CS-671: DEEP LEARNING AND ITS APPLICATIONS Lecture: 01

Basics of Machine Learning: Linear Regression

Aditya Nigam, Assistant Professor
School of Computing and Electrical Engineering (SCEE)
Indian Institute of Technology, Mandi
http://faculty.iitmandi.ac.in/ãditya/ aditya@iitmandi.ac.in

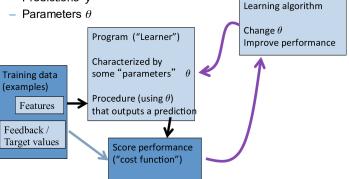
Presentation for CS-671@IIT Mandi (20 February, 2019)
(*Slides Credit: Intro to Machine Learning by Alexander Ihler)
https://www.youtube.com/watch?v=qPhMX0vb6D8&list=
PLaXDtXvwY-oDvedS3f4HW0b4KxqpJ_imw

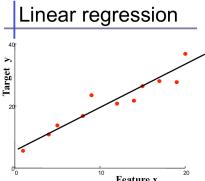
February - May, 2019

Supervised learning

Notation

- Features x
- Targets y
- Predictions ŷ





"Predictor": Evaluate line: $r = \theta_0 + \theta_1 x_1$

return r

- Define form of function f(x) explicitly
- Find a good f(x) within that family

Notation

$$\hat{y}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots$$

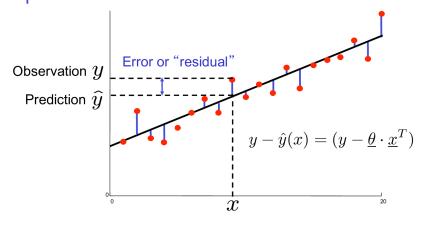
Define "feature" $x_0 = 1$ (constant)

Then

$$\hat{y}(x) = \theta x^T$$

$$\frac{\theta = [\theta_0, \dots, \theta_n]}{\underline{x} = [1, x_1, \dots, x_n]}$$

Measuring error



Mean squared errorHow can we quantify the error?

MSE,
$$J(\underline{\theta}) = \frac{1}{m} \sum_{j}^{j} (y^{(j)} - \hat{y}(x^{(j)}))^{2}$$

= $\frac{1}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)T})^{2}$

- Could choose something else, of course...
 - Computationally convenient (more later)
 - Measures the variance of the residuals
 - Corresponds to likelihood under Gaussian model of "noise"

$$\mathcal{N}(y \; ; \; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(y-\mu)^2\right\}$$

MSE cost function

MSE,
$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \hat{y}(x^{(j)}))^2$$

$$= \frac{1}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)T})^2$$

Rewrite using matrix form

Rewrite using matrix form
$$\underline{\theta} = [\theta_0, \dots, \theta_n] \\ \underline{y} = \begin{bmatrix} y^{(1)} \dots, y^{(m)} \end{bmatrix}^T \qquad \underline{X} = \begin{bmatrix} x_0^{(1)} & \dots & x_n^{(1)} \\ \vdots & \ddots & \vdots \\ x_0^{(m)} & \dots & x_n^{(m)} \end{bmatrix}$$

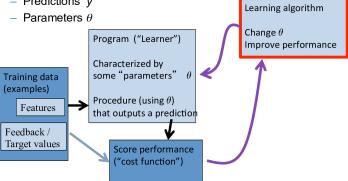
$$J(\underline{\theta}) = \frac{1}{m} (\underline{y}^T - \underline{\theta} \underline{X}^T) \cdot (\underline{y}^T - \underline{\theta} \underline{X}^T)^T$$

= e.T.dot(e)/m # = np.mean(e**2)

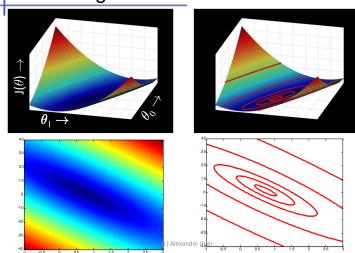
Supervised learning

Notation

- Features x
- Targets y
- Predictions ŷ

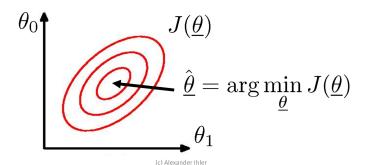


Visualizing the cost function



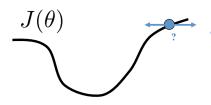
Finding good parameters

- Want to find parameters which minimize our error...
- Think of a cost "surface": error residual for that θ ...



