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Bioacoustic classification often suffers from the lack of labeled data. This hinders the effective

utilization of state-of-the-art deep learning models in bioacoustics. To overcome this problem, the

authors propose a deep metric learning-based framework that provides effective classification, even

when only a small number of per-class training examples are available. The proposed framework

utilizes a multiscale convolutional neural network and the proposed dynamic variant of the triplet

loss to learn a transformation space where intra-class separation is minimized and inter-class sepa-

ration is maximized by a dynamically increasing margin. The process of learning this transforma-

tion is known as deep metric learning. The triplet loss analyzes three examples (referred to as

a triplet) at a time to perform deep metric learning. The number of possible triplets increases

cubically with the dataset size, making triplet loss more suitable than the cross-entropy loss in data-

scarce conditions. Experiments on three different publicly available datasets show that the proposed

framework performs better than existing bioacoustic classification methods. Experimental results

also demonstrate the superiority of dynamic triplet loss over cross-entropy loss in data-scarce con-

ditions. Furthermore, unlike existing bioacoustic classification methods, the proposed framework

has been extended to provide open-set classification. VC 2019 Acoustical Society of America.
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I. INTRODUCTION

Habitat destruction induced by global warming and

human activities has pushed many avian and amphibian spe-

cies to the brink of extinction. With this looming threat of

population decline and species extinction, a large number of

initiatives for wildlife conservation have been witnessed.1,2

Surveying and monitoring are the principal steps in any

conservation effort. Manual surveying and monitoring are

difficult, time-consuming, and require experienced person-

nel.3,4 Owing to the rich acoustic communication in birds

and frogs, automated acoustic monitoring provides an appro-

priate way to survey different species of interest in their

natural habitat and alleviates the requirement of manual

monitoring.5 The bioacoustic signal classification module is

the mainstay of such acoustic monitoring systems,6 and often

includes tasks such as bird and frog species classification.

The major impediment in many bioacoustic classification

tasks is the scarcity of the labeled training data. Moreover,

the target species and, hence, the training data requirements,

often vary from one ecosystem to other. This makes it unfea-

sible to collect and label a large amount of bioacoustic data

for all the possible species. Thus, there is a requirement for

classification frameworks that could provide effective classi-

fication with a small number of labeled training examples.

In recent times, deep convolution neural networks

(CNN) have become the cornerstone for achieving state-of-

the-art performances in various audio classification tasks.7–9

In comparison to the shallow learning techniques, CNNs

often require a large amount of training data (subject to the

task in hand) to generalize and provide effective classifica-

tion. However, the scarcity of the labeled data for many

bioacoustic tasks makes it undesirable to utilize these data-

intensive CNNs. The lesser amount of training data often

leads to over-fitting in CNNs. This over-fitting can be

avoided by using regularizers and early stopping, which can

restrict the modeling capabilities. Many studies on CNN-

based audio classification have used data augmentation tech-

niques to overcome the training data scarcity.10,11 These

methods augment the training data with synthetic examples

that are generated by deforming the original data. Some

common deformations used for data augmentation include

pitch alterations and time stretching. However, these aug-

mentation techniques are not always useful and can affect

the classification performance.11 As a result, the effective-

ness of these techniques is data dependent and often requires

a trial–error approach. In case of bioacoustics, coming up

with the effective augmentation requires domain knowledge

about the nature of vocalizations of each target species.

Apart from augmentation, many studies have explored trans-

fer learning for overcoming training data scarcity.12,13 In the

case of CNNs, existing (or pre-trained) networks trained for

any audio classification tasks can be fine-tuned for achieving

effective performance.14 Fine-tuning helps in transferring

the knowledge from the pre-trained network to the domain

and task of interest.15 In data-scarcity scenarios, fine-tuning

an existing network is easier and more effective than training

the network from scratch. Thus, CNN-based transfer learn-

ing presents an effective way to overcome the labeled train-

ing data scarcity in bioacoustic applications.a)Electronic mail: anshul_thakur@students.iitmandi.ac.in
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In literature, CNNs have mildly been explored for dif-

ferent bioacoustic classification tasks. Due to the recently

conducted bird activity detection (BAD) challenges,16 fairly

large datasets have been publicly released for the task of bird

activity detection. This led to an influx of CNN-based frame-

works that provide state-of-the-art performance for the

aforementioned task.17–19 However, only a few studies have

addressed the task of vocalization segmentation and species

identification using deep learning approaches. Lostanlen

et al.20 released a bird flight call detection dataset along with

a CNN-based benchmark. Salamon et al.21 experimentally

showed that the late fusion of scores obtained from CNN

(deep learning) and a random forest classifier (shallow learn-

ing) results in better performance for the task of bird species

classification from flight calls. The same CNN architecture,

consisting of three convolution layers and two dense layers,

is used in both the aforementioned studies. Ibrahim et al.22

proposed to use a recurrent neural network (RNN) and CNN

to classify grouper species. T�oth and Czeba,23 Sprengel

et al.,24 and Piczak25 utilized spectrogram enhancement

methods before applying CNNs to identify bird species from

their songs or calls. This spectrogram enhancement helps in

removing the effect of overwhelming background disturban-

ces on the classification procedure.

Apart from deep learning, many classical machine

learning techniques have successfully been utilized for bioa-

coustic classification. Stowell and Plumbley26 proposed

spherical K-means-based unsupervised feature learning for

large scale bird species classification. Building on their work,

Thakur et al.27,28 proposed to use archetypal analysis29 and

deep archetypal analysis for obtaining supervised convex rep-

resentations for bioacoustic classification. Kernel-based

extreme learning machines are used by Qian et al.30 for bird

species classification. This study utilizes active learning to

alleviate the problem of unlabeled bioacoustic data. Many

studies have used dynamic kernels- (such as the intermediate

matching kernel and probabilistic sequence kernels) based

support vector machines (SVM) for different bioacoustic

classification tasks such as bird activity detection and bird

species classification.31–33

In this work, the authors propose to use CNN-based

deep metric learning (DML)34 for bioacoustic classification.

