE)
G ly—=9l  maE)
Something else entirely...

¢ — log(exp(—(y — §)°) + ¢)

(222)

“Arbitrary” functions can’ t be —(y—19) —
solved in closed form...
- use gradient descent

(c) Alexander Ihler
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Linear regression:
nonlinear features
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R e Sy Y
/7

(6o 601 6]
z =1z z2]

ions?

Imensions

|More d

(c) Alexander Ihler
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Nonlinear functions

» What if our hypotheses are not lines?
— Ex: higher-order polynomials

Orcer 1 polynomial Order 3 polynomial

(c) Alexander Ihler
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| Nonlinear functions
I

« Single feature x, predict target y:

D = {(2V),yU))} §(x) = 00 + 01 2 + 0 2° + 05 2°

\U/ Add features: \U/

D = {([z9, (zD)%, (9], y )} g(x) = o + 121 + Oams + O3

Linear regression in new features
+ Sometimes useful to think of “feature transform”

O(x)=[1,2,2%, 2%, ...] y(z) =0 - P(x)

(c) Alexander Ihler
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|Higher-order polynomials ...
|

» Fitin the same way
» More “features”

[ ]
Order 2 polynomial 2 4 6 orfler3pdfhomi2 14 16 18
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Features
I

In general, can use any features we think are useful

* Other information about the problem
— Sq. footage, location, age, ...

* Polynomial functions
— Features [1, x, x2, x5, ...]

« Other functions
— 1/, sqrt(x), X4 * Xy, ...

+ “Linear regression” = linear in the parameters
— Features we can make as complex as we want!

c) Alexander lhler
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| Higher-order polynomials

* Are more features better?

* “Nested” hypotheses
— 2nd order more general than 1st,
— 3dorder “ “than2nd, ...

* Fits the observed data better

0.5

0.5 1

0.5

0.5]

0 05 1

Aditya Nigam (SCEE, IIT-Mandi)

0 0.5 1

aditya@iitmandi.ac.in

05 1
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|Overfitting and complexity

* More complex models will always fit the training data
better

+ But they may “overfit” the training data, learning
complex relationships that are not really present

Simple model omplex model

X (c) Alexander Ihler V X
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Test data

 After training the model

* Go out and get more data from the world
— New observations (x,y)

» How well does our model perform?

0.5

0 05 1 (c) Alexander Ihler 0 05 1
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|Training versus test error

I Plot MSE as a function
of model complexity 20

— Polynomial order

N Training data
* Decreases

. [ . ” P p
— More complex function New, test data
fits training data better 20

« What about new data? 5

« 0t to 1st order
— Error decreases
— Underfitting

* Higher order 0
— Error increases
— Overfitting

Mean squared error

n L L L L s n

L
0 05 1 1.5 2 25 3 35 4 4.5 5

Polynomial order

(c) Alexander Ihler
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Linear regression:
bias and variance
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Inductive bias

» The assumptions needed to predict examples we
haven’t seen

Makes us “prefer” one model over another
Polynomial functions; smooth functions; etc

Some bias is necessary for learning!

Simple model Complex model

X
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|Bias & variance
|

“Theworl”  Dataweobseve 1 Nree different possible data sets:
& 1

1
L] (]
(] o 10 10
y(x) = 0o + bhx + v» . g . 8
] [ ]
P 5 . 5 L
° ‘ 1
. . .
o® . i . 4.
° Y . . 2) . 2)
(]
0) 0
§(z) = b0 + b1 h] 5 10 15 20 5 10 15 20 0 5 10 15 20

(c) Alexander Ihler
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|Bias & variance
|

“Theworl”  Dataweobseve 1 Nree different possible data sets:
& 1

It
[ ] [ ]
(] L] 10 10
) = 6 c + VI
y(@) o + 01 + VD . o . o
° . .
o ° B . § . ]
- . . *
°® . P 4.
° - .. e )
[ ]
0) 0
() = b0 + b1z &) 5 0 15 20 3 B v 15 2 % 5 0 15 2
) Poly Order 0 Poly Order 1 Poly Order 3

Each would give 8 *
.
different 8 LA
- .
predictors for any e
) . ee
polynomial degree: 2~ °
0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

(c) Alexander Ihler
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|Detecting overfitting
|

*  Overfitting effect
— Do better on training data than on future data
— Need to choose the “right” complexity

= One solution: “Hold-out” data

« Separate our data into two sets
— Training
— Test

* Learn only on training data

» Use test data to estimate generalization quality
— Model selection

« All good competitions use this formulation
— Often multiple splits: one by judges, then another by you

c) Alexander lhler
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What to do about under/overfitting?

* Ways to increase complexity?
— Add features, parameters
— We’'ll see more...

* Ways to decrease complexity?
— Remove features (“feature selection”)
— “Fail to fully memorize data”
« Partial training

+ Regularization Error on Test Data
Predictive
Error
|~ Error on Training Data
Model Complexity
«—
Ideal Range
for Model Complexity
(c) Alexander lhigr—— —
Underfitting Overfitting
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Linear regression:
regularization
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Linear regression

* Linear model, two data

Quadratic model, two data?
— Infinitely many settings with zero error
— How to choose among them?

Higher order coefficents = 0?
— Uses knowledge of where features came from...