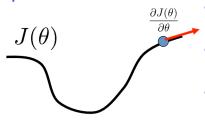
Linear regression: Gradient descent & stochastic gradient descent

Gradient descent



- How to change θ to improve $J(\theta)$?
- Choose a direction in which J(θ) is decreasing

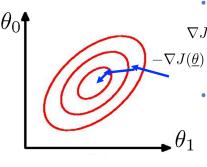
Gradient descent



- How to change θ to improve $J(\theta)$?
- Choose a direction in which J(θ) is decreasing
- Derivative $\frac{\partial J(\theta)}{\partial \theta}$

- Positive => increasing
- Negative => decreasing

Gradient descent in more dimensions



Gradient vector

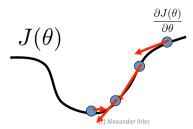
$$\nabla J(\underline{\theta}) = \begin{bmatrix} \frac{\partial J(\underline{\theta})}{\partial \theta_0} & \frac{\partial J(\underline{\theta})}{\partial \theta_1} & \dots \end{bmatrix}$$

 Indicates direction of steepest ascent (negative = steepest descent)

Gradient descent

- Initialization
- Step size
 - Can change as a function of iteration
- Gradient direction
- Stopping condition

Initialize θ Do { $\theta \leftarrow \theta - \alpha \nabla_{\theta} J(\theta)$ } while $(\alpha ||\nabla J|| > \epsilon)$



Gradient for the MSE

• MSE
$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^T})^2$$

•
$$\nabla J = ?$$

$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \theta_0 \underline{x}_0^{(j)} - \theta_1 \underline{x}_1^{(j)} - \dots)^2$$

$$\begin{split} \frac{\partial J}{\partial \theta_0} &= \frac{\partial}{\partial \theta_0} \frac{1}{m} \sum_j (\ e_j(\theta)\)^2 &\qquad \frac{\partial}{\partial \theta_0} e_j(\theta) = \frac{\partial}{\partial \theta_0} y^{(j)} - \frac{\partial}{\partial \theta_0} \theta_0 x_0^{(j)} - \frac{\partial}{\partial \theta_0} \theta_1 x_1^{(j)} - \dots \\ &= \frac{1}{m} \sum_j \quad \frac{\partial}{\partial \theta_0} (\ e_j(\theta)\)^2 &\qquad = -x_0^{(j)} \\ &= \frac{1}{m} \sum_j \ 2e_j(\theta) \ \frac{\partial}{\partial \theta_0} e_j(\theta) &\qquad \text{(c) Alexander Ihler} \end{split}$$

Gradient for the MSE

• MSE
$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^T})^2$$

•
$$\nabla \mathbf{J} = \mathbf{?}$$

$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \theta_0 \underline{x}_0^{(j)} - \theta_1 \underline{x}_1^{(j)} - \dots)^2$$

$$\nabla J(\underline{\theta}) = \begin{bmatrix} \frac{\partial J}{\partial \theta_0} & \frac{\partial J}{\partial \theta_1} & \dots \end{bmatrix}$$
$$= \begin{bmatrix} \frac{2}{m} \sum_{i} -e_j(\theta) x_0^{(j)} & \frac{2}{m} \sum_{i} -e_j(\theta) x_1^{(j)} & \dots \end{bmatrix}$$

Gradient descent

- Initialization
- · Step size
 - Can change as a function of iteration
- Gradient direction
- Stopping condition

Initialize
$$\theta$$
Do {
$$\theta \leftarrow \theta - \alpha \nabla_{\theta} J(\theta)$$
} while ($\alpha ||\nabla J|| > \epsilon$)