DML deals with learning a mapping from the input space to

a compact Euclidean space where similarity among exam-

ples is in direct correspondence with the distance among

them. As a result, DML directly provides class-specific

clustering. Thus, a classifier trained in this space can provide

better classification than the one trained in the input feature

space. This study utilizes CNN powered by the triplet

loss35–37 to map the input examples to 128-dimensional

embeddings in the desired transformation space. The triplet

loss processes three examples, called a triplet, at a time. A

triplet consists of an anchor, a positive example and a nega-

tive example. The anchor and the positive examples belong

to the same class whereas the negative example can be from

any other class. A CNN with triplet loss tries to learn a trans-

formation where a triplet constraint is imposed on all the

training examples. This constraint states that the distance

between negative-anchor pair should be greater than the

distance between positive-anchor by a fixed margin in the

transformation space. Only triplets that violate this constraint

are chosen for training. More details about the triplet loss

and its implementation are in Sec. II C. Triplet loss has suc-

cessfully been utilized for many applications such as face

recognition35 and person re-identification.34 It is of particular

interest for bioacoustic classification due to the following

reasons:

• Effective training with less training data: The number

of triplets in a training set is cubical in terms of the num-

ber of training examples. Hence, more triplets are avail-

able for training than the number of training examples.

More triplets result in more weight updates and lead to

better training. Thus, in comparison to the cross-entropy

loss, the triplet loss can provide effective training with

lesser training examples.
• Overcomes class imbalance: The class imbalance has no

major impact on performance of the triplet loss. This can

be attributed to the nature of training procedure that learns

inter-class separation by comparing the training examples

of each class with other examples of other classes, one at a

time. Hence, irrespective of the number of examples per

class, each class is represented in the training process.

Multiscale CNN used in the proposed DML framework

is characterized by the utilization of different filter sizes in

the convolution layers. Each filter size helps in analyzing the

input bioacoustic events at a different scale. The smaller

filters help in extracting the minute local details whereas the

large filters analyze a larger receptive field and help in

obtaining the global details from the input bioacoustic event.

This notion of multiscalar analysis is inspired by the

Inception38 model that was proposed for large scale image

classification. This multiscale CNN is empowered by a

dynamic variant of the classical triplet loss35 to learn the

desired transformation space. During training, the margin of

the loss function is slowly increased based on a pre-defined

heuristic (see Sec. II). This dynamically varying triplet loss

has a twofold advantage:

(1) Starting with a smaller margin and slowly increasing the

margin can be seen as warm start. First, the CNN is

taught to learn a relatively simpler task of separating the

examples of one class from the others in the embedding

space by a smaller margin. Then, the complexity of this

task is slowly increased by increasing the margin. This

warm start may help in achieving better convergence

even when the number of classes is very large.

(2) Dynamically varying margin increases the number of

triplets used for training. It can be attributed to the fact

that triplets which satisfy the triplet constraint at a lower

margin can violate the constraint as the margin is

increased.

The main contributions of this study are as follows:

• To the best of authors’ knowledge, this is the first study

that utilizes deep metric learning for bioacoustics.
• A simple multiscale CNN architecture is proposed for bio-

acoustic classification.
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• This study experimentally shows that the utilization of

triplet loss helps in overcoming the training data scarcity

without utilizing any data augmentation and transfer

learning.
• A dynamic variant of triplet loss is proposed.
• To the best of authors’ knowledge, unlike any existing

bioacoustic classification methods, the proposed frame-

work can perform open-set classification by utilizing a

simple extension.

The rest of this paper is organized as follows. In Sec. II,

the proposed DML-based bioacoustic classification frame-

work is described. Datasets, designed experiments and

comparative methods used for the performance evaluation

are presented in Sec. III. Experimental results obtained dur-

ing the designed experiments are discussed in Sec. IV.

Section V concludes this paper.

II. METHOD: PROPOSED DML FRAMEWORK

In this section, the proposed DML framework for bioa-

coustic classification is described. The overall design of the

framework is depicted in Fig. 1. The proposed framework is

composed of two neural networks: a multiscale CNN and

a multilayer perceptron (MLP). The multiscale CNN,

equipped with dynamic triplet loss, is used to learn a trans-

formation from input to the embedding space. The embed-

dings generated by CNN are given as input to the MLP for

learning the discrimination between classes.

This section starts with the feature extraction procedure.

Then, the architectures of the proposed multiscale CNN and

MLP are described. Later, dynamic triplet loss and other

details regarding training of neural networks are highlighted.

Then, the procedure to classify the bioacoustic signals using

the trained DML framework is explained. Finally, the pro-

posed framework is extended for open-set classification.

A. Feature extraction

Most bird species such as passerines are known for pro-

ducing harmonically rich sounds. However, there are many

species such as woodpeckers, snipes, and storks that are

characterized by drumming, winnowing, clattering, and

other mechanically produced sounds. These sounds are more

or less percussive in nature. Thus, the difference in harmonic

and percussive components of a bioacoustic sound has some

class-specific characteristics. This difference in harmonic

and percussive components of sounds produced by white-

bellied woodpecker and Indian peafowl is evident in Fig. 2.

Inspired by this observation, Mel-spectrogram along with its

harmonic and percussive components39 are given as a three-

channel input to the proposed framework. The spectrogram

of the input audio recording is decomposed into its harmonic

and percussive components using the method proposed in

Ref. 39. The original, harmonic and percussive spectrograms

are multiplied by Mel filterbank to obtain the respective Mel

spectrograms that form the three channels of an input exam-

ple. All three channels are converted to decibel scale and are

normalized with respect to the maximum value.

