Extraction of useful information from large datasets is one of the most important research problem. Association rule mining is one of the best methods for this purpose. Finding possible associations between items in large transaction based datasets (finding frequent patterns) is most important part of the association rule mining. There exists many algorithms to find frequent patterns but Apriori algorithm always remains a preferred choice due to its ease of implementation and natural tendency to be parallelized. Many single-machine based Apriori variants exist but massive amount of data available these days is above capacity of a single machine.Therefore, to meet the demands of this ever-growing huge data, there is a need of multiple machines based Apriori algorithm.For these type of distributed applications, mapreduce is a popular fault-tolerant framework. Hadoop is one of the best open-source software framework with mapreduce approach for distributed storage and distributed processing of huge datasets using clusters built from commodity hardware.
Extraction of valuable data from extensive datasets is a standout amongst the most vital exploration issues. Association rule mining is one of the highly used methods for this purpose. Finding possible associations between items in large transaction based datasets (finding frequent itemsets) is most crucial part of the association rule mining task. Many single-machine based association rule mining algorithms exist but the massive amount of data available these days is above the capacity of a single machine based algorithm. Therefore, to meet the demands of this ever-growing enormous data, there is a need for distributed association rule mining algorithm which can run on multiple machines. For these types of parallel/distributed applications, MapReduce is one of the best fault-tolerant frameworks. Hadoop is one of the most popular open-source software frameworks with MapReduce based approach for distributed storage and processing of large datasets using standalone clusters built from commodity hardware. But heavy disk I/O operation at each iteration of a highly iterative algorithm like Apriori makes Hadoop inefficient. A number of MapReduce based platforms are being developed for parallel computing in recent years. Among them, a platform, namely, Spark have attracted a lot of attention because of its inbuilt support to distributed computations. Therefore, we implemented a distributed association rule mining algorithm on Spark named as Adaptive-Miner which uses adaptive approach for finding frequent patterns with higher accuracy and efficiency. Adaptive-Miner uses an adaptive strategy based on the partial processing of datasets. Adaptive-Miner makes execution plans before every iteration and goes with the best suitable plan to minimize time and space complexity. Adpative-Miner is a dynamic association rule mining algorithm which change its approach based on the nature of dataset. Therefore, it is different and better than state-of-the-art static association rule mining algorithms. We conduct in-depth experiments to gain insight into the effectiveness, efficiency, and scalability of the Adaptive-Miner algorithm on Spark.
Next-Generation Sequencing technologies are generating a huge amount of genetic data that need to be mapped and analyzed. Single machine sequence alignment tools are becoming incapable or inefficient in keeping track of the same. Therefore, distributed computing platforms based on MapReduce paradigm, which uses thousands of commodity machines to process and analyze huge datasets, are emerging as the best solution for growing genomics data. A lot of MapReduce-based sequence alignment tools like CloudBurst, CloudAligner, Halvade, and SparkBWA are proposed by various researchers in recent few years. These sequence aligners are very fast and efficient. These sequence aligners are capable of aligning billions of reads (stored as fasta or fastq files) on reference genome in few minutes. In the current era of fastly growing technology, analyzing huge genome data fast is not enough. We need to analyze data in real time to automate alignment process. Therefore, we propose a MapReduce-based sequence alignment tool StreamAligner which is implemented on Spark streaming engine. StreamAligner can align stream of reads on reference genome in real time. Therefore, it can be used to automate sequencing and alignment process. It uses suffix array index for read alignment which is generated using distributed index generation algorithm. Due to distributed index generation algorithm, index generation time is very less. It needs to upload index only once when StreamAligner is launched. After that index stays in Spark memory and can be used for an unlimited times without reloading. Whereas, current state-of-the-art sequence aligner either generate (hash index based) or load (sorted index based) index for every task. Hence, StreamAligner reduces time to generate or load index for every task. A working and tested implementation of streamAligner is available on GitHub for download and use. We tested the effectiveness, efficiency, and scalability of our aligner for various standard and real-life datasets.