$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^T})^2$$

$$\nabla J(\underline{\theta}) = -\frac{2}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^T}) \cdot [x_0^{(j)} x_1^{(j)} \dots]$$
 Sensitivity to each θ_i

Derivative of MSE

$$\nabla J(\underline{\theta}) = -\frac{2}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^T}) \cdot [x_0^{(j)} x_1^{(j)} \dots]$$
 Error magnitude & direction for datum j

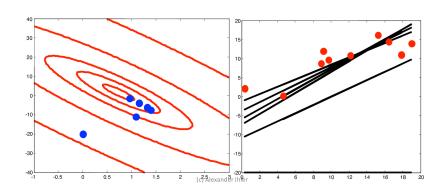
Rewrite using matrix form

Rewrite using matrix form
$$\underline{\theta} = [\theta_0, \dots, \theta_n] \\ \underline{y} = \begin{bmatrix} y^{(1)} \dots, y^{(m)} \end{bmatrix}^T \qquad \underline{X} = \begin{bmatrix} x_0^{(1)} & \dots & x_n^{(1)} \\ \vdots & \ddots & \vdots \\ x_0^{(m)} & \dots & x_n^{(m)} \end{bmatrix}$$

$$\nabla J(\underline{\theta}) = -\frac{2}{m}(\underline{y}^T - \underline{\theta}\underline{X}^T) \cdot \underline{X}$$

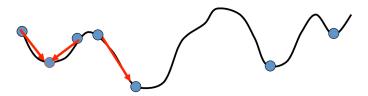
e = Y – X.dot(theta.T); # error residual DJ = - e.dot(X) * 2.0/m # compute the gradient theta -= alpha * DJ # take a step

Gradient descent on cost function



Comments on gradient descent

- · Very general algorithm
 - we'll see it many times
- Local minima
 - Sensitive to starting point



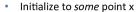
Comments on gradient descent

- · Very general algorithm
 - we'll see it many times
- Local minima
 - Sensitive to starting point
- Step size
 - Too large? Too small? Automatic ways to choose?
 - May want step size to decrease with iteration
 - Common choices:
 - Fixed
 - · Linear: C/(iteration)
 - · Line search / backoff (Armijo, etc.)
 - Newton's method



Newton's method

- Want to find the roots of f(x)
 - "Root": value of x for which f(x)=0



Compute the tangent at x & compute where it crosses x-axis

$$\nabla f(z) = \frac{0 - f(z)}{z' - z}$$
 \Rightarrow $z' = z - \frac{f(z)}{\nabla f(z)}$

• Optimization: find roots of $\nabla J(\theta)$

("Step size" $\lambda = 1/\nabla \nabla J$; inverse curvature)

f(z)

$$\nabla \nabla J(\theta) = \frac{0 - \nabla J(\theta)}{\theta' - \theta} \quad \Rightarrow \quad \theta' = \theta - \frac{\nabla J(\theta)}{\nabla \nabla J(\theta)}$$

- Does not always converge; sometimes unstable
- If converges, usually very fast
- Works well for smooth, non-pathological functions, locally quadratic

(Multivariate:

 $\nabla J(\theta)$ = gradient vector

 $\nabla^2 J(\theta)$ = matrix of 2nd derivatives a/b = a b⁻¹, matrix inverse)

Stochastic / Online Gradient Descent

MSF

$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} J_{j}(\underline{\theta}), \qquad J_{j}(\underline{\theta}) = (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^{T}})^{2}$$

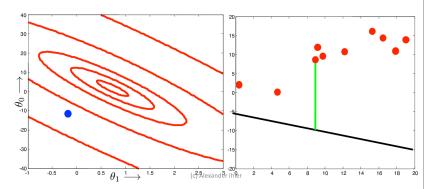
Gradient

$$\nabla J(\underline{\theta}) = \frac{1}{m} \sum_{i} \nabla J_{j}(\underline{\theta}) \qquad \nabla J_{j}(\underline{\theta}) = (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^{T}}) \cdot [x_{0}^{(j)} x_{1}^{(j)} \dots]$$