B. Neural network designs

1. Multiscale CNN architecture

The proposed CNN consists of five convolution (CONV)
layers, four Inception38 inspired multiscale analysis mod-

ules, three dense layers, and has 1 286 410 trainable parame-

ters. Each multiscale analysis module consists of seven

convolution layers having different filter sizes that enable

the network to analyze each input at different scales. The

overall network design is illustrated in Fig. 3(a). The main

components of the network are below.

a. Input. As discussed earlier, audio examples, repre-

sented by Mel-spectrograms and their harmonic and percus-

sive components (40�M� 3, 40 Mel-filters and M frames)

are given as input.

b. Multiscale analysis module. Multiscale analysis mod-

ules (MAM) utilize kernels of different sizes (1� 1, 3� 3,

5� 5, and 7� 7). This multiscale analysis helps in better

feature extraction from short duration vocalizations (such as

birdsong syllables or flight calls) as well as from the longer

vocalizations such as birdsong phrases. The shorter vocaliza-

tions occupy smaller spatial space on Mel-spectrograms as

FIG. 1. (Color online) Proposed DML framework for bioacoustic classification.
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FIG. 2. (Color online) Difference in harmonic and percussive components of sounds produced by (A) Indian peafowl and (B) white-bellied woodpecker.

FIG. 3. (Color online) Illustration of (A) the proposed multiscale CNN architecture and (B) a multiscale scale analysis module. Triplet loss is used to perform

deep metric learning. Whereas, to use the proposed multiscale CNN architecture for classification (with cross-entropy loss), the last layer of the architecture is

replaced by a fully connected layer having C (number of classes) units and softmax activation.
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compared to the longer vocalizations. Hence, a smaller kernel

size is more appropriate for the shorter bioacoustic events

and vice versa. The smaller 3� 3 filter helps in learning

minute details from an input Mel-spectrogram whereas the

larger filters (5� 5 and 7� 7) help in capturing more global

traits due to the larger receptive fields. In bioacoustics, these

minute details can be low energy harmonics or vocalizations

recorded in a far-field setting. The global traits can include

the information about the frequency contents or bandwidth

and the coarser time-frequency modulations of bioacoustic

events.

Each MAM receives an input of 64 feature maps

(N�M� 64) that are processed by seven convolution layers

arranged in four parallel strands as shown in Fig. 3(b). The

first strand contains one convolution layer that has 64 filters

of 1� 1 kernel size. These filters are mainly concerned with

selecting the inter feature map patterns rather than the spatial

analysis of feature maps. Most feature maps have some com-

plementary information.40 Hence, learning these inter feature

map patterns can be helpful in obtaining discriminative

features. The second, third, and fourth strands consist of two

convolution layers. The first convolution layer in all these

strand consists of 32 filters of 1� 1, whereas, the second

convolution layers have 64 filters of sizes 3� 3, 5� 5, and

7� 7, respectively. Here the 1� 1 convolution layers serve

two purposes: (1) It decreases the number of input channels

from 64 to 32 and reduces the computational requirements

for the following convolutional layer in each strand. (2) As

discussed earlier, 1� 1 filters are used for selecting the dis-

criminative feature patterns from the input feature maps.

Since the appropriate feature patterns may be scale depen-

dent, a separate 1� 1 convolution layer in each strand pro-

vides independence in the feature selection at different

scales. The output of these layers are processed by convolu-

tion layers having a filter size of 3� 3, 5� 5, and 7� 7 in

the second, third, and fourth strand, respectively. The differ-

ence in the responses of filters of different strands is illus-

trated in Fig. 4. The feature maps obtained from all the four

strands are concatenated in a channel-wise manner to output

256 feature maps from each module. Zero-padding is used to

make sure that each feature map is of same dimension before

concatenation.

c. Bottleneck, global pooling, and dense layers. The

network consists of five convolution layers having 64 filters

of 3� 3. Apart from the first convolution layer, all other con-

volution layers act as the bottleneck layers. They use strided

convolutions to down-sample the feature maps by a factor of

2 (or 5 in case of the last convolution layer) along the Mel-

energy axis. Apart from down-sampling, they also help in

selecting the relevant scale-dependent features from the

feature maps, obtained from MAMs, by analyzing the inter

feature map correlations.40 Due to this feature selection, the

number of channels are decreased from 256 (generated by

multiscale analysis module) to 64 which also helps in

decreasing the computation requirements for the correspond-

ing layers. After all the convolution layers and multiscale

analysis modules, global average pooling (GAP) is applied

to obtain a 64-D vector. This averaging operation helps in

making the framework invariant towards the time differ-

ences in onsets–offsets of the bioacoustic events in audio

recordings or their Mel-spectrograms. Then, this 64-D vector

is passed to the dense layers. The network has three dense

layers having 256, 128, and 128 hidden units.

d. Activation, regularization, and optimizer. Each con-

volution layer (whether stand-alone or in multiscale analysis

module) and first two dense layers are followed by rectified

linear unit (relu) activation. The output of the last dense

layer is normalized to have the unit norm such that embed-

dings produced by the proposed CNN lie on the unit hyper-

sphere. Dropouts are used before each dense layer to avoid

over-fitting. Along with dropout, exponential weight decay

is also used to avoid over-fitting and improve generaliza-

tion.41 Adagrad with a fixed learning rate is used as an

optimizer.

FIG. 4. (Color online) (A) Mel-spectrogram given as input to the proposed CNN. (B), (C), and (D) depicts the filter responses obtained for 32nd 5� 5, 6th

3� 3, and 62nd 7� 7 filters of the first multiscale analysis module (MAM 1) of the trained multiscale CNN. These particular filters are chosen for their

expressivity.
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2. MLP architecture

The MLP used in the proposed framework consists of

three layers: an input layer with 128 units, a hidden layer

with 256 units and an output layer with C units (C is the

number of classes). The relu and softmax activations are

used after the hidden layer and the output layer, respectively.

The categorical cross-entropy entropy is used as the loss

function. The weight optimization is performed by Adam

solver. Exponential weight decay is employed to avoid over-

fitting.