Could choose e.g. minimum magnitude:
min 097 st J(@) =0

Atype of bias: tells us which models to prefer

c) Alexander lhler
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| Regularization
I

+ Can modify our cost function J to add “preference” for
certain parameter values
JO) = 2y —0X") - (y— X" +a0d”
2= n L, penalty:
+ New solution (derive the same way) “Ridge regression”
0 = yXX'X+a)™!

— Problem is now well-posed for any degree

* Notes:
— “Shrinks” the parameters toward zero
— Alpha large: we prefer small theta to small MSE
— Regularization term is independent of the data: paying more
attention reduces our model variance

c) Alexander lhler
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| Regularization
I

+ Compare between unreg. & reg. results

Alpha =0
(Unregularized) o5

Alpha=1 o

0 05 1 (c) ATSxEigIer ThIEr o g 1 0 05 1
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Different regularization functions
* More generally, for the L, regularizer: ( Z |6; |7 )%

Isosurfaces: [|f]|, = constant

S f_j
p=0.5 p=1 p=2 p=4
Lasso Quadratic

L, =limitasp — 0: “number of nonzero weights”, a natural notion of complexity

(c) Alexander Ihler
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|Regu|arization: L1vs L2
!

* Estimate balances data term & regularization term

90—>

Minimizes data term

5=8

Minimizes combination

01*}

k Minimizes regularization

(c) Alexander Ihler
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|Regu|arization: L1vs L2
!

* Estimate balances data term & regularization term
* Lasso tends to generate sparser solutions than a quadratic regularizer.

90—>
00*}

Data term only:
all 0, non-zero

- 0 Regularized estimate:
/ ] some 6; may be zero
\/ 61 - 01 h

(c) Alexander Ihler
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Linear regression:
hold-out, cross-validation
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Model selection

0.5

Which of these models fits the data best?

— p=0 (constant); p=1 (linear); p=3 (cubic); ...

Or, should we use KNN? Other methods?

Model selection problem

— Can't use training data to decide (esp. if models are nested!)

Want to estimate

E ey (Y, 9(z; D))]

J = loss function (MSE)
D = training data set

p=0

Aditya Nigam (SCEE, IIT-Mandi)

0.5

p=3

05

aditya@iitmandi.ac.in
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Hold-out method

* Validation data
— “Hold out” some data for evaluation (e.g., 70/30 split)

— Train only on the remainder

* Some problems, if we have few data:
— Few data in hold-out: noisy estimate of the error
— More hold-out data leaves less for training!

E 88 79
. 5
Training
data % 30
68 73
7 -16
20 43
MSE =331.8 L 53 77
., . , . . . . . Validation g 16
(c) Alexander Ihler data - o
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Cross-validation method

* K-fold cross-validation
— Divide data into K disjoint sets

— Hold out one set (= M / K data) for evaluation
— Train on the others (= M*(K-1) / K data)

Spiit 1 ENNr

MSE =331.8 G 7
- 32 -2
Training

data 27 30

Split 2: Validation CEN RS
MSE =361.2 data 7 5
20 43

»S—Fold X-Val MSE SE

split 3: =464.1 LA EL
MSE = 669.8 57/ 2

(c) Alexander Ihler
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Cross-validation method

* K-fold cross-validation
— Divide data into K disjoint sets

— Hold out one set (= M / K data) for evaluation
— Train on the others (= M*(K-1) / K data)

Spiit 1 ENNr

MSE =280.5 88 79
-~ 32 2
Training

data 27 30

Split 2: Validation 68 2
MSE = 3081.3 data 7 16
20 43

»S—Fold X-Val MSE 23 7

Split 3: = 1667.3 17 16
MSE =1640.1 87 94

(c) Alexander Ihler
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Cross-validation

* Advantages:
— Lets us use more (M) validation data

(= less noisy estimate of test performance)

* Disadvantages:
— More work
* Trains K models instead of just one
— Doesn’t evaluate any particular predictor
* Evaluates K different models & averages
« Scores hyperparameters / procedure, not an actual, specific predictor!

* Also: still estimating error for M’ < M data...

(c) Alexander lhler
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Learning curves
I

Plot performance as a function of training size
— Assess impact of fewer data on performance
Ex: MSEO - MSE (regression)
or 1-Err (classification)

* Few data
— More data significantly
improve performance
*  “Enough” data
— Performance saturates

1/MSE

_— >
Training data size (m)

* If slope is high, decreasing m (for validation / cross-validation) might have a
big impact...

(c) Alexander Ihler
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Leave-one-out cross-validation

* When K=M (# of data), we get
— Train on all data except one

— Evaluate on the left-out data
— Repeat M times (each data point held out once) and average

MSE = ... =
Training 2 2
data
o 27 30
Validation @ 73
MSE = ... data 5 16
20 43
»LOO_X—Val MSE = P
N 17 16
87 94

(c) Alexander lhler
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Cross-validation Issues

* Need to balance:
— Computational burden (multiple trainings)
— Accuracy of estimated performance / error

* Single hold-out set:
— Estimates performance with M’ < M data (important? learning curve?)
— Need enough data to trust performance estimate
— Estimates performance of a particular, trained learner

*  K-fold XVal
— Ktimes as much work, computationally
— Better estimates, still of performance with M’ < M data

* LOO Xval
— M times as much work, computationally
— M’ = M, but overall error estimate may have high variance

(c) Alexander Ihler
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