- Stochastic (or "online") gradient descent:
 - Use updates based on individual datum j, chosen at random
 - At optima, $\mathbb{E}[\nabla J_j(\underline{\theta})] = \nabla J(\underline{\theta}) = 0$ (average over the data)

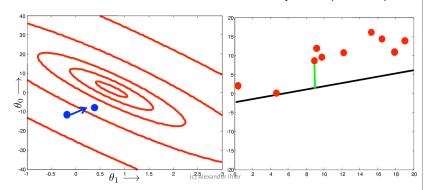
- · Update based on each datum at a time
 - Find residual and the gradient of its part of the error & update

```
Initialize \theta
Do {
for j=1:m
\theta \leftarrow \theta - \alpha \nabla_{\theta} J_{j}(\theta)
} while (not done)
```



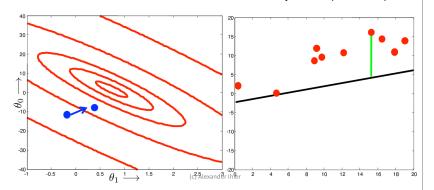
- Update based on each datum at a time
 - Find residual and the gradient of its part of the error & update

```
Initialize \theta
Do {
for j=1:m
\theta \leftarrow \theta - \alpha \nabla_{\theta} J_{j}(\theta)
} while (not done)
```



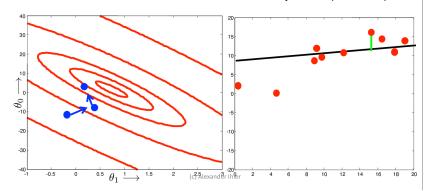
- · Update based on each datum at a time
 - Find residual and the gradient of its part of the error & update

```
Initialize \theta
Do {
for j=1:m
\theta \leftarrow \theta - \alpha \nabla_{\theta} J_{j}(\theta)
} while (not done)
```



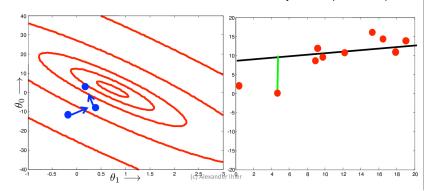
- · Update based on each datum at a time
 - Find residual and the gradient of its part of the error & update

```
Initialize \theta
Do {
for j=1:m
\theta \leftarrow \theta - \alpha \nabla_{\theta} J_{j}(\theta)
} while (not done)
```



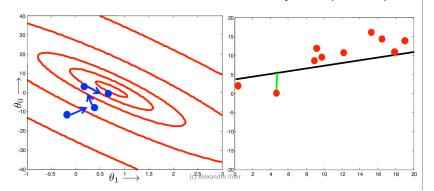
- · Update based on each datum at a time
 - Find residual and the gradient of its part of the error & update

```
Initialize \theta Do { for j=1:m \theta \leftarrow \theta - \alpha \nabla_{\theta} J_{j}(\theta) } while (not done)
```



- · Update based on each datum at a time
 - Find residual and the gradient of its part of the error & update

```
Initialize \theta
Do {
for j=1:m
\theta \leftarrow \theta - \alpha \nabla_{\theta} J_{j}(\theta)
} while (not done)
```



Online gradient descent $J_{j}(\underline{\theta}) = (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^{T}})^{2}$

$$J_{j}(\underline{\theta}) = (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^{T}})^{2}$$

$$\nabla J_{j}(\underline{\theta}) = -2(y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^{T}}) \cdot [x_{0}^{(j)} x_{1}^{(j)} \dots]$$

- Benefits
 - Lots of data = many more updates per pass
 - Computationally faster
- Drawbacks
 - No longer strictly "descent"
 - Stopping conditions may be harder to evaluate (Can use "running estimates" of J(.), etc.)
- Related: mini-batch updates, etc.

```
Initialize \theta Do { for j=1:m \theta \leftarrow \theta - \alpha \nabla_{\theta} J_{j}(\theta) } while (not converged)
```