C. Multiscale CNN training: Dynamic triplet loss

Dynamic triplet loss is utilized for training the proposed

multiscale CNN. As discussed in Sec. I, dynamic triplet loss

processes a set of three examples, referred to as a triplet, at a

time to learn the desired embedding space where all possible

triplets satisfy the triplet constraint. Given a triplet of

embeddings, X i ¼ fxa
i ; x

p
i ; x

n
i g, the triplet constraint can be

defined as

kxa
i � xn

i k
2
2 � kxa

i � x
p
i k

2
2 � a: (1)

Here X i represents the ith triplet of embeddings sampled

from the training data. xa
i ; x

p
i ; and xn

i are an anchor, a posi-

tive, and a negative example of the ith triplet. Also, a is the

enforced margin or distance between the positive examples

and the negative examples. Thus, based on the triplet con-

straint, the loss function to be minimized is35

L ¼
XN

i¼1

maxðkxa
i � x

p
i k

2
2 � kxa

i � xn
i k

2
2 þ a; 0Þ; (2)

where N is the possible number of triplets to be used for

training.

For training, triplets are sampled from a mini-batch in

an online fashion. A forward pass is performed on the CNN

to obtain embeddings for a mini-batch of input examples.

Using the corresponding class labels, these embeddings are

analyzed to form triplets that are later used for optimizing

the current state of CNN. The performance of triplet loss is

directly dependent on the choice of triplets to be used for

training. Choosing triplets that satisfy triplet constraint [Eq.

(1)] will lead to no change in the state of the CNN. Hence,

only triplets that violate the triplet constraint are considered

for training. These triplets are of two types: hard triplets and

semi-hard triplets. A triplet X i is classified as hard or semi-

hard according to the following criteria:35

X i is

hard dðxa
i ; x

n
i Þ < dðxa

i ; x
p
i Þ

semi� hard dðxa
i ; x

p
i Þ < dðxa

i ; x
n
i Þ and

dðxa
i ; x

n
i Þ < dðxa

i ; x
p
i Þ þ a:

8><
>:

Here d() refers to the Euclidean distance.

Although hard triplets appear to be more informative for

training, they result in higher loss values, leading to the

larger weight updates. These larger weight updates result in

significant change to the current state of network, hence,

undoing the optimization work done by the previous weight

updates. Thus, utilizing these hard triplets may lead to

instability during training. It has been shown in Ref. 35 that

semi-hard triplets often leads to faster convergence and

effective training than the hard triplets. Building on this

information, the semi-hard triplets are used for training the

proposed CNN. In semi-hard triplet, the distance between

anchor-negative pairs is greater than the anchor-positive

pairs as desired. However, this distance is not greater than

the desired separation margin a. Thus, the weight updates

obtained in case of semi-hard triplets are not as large as the

hard triplets, leading to a stable training. More details about

the online triplet sampling and the utilization of semi-hard

triplet for training can be found in Ref. 35.

ALGORITHM 1: Training CNN using dynamic triplet loss.

input: f(): CNN (randomly initialized) X: Training dataset L: Labels

ai: Initial value of margin

af: Final value of margin

thresh: Threshold for margin updates

K: Number of epochs

output: f(): Trained CNN for metric learning

1 a ¼ ai // Initialize margin

2 count list ¼ ½ � // List to store number of triplets sampled
in each iteration

3 for J  1 to K do

4 I ;L ¼ createBatchesðX; L; nÞ // Returns n batches stored in
List I and corresponding batch labels in L

5 for i 1 to n do

6 E ¼ f ðI½i�Þ // Forward pass to get embeddings for ith
batch

7 T ; t ¼ getTripletsðE;L½i�; aÞ // Returns T , a set containing
t semi-hard triplets, sampled from ith batch

8 count list:appendðtÞ // Store the number of semi-hard
triplets sampled from ith batch

9 num ¼ lenðcount listÞ // Number of elements in count list

currently

10 if num � 3 AND a � af then

11 if (count½num� < thresh AND count½num� 1� < thresh AND
count½num� 2� < thresh) then

12 a ¼ aþ 0:05 // Update margin when number of
triplets are less than threshold for three
consecutive iterations

13 end

14 end

15 L ¼ calculateTripletLossðf ðÞ; T ; aÞ // Calculate Triplet
Loss using Eq. 2

16 f ðÞ ¼ UpdateWeightsðf ðÞ; LÞ // Back-propagate L through
f ðÞ to get the updated f()

17 end

18 end

As discussed in Sec. I, a dynamic variant of the triplet

loss is used in this work. In the proposed implementation of

triplet loss, a or the margin is considered as a dynamic vari-

able whose value is changed over the course of training. The

overall procedure to calculate dynamic triplet loss is

depicted in Algorithm 1. We start with a small margin, a
¼ 0.2, and force the network to learn the embedding space

where examples of each class are separated from other by a
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distance of 0.2. As the network is trained, the number of

semi-hard triplets mined from training dataset decreases. If

this number of mined triplets is less than a pre-defined

threshold for three consecutive iterations, the value of a is

incremented by 0.05. Again, the network is trained to satisfy

the new triplet loss induced by new value of a. This process

is continued until a reaches a pre-defined maximum value of

0.6. As discussed in Sec. I, this dynamic triplet loss provides

more triplets for training the model. The minimum and max-

imum values of a are determined empirically.

D. Classification

As illustrated in Fig. 1, first the multiscale CNN is trained

to learn the transformation or embedding space using dynamic

triplet loss. This trained CNN is used to extract 128-D embed-

dings from all the training examples. These embeddings show

high class-specific signatures as evident in Fig. 5. This figure

exhibits two-dimensional t-sne (Ref. 42) representations of

embeddings generated from vocalizations of 12 different bird

species. Note that t-sne is a data visualization method that non-

linearly maps the high-dimensional data to a desired low-

dimensional space. Once embeddings are obtained, a MLP

with Adam optimizer (described in Sec. II B 2) is trained for

classification. During inference, the trained CNN and MLP are

used to obtain embeddings from the test examples and to clas-

sify those embeddings, respectively.

E. Open-set classification using the proposed DML
framework

Open-set classification is a challenging issue in design-

ing bioacoustic classification frameworks for field

conditions. The existing bioacoustic classification methods

assign a test example to a class whose training examples

exhibit maximum similarity to this test example, even if the

test example does not belong to any of the classes involved

in training. Thus, there must be a way to reject such test

examples without affecting the classification performance of

the involved classes. To tackle open-set classification, the

metric learning module of the proposed framework can be

used. The distance between test embedding and training

embeddings of a class can be exploited to perform open-set

classification.

To model the distance from training embeddings, an

unimodel Gaussian distribution is utilized. The embeddings

of the training and validation examples of each class are

obtained from the trained multiscale CNN. All the training

embeddings are averaged to obtain a mean vector. For each

class, a Gaussian distribution is fitted over the distance

between validation embeddings and the mean vector. The

maximum likelihood estimation is used to estimate parame-

ters of these Gaussian distributions.

During testing, an input test example is classified by the

proposed framework. To perform outlier rejection, the dis-

tance between test embedding and the mean vector of the

output class is calculated. The likelihood of this distance is

computed with respect to the Gaussian distribution of the

output class. If this likelihood is less than a particular thresh-

old, the test example is rejected.

III. EXPERIMENTAL SETUP

In this section, datasets, comparative methods, and

parameter setting used for the performance evaluation are

described.

FIG. 5. (Color online) Two dimen-

sional t-SNE visualization of 128-days

embeddings extracted from audio

examples of 12 different bird species

using (A) untrained multiscale CNN

and (B) fully trained multiscale CNN.
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A. Datasets used

The performance of the proposed DML framework is

evaluated on three different datasets.

• Birdcalls71: This dataset contains audio recordings of 71

different bird species that are obtained from three different

sources. The recordings of 38 bird species were provided by

the Macaulay Library43 on an academic license. The record-

ings of seven bird species were downloaded from bird data-

base maintained by Art & Science Centre, UCLA.44 The

recordings of 26 bird species were obtained from the Great

Himalayan national park (GHNP) dataset31 and were pro-

vided on request. Out of 71 species involved in this dataset,

43 species are found in North America while the remaining

26 bird species are found in Northern India. A list of bird spe-

cies present in this dataset is available at http://tiny.cc/

qi8q7y. All the audio recordings are sampled at 44.1 kHz and

vary in duration from 0.5 to 320 s. Due to licensing issues,

the authors cannot make this dataset public. However, the

processed Mel-spectrograms extracted from these recordings

are hosted on a public platform for analysis.45

• Anuran dataset: The anuran dataset contains audio record-

ings of ten different species of order anura that contains

frogs and toads. The dataset is composed 60 bioacoustic

recordings containing anurans’ crocks and ribbits. All the

recordings were obtained from the Amazon rainforest, and

contain various background disturbances. These recordings

are sampled at 44.1 kHz and vary in duration (from 3 to

360 s). The list of Anuran species involved in this dataset

can in found in Ref. 6 as well as at http://tiny.cc/qi8q7y.
• Flight calls dataset (CLO-43SD): This public dataset is

provided by Salamon et al.46 and is composed of audio

clips containing flight calls of 43 different North

American wood-warblers. These audio clips are recorded

in different conditions using different recording devices.

Some audio clips are clean and were recorded using highly

directional microphones, whereas some clips are noisy

and were recorded using omnidirectional microphones.46

Each audio clip is processed and clipped to contain a sin-

gle flight call only. Along with processed clips, Mel-

spectrograms extracted from these audio clips are also

provided in the dataset. The audio clips are sampled at

22.05 kHz, and Mel-spectrograms are obtained using 11.6

ms frame size with an overlap of 1.25 ms and 40 Mel

bands. It must be noted that 11.6 ms frame size is opti-

mum to analyze flight calls.21,46 The wood-warbler species

involved in this dataset are listed at http://tiny.cc/qi8q7y.
• Combined: To analyze the scalability of the proposed

framework, all three datasets are combined together to

create a larger dataset having 124 classes.

These particular datasets are chosen due to their avail-

ability to the authors.

B. Data pre-processing and train-test distribution

1. Pre-processing

Audio recordings in all the datasets are of variable dura-

tion. For a uniform input to CNN, these recordings are

processed to have the same duration. All the audio record-

ings are divided into fixed length segments of 2 s. These seg-

ments are used for training and performance comparison. If

the duration of any recording is less than 2 s, then the signal

is repeated (from the beginning) to force the fixed duration

of 2 s. Short-term spectral analysis is performed, using a

frame size of 20 ms with 50% overlap, to obtain the respec-

tive feature representations (from all databases except CLO-

43SD). Thus, each input example consists of 200 frames. In

case of CLO-43SD dataset, frames of a pre-computed Mel-

spectrogram are repeated to obtain a fixed number of frames,

i.e., 200 per example (for maintaining uniformity between

datasets). Note that there is a difference in frame sizes used

for the short-term analysis of CLO-43SD and other datasets.

However, this difference is ignored to create a combined

dataset for the sake of analyzing scalability of the proposed

DML framework.

2. Train-test data distribution

All datasets are divided into train, test, and validation

sets. Fifteen percent of examples from each class are used

for validation. A random tenfold cross-validation is applied

on remaining examples to create ten different train-test sets.

In each fold, 60% of the remaining examples per class are

randomly sampled for training and the remaining examples

are used for testing. Due to random selection, in each fold, a

different subset of available examples are used for training

and testing. The total number of examples used for training,

testing, and validation (in each fold) are tabulated in Table I.

In Birdcalls71 dataset, the number of per-class training

examples varies from 5 to 98. Out of 71 classes, 54 classes

exhibit less than 20 training examples. Hence, a majority of

classes have only a handful of training examples. Similarly,

in CLO-43SD, the number of per-class training examples lie

in range of 5–641. Thus, along with the training data scarcity

for a majority of classes, both these datasets also exhibit

a large class imbalance. The details about the number of

per-class examples used for training, testing, and validation

are available at http://tiny.cc/qi8q7y.

C. Comparative studies and performance metric

In this study, ten comparative methods are chosen for

the performance evaluation. All these methods are tabulated

in Table II, and can be divided into three categories: shallow

learning methods, CNN models with cross-entropy loss, and

existing CNNs with dynamic triplet loss.

TABLE I. Number of training, testing and validation examples used for the

performance comparison.