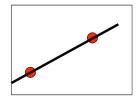
Linear regression: direct minimization

MSE Minimum

- Consider a simple problem
 - One feature, two data points
 - Two unknowns: θ_0 , θ_1
 - Two equations:

$$y^{(1)} = \theta_0 + \theta_1 x^{(1)}$$

$$y^{(2)} = \theta_0 + \theta_1 x^{(2)}$$



Can solve this system directly:

$$\underline{y}^T = \underline{\theta} \, \underline{X}^T \qquad \Rightarrow \qquad \hat{\underline{\theta}} = y^T (\underline{X}^T)^{-1}$$

- However, most of the time, m > n
 - There may be no linear function that hits all the data exactly
 - Instead, solve directly for minimum of MSE function

SSE Minimum

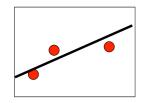
$$\nabla J(\underline{\theta}) = -(\underline{y}^T - \underline{\theta}\underline{X}^T) \cdot \underline{X} = \underline{0}$$

Reordering, we have

$$\underline{y}^{T} \underline{X} - \underline{\theta} \underline{X}^{T} \cdot \underline{X} = \underline{0}$$

$$\underline{y}^{T} \underline{X} = \underline{\theta} \underline{X}^{T} \cdot \underline{X}$$

$$\underline{\theta} = y^{T} \underline{X} (\underline{X}^{T} \underline{X})^{-1}$$



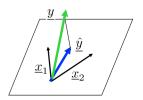
- X (X^T X)⁻¹ is called the "pseudo-inverse"
- If X^T is square and independent, this is the inverse
- If m > n: overdetermined; gives minimum MSE fit

Python SSE

• This is easy to solve in Python / NumPy...

Normal equations
$$\nabla J(\underline{\theta}) = 0 \quad \Rightarrow \quad (\underline{y}^T - \underline{\theta}\underline{X}^T) \cdot \underline{X} \quad = \quad \underline{0}$$

- Interpretation:
 - $(y \theta X) = (y yhat)$ is the vector of errors in each example
 - X are the features we have to work with for each example
 - Dot product = 0: orthogonal

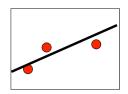


$$\underline{y}^{T} = [y^{(1)} \dots y^{(m)}] \\ \underline{x}_{i} = [x_{i}^{(1)} \dots x_{i}^{(m)}]$$

Normal equations

$$\nabla J(\underline{\theta}) = 0 \quad \Rightarrow \quad (y^T - \underline{\theta X}^T) \cdot \underline{X} \quad = \quad \underline{0}$$

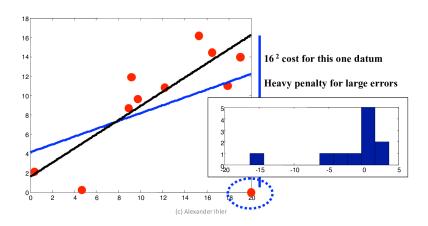
- Interpretation:
 - $(y \theta X) = (y yhat)$ is the vector of errors in each example
 - X are the features we have to work with for each example
 - Dot product = 0: orthogonal
- Example:



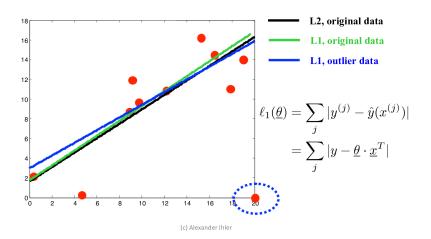
$$\underline{e} = (y - \hat{y}) = [-0.57 \ 0.85 \ -0.28]^T$$

Effects of MSE choice

Sensitivity to outliers



L1 error



Cost functions for regression

$$\ell_2 : (y - \hat{y})^2$$
 (MSE)

$$\ell_1 : |y - \hat{y}|$$
 (MAE)

Something else entirely... $c - \log(\exp(-(y - \hat{y})^2) + c)$ (???)

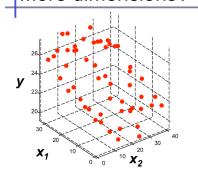
"Arbitrary" functions can't be solved in closed form...