Dataset

Number of training

examples

(in each fold)

Number of test

examples

(in each fold)

Number of

validation

examples

Total

examples

Birdcalls71 1218 822 390 2430

Anuran 1199 801 357 2350

Flight calls

(CLO-43SD)

2773 1858 831 5428

Combined 5190 3481 1578 10 208
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• Shallow learning methods: These shallow learning base-

lines utilize polynomial kernel-based extreme learning

machines (KELM)30 and random forest as classifiers. In first

baseline, the KELM is trained on low-level audio descriptors

[ComParE (Ref. 47) feature set]. Whereas, in second and

third baselines, random forest classifier is trained on unsuper-

vised and supervised feature representations, respectively.

The unsupervised feature representations are obtained using

spherical K-means26 (SKM) while the supervised representa-

tions28 are acquired by deep convex matrix factorization

(DCR). The input feature representations (Mel-spectrogram

and compressed spectral frames) used in the respective stud-

ies are also used here. In SKM, frame-wise feature represen-

tations for each input example are aggregated using mean

and standard deviation to obtain a fixed dimensional repre-

sentation. In DCR, a random forest classifier is trained on a

frame-wise deep convex representation. During testing, a

voting rule is used on frame-wise decisions to classify the

input example.
• CNN models with cross-entropy loss: CNN proposed by

Salamon et al.21 (SAL) and VGG (used in Ref. 9 for audio

classification) are used as deep learning baselines. The

total number of trainable parameters in SAL and VGG are

1 631 179 and 8 480 891, respectively (if last dense layer

has 124 units). To evaluate the proposed DML framework

against transfer learning, the pre-trained VGG network is

fine-tuned for bioacoustic classification. This VGG net-

work is pre-trained on AudioSet database having approx.

2 � 106 audio examples (see Ref. 9 for more details). The

dense layers of VGG are replaced by three dense layers

having 256, 128, and C (number of classes) hidden units.

A dropout of 0.5 is used before each dense layer. The first

two dense layers have relu activation where as the last

dense layer is followed by softmax activation. The final

CNN baseline is the proposed multiscale CNN with the

cross-entropy loss (MS-CNN). The last dense layer of the

proposed CNN is replaced with a dense layer having C
units and softmax activation (C is the number of target

classes).
• Existing CNN models with dynamic triplet loss: For a

thorough comparison between cross-entropy and dynamic

triplet loss, all CNN baselines [i.e., VGG, VGG-FT (fine-

tuned) and SAL] are also used in the proposed DML

framework (Fig. 1) for performing classification. These

baselines are trained using dynamic triplet loss to output

the desired 128-dimensional embeddings, which are later

utilized by a MLP to classify the input examples.

In all CNN-based methods, three-channeled Mel-spec-

trograms (see Sec. II A) are given as the input representation.

The Keras implementations of these CNN baselines are pub-

licly available along with datasets.45

1. Performance metric

The imbalance between classes is large, however, the

equal weightage must be given to the classification perfor-

mance obtained for each class. Hence, macro F1-score48 is

used as a metric for the performance comparison. The macro

F1-score is the average of class-specific F1-scores where

F1-score is the harmonic mean of precision and recall.

D. Parameter setting

The parameter setting used in CNN baselines and the

proposed multiscale CNN are tabulated in Table III. These

hyperparameters are determined empirically over the valida-

tion examples, and appear to be optimal for datasets consid-

ered in this study. An experimental study to determine the

prominent hyperparameters of the proposed DML frame-

work such as learning rate, margin (a), and dropouts is pro-

vided as the supplementary material.49 CNN baselines

with cross-entropy loss are trained for 200 epochs with a

batch-size of 32. Checkpoints are used after each epoch to

TABLE II. Comparative methods used for the performance evaluation.

Method Input feature representation Nature

Spherical K-means and random for-

est (SKM) (Ref. 26)

Mel-spectrograms Unsupervised feature learning

Deep convex representations and

random forest (DCR) (Ref. 28)

Compressed spectral frames Supervised dictionary learning

Kernel-based extreme learning

machines (KELM) (Ref. 30)

ComParE (Ref. 47) feature set, consists of 65 low-level

signal descriptors (Time aggregation using statistical and

modulation functionals to obtain 6373-dimensional vector)

Shallow learning

VGG (Ref. 9) Mel-spectrogram CNN

Fine-tuned VGG (VGG-FT) (Ref. 9) Mel-spectrogram CNN/transfer learning

CNN proposed by Salamon et al.
(SAL) (Ref. 21)

Mel-spectrogram CNN

Multiscale CNN with cross-entropy

loss (MS-CNN)

Mel-spectrogram CNN

VGG with dynamic triplet loss

(VGG-TL)

Mel-spectrogram CNN-based deep metric learning

Pre-trained VGG with dynamic trip-

let loss (VGG-FT-TL)

Mel-spectrogram Transfer learning/CNN-based deep

metric learning

SAL with dynamic triplet loss Mel-spectrogram CNN-based deep metric learning

Multiscale CNN with dynamic triplet

loss (MS-CNN-TL)

Mel-spectrogram CNN-based deep metric learning
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determine the setting that provides the least validation loss.

For training MLP (in the proposed framework), a learning

rate of 0.001 and weight decay of 0.0001 are used.

For implementing dynamic triplet loss, each mini-batch

is forced to have at least five examples per each class.

Hence, all classes are represented in a mini-batch. The semi-

hard triplets are sampled from this mini-batch and are used

for training the CNN. The number of triplets that can be

processed simultaneously (let us say triplet batch size) is

often limited by the available GPU memory. In our imple-

mentation, we set this triplet batch size to be 150 input

examples or 50 semi-hard triplets. Thus, the semi-hard trip-

lets sampled from a mini-batch are presented to the CNN in

an iterative manner where during each iteration, the triplet

batch (having 50 or less triplets) is used to calculate triplet

loss and update the weights. The number of mini-matches in

an epoch are limited to 1000. The margin (a) is varied from

0.2 to 0.6 in all dynamic triplet loss-based CNN models. A

threshold of 15 triplets is used for the margin update in

Algorithm 1. All the triplet loss-based models are trained

till they achieve full convergence. In the current context,

convergence simply means that all semi-hard triplets in the

training dataset satisfy the triplet constraint across all

dynamically chosen margins.

For implementing SKM (for all datasets), spherical

K-means with 128 clusters and random forest with 100 trees

is used. For implementing DCR, a three-level archetypal

analysis-based matrix factorization (with an order of 128,

64, and 32) is used to learn the class-specific dictionaries. A

random forest with 100 trees is used for classifying convex

representations obtained from class-specific dictionaries. In

KELM, a polynomial kernel of 10 deg and a hidden layer of

2048 units is used in the extreme learning machine. In all

the comparative methods, a frame-size of 20 ms with 50%

overlap and 2048 FFT points are used to obtain the time-

frequency representations. All the aforementioned parame-

ters are empirically determined on the validation examples.

IV. RESULTS AND DISCUSSION

In this section, first, the classification performances of

the proposed DML framework and different baselines are

presented. Then, the outlier rejection performance of the

open-set classification module is analyzed. Later, the gener-

alization ability of the proposed framework is discussed.

Then, two ablation studies are presented to analyze the

effects of the proposed dynamic triplet loss and the multi-

scale analysis on classification performances. For generaliza-

tion and ablation studies, only the experimental results on

Birdcalls71 dataset are presented here.

A. Classification performance

Figure 6 illustrates the box plots depicting the classifica-

tion performances of different methods on all four datasets.

The two-tailed, paired t-test is performed between scores

obtained by different comparative methods to analyze the

statistical significance of their classification performances. A

significance level of p< 0.000 01 is used for the significance

testing. The following inferences can be drawn from the

analysis of Fig. 6 and the corresponding significance

analysis:

• Shallow learning techniques (SKM, KELM, and DCR) are

significantly outperformed by CNN-based frameworks

including the proposed MS-CNN and MS-CNN-TL across

all datasets.
• MS-CNN performs better than VGG and SAL on all but

the Anuran dataset, highlighting the superiority of the

proposed multiscale CNN. On Anuran dataset, no signifi-

cant difference is observed over performances of these

baselines.
• VGG-FT outperforms VGG and SAL while showing simi-

lar performance to that of MS-CNN. This shows that the

utilization of transfer learning or fine-tuning a pre-trained

model improves the classification performance.

TABLE III. Parameter setting used in different CNN-based comparative methods. For cross-entropy loss-based models, the total trainable parameters are cal-

culated for 124 units (number of classes in Combined dataset) in the last dense layer.

Model

Layers
Trainable

parameters

(approx.)

Learning

rate

Dropout

Optimizer Weight decayConv Dense

Conv

layers

Dense

layers

VGG 6 3 8.48 M 0.001 — 0.5 Adam —

VGG with dynamic triplet loss

(VGG-TL)

6 3 8.48 M 0.0001 — 0.5 Adagrad —

Pre-trained VGG (VGG-FT) 6 3 8.48 M 0.001 — 0.5 Adam —

VGG-FT with dynamic triplet loss

(VGGish-FT-TL)

6 3 8.48 M 0.0001 — 0.5 Adagrad —

SAL 3 2 1.63 M 0.1 — 0.5 Stochastic

GD (SGD)

0.001 on dense

layers only

SAL with dynamic triple-loss

(SAL-TL)

3 2 1.63 M 0.001 — 0.5 Adagrad

MS-CNN (multiscale CNN) 33 (5 standalone

and 28 in MAMs)

3 1.37 M 0.001 — 0.5 Adam 0.0001 on

all layers

Proposed DML framework:

MS-CNN with dynamic triplet loss

(MS-CNN-TL)

1.37 M 0.001 Adagrad
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• All dynamic triplet loss-based methods (VGG-TL, VGG-

FT-TL, SAL-TL, and MS-CNN-TL) exhibit significant

improvements (at a significance level of p < 0.00001)

over their cross-entropy counterparts (VGG, VGG-FT,

SAL, and MS-CNN). This demonstrates that in the current

setup, the utilization of dynamic triplet loss-based frame-

work results in better classification performances over the

cross-entropy loss-based deep learning frameworks.
• MS-CNN-TL (proposed) outperforms all the considered

baselines across Birdcalls71, Anuran, CLO-43SD and

Combined datasets. However, on Anuran dataset, VGG-FT-

TL and MS-CNN-TL exhibit comparable performances.

A table containing p-values, obtained during significance

analysis, between different comparative methods is included

in the supplementary document for further analysis.49

B. Performance of open-set classification module

An experiment is designed to analyze the outlier rejec-

tion accuracy of the open-set classification module. First,

MS-CNN-TL is trained on Birdcalls71 dataset and Anuran

dataset is used for outlier rejection. Then, the framework is

trained on Anuran dataset and Birdcalls71 is used for outlier

rejection. For training, train-test setup described in Sec. III B

is also used here. Instead of ten folds, only a single set of

training and testing examples are used in this experiment.

For outlier rejection, all the available examples in the dataset

are used. The results of this experiment are documented in

Table IV. The analysis of this table makes it clear that in

both setups, MS-CNN-TL with the aforementioned rejection

mechanism is able to reject the outliers with good accuracy

of 97% and 95%. However, in comparison to the average

F1-scores obtained in Fig. 6, a small relative drop in macro

F1-scores is observed. This shows that, as expected, incorpo-

rating outlier rejection mechanism in MS-CNN-TL leads to

a small drop in classification performance. However, this

observed classification performance is still competitive in

comparison to the other methods considered in this study

(see Fig. 6).

C. Generalization of the proposed DML framework

In bioacoustic classification tasks, the training examples

often do not contain the whole repertoire of vocalizations

FIG. 6. (Color online) Box plots depicting the classification performances of the proposed framework along with various baselines on (A) birdcalls71, (B)

anuran, (C) CLO-43SD, and (D) combined datasets. The number next to each box plot represents the average F1-score obtained across all ten folds.
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that a species can produce. In field conditions, the test exam-

ples often contain vocalizations that are not used for training.

Thus, an effective classification framework must be able to

generalize on these unseen examples. To study the generali-

zation ability of the proposed framework, the unseen vocal-

izations (not included in training train the model) of Cassin’s

vireo (one of the species in Birdcalls71 dataset) are used.