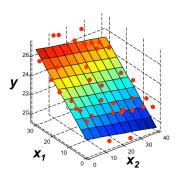
- use gradient descent



Linear regression: nonlinear features

More dimensions?





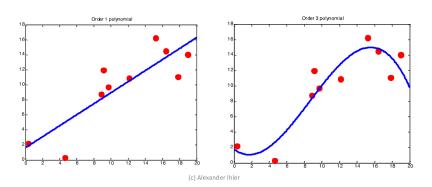
$$\hat{y}(x) = \underline{\theta} \cdot \underline{x}^T$$

$$\underline{\theta} = [\theta_0 \ \theta_1 \ \theta_2]$$

$$\underline{x} = [1 \ x_1 \ x_2]$$

Nonlinear functions

- · What if our hypotheses are not lines?
 - Ex: higher-order polynomials



Nonlinear functions

Single feature x, predict target y:

$$D = \{(x^{(j)}, y^{(j)})\} \qquad \hat{y}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Linear regression in new features

Sometimes useful to think of "feature transform"

$$\Phi(x) = \begin{bmatrix} 1, x, x^2, x^3, \dots \end{bmatrix} \qquad \hat{y}(x) = \underline{\theta} \cdot \Phi(x)$$

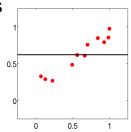
Higher-order polynomials Order 1 polynomial Fit in the same way More "features"

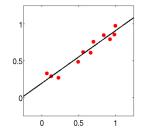
Features

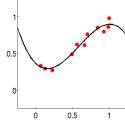
- In general, can use any features we think are useful
- Other information about the problem
 - Sq. footage, location, age, ...
- Polynomial functions
 - Features [1, x, x², x³, ...]
- Other functions
 - 1/x, sqrt(x), $x_1 * x_2$, ...
- "Linear regression" = linear in the parameters
 - Features we can make as complex as we want!

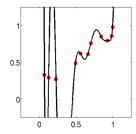
Higher-order polynomials

- Are more features better?
- "Nested" hypotheses
 - 2nd order more general than 1st,
 - 3rd order " " than 2nd, ...
- Fits the observed data better



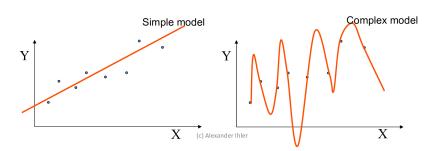






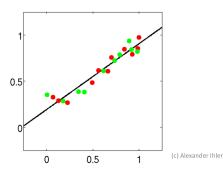
Overfitting and complexity

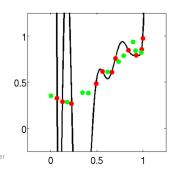
- More complex models will always fit the training data better
- But they may "overfit" the training data, learning complex relationships that are not really present



Test data

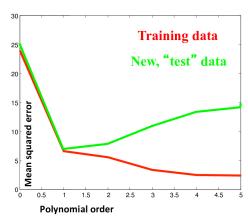
- · After training the model
- · Go out and get more data from the world
 - New observations (x,y)
- How well does our model perform?





Training versus test error

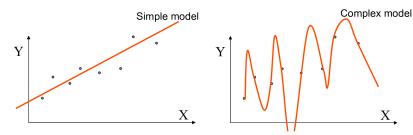
- Plot MSE as a function of model complexity
 - Polynomial order
- Decreases
 - More complex function fits training data better
- · What about new data?
- 0th to 1st order
 - Error decreases
 - Underfitting
- Higher order
 - Error increases
 - Overfitting



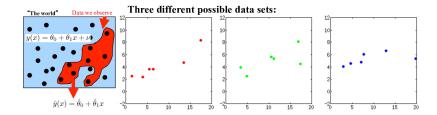
Linear regression: bias and variance

Inductive bias

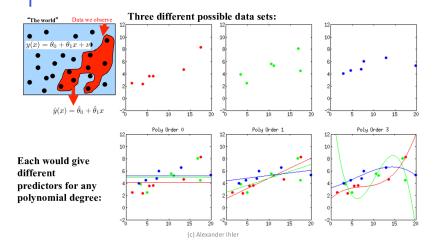
- The assumptions needed to predict examples we haven't seen
- · Makes us "prefer" one model over another
- · Polynomial functions; smooth functions; etc
- Some bias is necessary for learning!



Bias & variance



Bias & variance



Detecting overfitting

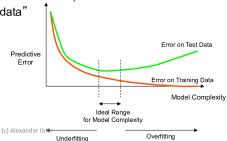
- · Overfitting effect
 - Do better on training data than on future data
 - Need to choose the "right" complexity
- One solution: "Hold-out" data
- Separate our data into two sets
 - Training
 - Test
- Learn only on training data
- Use test data to estimate generalization quality
 - Model selection
- All good competitions use this formulation
 - Often multiple splits: one by judges, then another by you

What to do about under/overfitting?

- · Ways to increase complexity?
 - Add features, parameters
 - We'll see more...
- Ways to decrease complexity?
 - Remove features ("feature selection")

"Fail to fully memorize data"

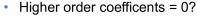
- Partial training
 - Regularization



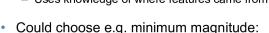
Linear regression: regularization

Linear regression

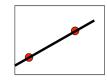
- Linear model, two data
- Quadratic model, two data?
 - Infinitely many settings with zero error
 - How to choose among them?

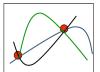


Uses knowledge of where features came from...



A type of bias: tells us which models to prefer





Regularization

 Can modify our cost function J to add "preference" for certain parameter values

$$J(\underline{\theta}) = \frac{1}{2}(\underline{y} - \underline{\theta}\,\underline{X}^T) \cdot (\underline{y} - \underline{\theta}\,\underline{X}^T)^T + \alpha\,\theta\theta^T$$

New solution (derive the same way)

$$\theta = y \underline{X} (\underline{X}^T \underline{X} + \alpha I)^{-1}$$

- Problem is now well-posed for any degree
- Notes:
 - "Shrinks" the parameters toward zero
 - Alpha large: we prefer small theta to small MSE
 - Regularization term is independent of the data: paying more attention reduces our model variance

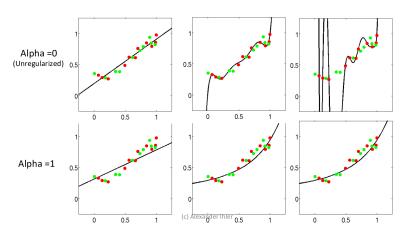
(c) Alexander Ihler

L₂ penalty:

"Ridge regression"

Regularization

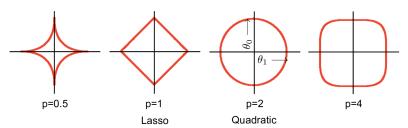
· Compare between unreg. & reg. results



Different regularization functions

• More generally, for the $\mathsf{L_p}$ regularizer: $\big(\sum_i |\theta_i|^p\big)^{\frac{1}{p}}$

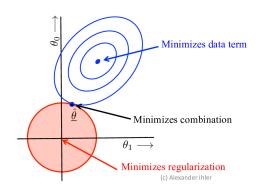
Isosurfaces: $\|\theta\|_{p} = constant$



 $L_0\ \$ = limit as p $\rightarrow 0$: "number of nonzero weights", a natural notion of complexity

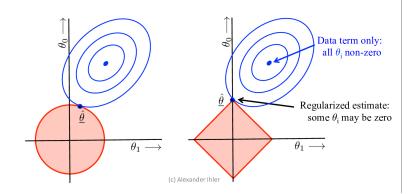
Regularization: L1 vs L2

· Estimate balances data term & regularization term



Regularization: L1 vs L2

- Estimate balances data term & regularization term
- Lasso tends to generate sparser solutions than a quadratic regularizer.