The ten unseen song phrases are extracted from the audio

recordings available at https://goo.gl/x17fYf and are pro-

vided for analysis along with Birdcalls71 dataset. The t-SNE

(Ref. 42) representation of the embeddings extracted from

these unseen song phrases are shown in Fig. 7. The analysis

of this figure makes it clear that embeddings generated from

the unseen song phrases of Cassin’s vireo exhibit more simi-

larity to the training Cassin’s vireo examples than embed-

dings of other species. This is attributed to the fact that the

dynamic triplet loss used in the proposed framework deals

with grouping the similar vocalizations together and separat-

ing them from the dissimilar examples. Generally, vocaliza-

tions of a species are more similar to each other than the

sounds produced by other species (though exceptions are

always present in natural systems). As a result, the embed-

dings extracted from seen or unseen vocalizations of a spe-

cies are bound to be grouped together. Thus, the utilization

of DML helps in overcoming small variations in the nature

of vocalizations as well as differences in the recording envi-

ronment during training and testing.

D. Dynamic vs fixed margin triplet loss

In this section, the effect of dynamic and classical triplet

loss on the classification performance is explored. MS-CNN-

TL is trained with different fixed margins (i.e., from 0.2 to

0.6) on Birdcalls71 dataset. The F1-scores obtained for dif-

ferent values of fixed margin are compared against F1-score

obtained using dynamic triplet loss where margin is varied

from 0.2 to 0.6. Figure 8 depicts the average F1-scores

obtained during this experiment. From the analysis of this

figure, it is clear that utilizing dynamic triplet loss results in

better classification than the static or fixed margin triplet

loss. This can be attributed to the fact that the number of

triplets involved for training in dynamic margin triplet loss

is significantly more than the fixed margin triplet loss, lead-

ing to the better training of the multiscale CNN.

E. Effect of multiscale analysis on classification
performance

To analyze the impact of multiscale analysis on perfor-

mance of the proposed framework, MAMs are replaced by

256 standalone convolution layers having 3� 3, 5� 5, and

7� 7 filters in the multiscale CNN. The 256 filters are cho-

sen to match the number of feature-maps generated by

MAMs. Three CNN configurations are resulted from this

alteration are

• Configuration 1: INPUT!Conv(64, 3� 3)!Conv(256,

3� 3)!Conv(64, 3� 3, 2� 1)!Conv(256, 3� 3)

!Conv(64, 3� 3, 2� 1)!Conv(256, 3 � 3)!Conv(64,

3� 3, 2� 1)!Conv(256, 3� 3)!Conv(64, 3� 3, 5� 1)

!GAP!Dense(128)!Dense(256)!Dense(128).
• Configuration 2: INPUT!Conv(64, 3� 3)!Conv(256,

5� 5)!Conv(64, 3� 3, 2� 1)!Conv(256, 5� 5)

!Conv(64, 3� 3, 2 � 1)!Conv(256, 5 � 5)!Conv(64,

3� 3, 2� 1)!Conv(256, 5� 5)!Conv(64, 3� 3, 5� 1)

!GAP!Dense(128)!Dense(256)!Dense(128).

TABLE IV. Classification and outlier rejection performances of the proposed MS-CNN-TL framework in different training-testing setup. In each setup, a data-

set is used for training and classification evaluation whereas a different dataset is used for evaluating the outlier rejection mechanism.

Classification setup Outlier rejection setup

Training dataset Testing dataset Classification performance (Macro F1-score) Outlier dataset Rejection accuracy (%)

Birdcalls71 Birdcalls71 0.91 Anuran 97

Anuran Anuran 0.95 Birdcalls71 93

FIG. 7. (Color online) t-SNE (Ref. 42) visualization of embeddings gener-

ated from seen and unseen Cassin’s vireo song phrases using MS-CNN-TL.

For illustration purposes, only 20 species are shown in this figure. The

remaining species also exhibit similar behaviour.

FIG. 8. (Color online) Classification performances of MS-CNN-TL on

Birdcalls71 as a function of margin. The macro F1-scores presented here are

average of scores obtained across ten folds.
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• Configuration 3: INPUT!Conv(64, 3� 3)!Conv(256,

7� 7)!Conv(64, 3� 3, 2� 1)!Conv(256, 7� 7)

!Conv(64, 3� 3, 2� 1)!Conv(256, 7� 7)!Conv(64,

3� 3, 2� 1)!Conv(256, 7� 7)!Conv(64, 3� 3, 5� 1)

!GAP!Dense(128)!Dense(256)!Dense(128).

Here GAP stands for global average pooling, and

Conv(N, n1� n2, m1�m2) represents convolution layer hav-

ing N filters of n1� n2 kernel size with a stride of m1�m2.

All these configuration are used in the proposed DML

framework and their performances are evaluated on

Birdcalls71 dataset. The train-test setting described in Sec.

III B is also used here. Table V shows the average F1-scores

obtained across ten folds by the aforementioned configura-

tions. From the analysis of this table, it is evident that utiliz-

ing multiscale analysis helps in improving the classification

performances by a noticeable margin.

V. CONCLUSION

In this paper, the authors present a deep metric learning-

based framework for bioacoustic classification. The authors

proposed a multiscale CNN and dynamic triplet loss to

achieve effective deep metric learning in data-scarce condi-

tions. The proposed multiscale CNN utilizes different kernel

sizes to extract features at different granularities. The nature

of dynamic triplet loss significantly increases the amount of

triplets during training. The embeddings extracted from mul-

tiscale CNN-based DML are used as a feature representation

for classifying an input example. The experimental results

on four different datasets show that the proposed DML-

based classification framework performs better than existing

bioacoustic classification frameworks and various CNN

architectures trained using cross-entropy loss. The authors

also presented a simple augmentation that enables the pro-

posed framework to perform open-set classification.

A major drawback of the proposed framework (and

most of the existing metric learning frameworks) is that it

cannot handle multilabel classification effectively. Future

work may involve developing metric learning frameworks to

overcome this drawback.
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