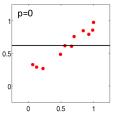
Linear regression: hold-out, cross-validation

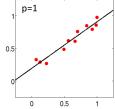
Model selection

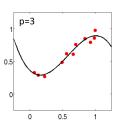
- Which of these models fits the data best?
 - p=0 (constant); p=1 (linear); p=3 (cubic); ...
- Or, should we use KNN? Other methods?
- Model selection problem
 - Can't use training data to decide (esp. if models are nested!)
- Want to estimate

$$\mathbb{E}_{(x,y)}[J(y,\hat{y}(x\,;\,D))]$$

J = loss function (MSE) D = training data set

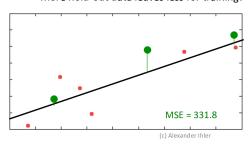






Hold-out method

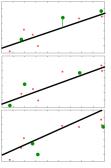
- Validation data
 - "Hold out" some data for evaluation (e.g., 70/30 split)
 - Train only on the remainder
- Some problems, if we have few data:
 - Few data in hold-out: noisy estimate of the error
 - More hold-out data leaves less for training!



Training data	x ⁽ⁱ⁾	y ⁽ⁱ⁾
	88	79
	32	-2
	27	30
	68	73
	7	-16
	20	43
/alidation data	53	77
	17	16
	87	94

Cross-validation method

- K-fold cross-validation
 - Divide data into K disjoint sets
 - Hold out one set (= M / K data) for evaluation
 - Train on the others (= M*(K-1) / K data)



Split	1:	
MSE	= 331.8	

Split 2: MSE = 361.2

Split 3: MSE = 669.8(c) Alexander Ihler

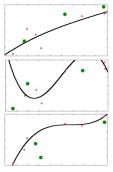
Training data Validation

data

X(1)	y (1)
88	79
32	-2
27	30
68	73
7	-16
20	43
53	77
17	16
87	94

Cross-validation method

- K-fold cross-validation
 - Divide data into K disjoint sets
 - Hold out one set (= M / K data) for evaluation
 - Train on the others (= M*(K-1) / K data)



Split 1: MSE = 280.5

MSE = 3081.3

Split 3:

old X-Val MSE = 1667.3MSE = 1640.1

Training data
Validation data

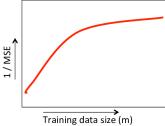
x ⁽ⁱ⁾	y ⁽ⁱ⁾
88	79
32	-2
27	30
68	73
7	-16
20	43
53	77
17	16
87	94

Cross-validation

- Advantages:
 - Lets us use more (M) validation data
 (= less noisy estimate of test performance)
- Disadvantages:
 - More work
 - · Trains K models instead of just one
 - Doesn't evaluate any particular predictor
 - Evaluates K different models & averages
 - Scores hyperparameters / procedure, not an actual, specific predictor!
- Also: still estimating error for M' < M data...

Learning curves

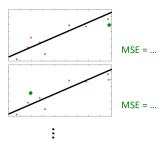
- · Plot performance as a function of training size
 - Assess impact of fewer data on performance
 Ex: MSE0 MSE (regression)
 or 1-Err (classification)
- Few data
 - More data significantly improve performance
- "Enough" data
 - Performance saturates



 If slope is high, decreasing m (for validation / cross-validation) might have a big impact...

Leave-one-out cross-validation

- When K=M (# of data), we get
 - Train on all data except one
 - Evaluate on the left-out data
 - Repeat M times (each data point held out once) and average



Training data
Validatior data

x ⁽ⁱ⁾	y ⁽ⁱ⁾
88	79
32	-2
27	30
68	73
7	-16
20	43
53	77
17	16
87	94

Cross-validation Issues

- Need to balance:
 - Computational burden (multiple trainings)
 - Accuracy of estimated performance / error
- Single hold-out set:
 - Estimates performance with M' < M data (important? learning curve?)
 - Need enough data to trust performance estimate
 - Estimates performance of a particular, trained learner
- K-fold XVal
 - K times as much work, computationally
 - Better estimates, still of performance with M' < M data
- I OO XVal
 - M times as much work, computationally
 - $M' \approx M$, but overall error estimate may have high variance