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a b s t r a c t 

In this letter, we propose a concise feature representation framework for acoustic scene classification 

by pruning embeddings obtained from SoundNet, a deep convolutional neural network. We demonstrate 

that the feature maps generated at various layers of SoundNet have redundancy. The proposed singular 

value decomposition based method reduces the redundancy while relying on the assumption that useful 

feature maps produced by different classes lie along different directions. This leads to ignoring the fea- 

ture maps that produce similar embeddings for different classes. In the context of using an ensemble of 

classifiers on the various layers of SoundNet, pruning the redundant feature maps leads to reduction in 

dimensionality and computational complexity. Our experiments on acoustic scene classification demon- 

strate that ignoring 73% of feature maps reduces the performance by less than 1% with 12.67% reduction 

in computational complexity. In addition to this, we also show that the proposed pruning framework can 

be utilized to remove filters in the SoundNet network architecture, with 13x lesser model storage require- 

ment. Also, the number of parameters reduce from 28 million to 2 million with marginal degradation in 

performance. This small model obtained after applying the proposed pruning procedure is evaluated on 

different acoustic scene classification datasets, and shows excellent generalization ability. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Recently, an issue which has been studied in deep learning is

hat of pruning large-scale convolutional neural networks (CNN).

omplex networks typically have thousands of parameters, some of

hich can often be discarded. In this regard, the study in [1] pro-

osed an energy-driven procedure to prune weights layerwise in

arge networks like AlexNet and GoogLeNet. In another work as

roposed in [2] , the authors measure the importance of units in

he second-to-last layer before the classification layer, and remove

he units with least importance. The study in [3] considers filter

runing as an optimization problem, and eliminates filters based

n statistics computed from its next layer. To regain performance,

he above methods require fine-tuning of the network obtained af-

er pruning. 

Apart from network pruning, some recent studies have at-

empted to improve performance by using transfer-learning based

pproaches, and by utilising the features from multiple interme-

iate layers. For example, the studies [4,5] seek to combine fea-

ures from multiple layers in fast R-CNN and VGG16 before mak-

ng a prediction for an object detection task. However, only a
∗ Corresponding author. 
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ew have been explored for audio-based CNN’s. For example, the

tudy in [6] employed transfer learning from a CNN-based sound

vent model, trained on AudioSet [7] using Mel-features to com-

ute alternate features that are more discriminative. The work in

8] learnt an audio network which accepts log-spectrogram of the 

udio, using audio-visual correspondence on large-scale unlabelled

ideo datasets. All the previous methods use time-frequency rep-

esentations of an audio signal. 

Recently, the 1-D deep CNN SoundNet has been proposed for

he analysis of raw audio waveforms by [9] . The usefulness of mod-

ls like SoundNet is that it can be used to produce embeddings 1 

hat represent the input audio in terms of the 2M 

2 audio exam-

les used in the training of SoundNet. 

In the work [10] , we show that the embeddings obtained from

arious intermediate layers of SoundNet constitute complemen-

ary information. Utilizing such embeddings from intermediate lay-

rs in an ensemble framework of support vector machine (SVM)

mproves the performance for acoustic scene classification signifi-

antly. In this context, our recent study [11] reduces computational

omplexity in the ensemble framework by ignoring redundant em-
1 An embedding is defined as the response by an individual learnt filter after 

rocessing the input signal. 
2 In this letter, million is abbreviated as M. 

https://doi.org/10.1016/j.patrec.2020.02.004
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Fig. 1. SoundNet architecture [9] . (a) convolution layer architecture, convX denotes 

the output of X th convolution layer output and p-convX denotes the output of batch 

normalization layer. (b) 8-layer architecture with CX and PX as X th convolution and 

pooling layers respectively. 
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beddings. Therefore, redundant feature maps produce similar em-

beddings to inputs of various classes, thereby increasing only com-

putational overhead. Eliminating such redundant feature maps re-

sult in a reduction of computation during inference and in the

training phase in the context of the classifier ensemble. 

One of the challenges in identifying redundant feature maps

in a CNN is shift-variance and magnitude-variance of embeddings

produced across the same class. Due to this, the number of redun-

dant feature maps can often be underestimated. 

In this letter, we propose a novel redundancy removal method

which considers the geometry of embeddings produced across all

classes, while eliminating redundant feature maps in an ensem-

ble framework. Our redundancy removal method performs singu-

lar value decomposition (SVD) on the response matrix 3 obtained

for a given feature map. The response matrix for a given feature

map is created by stacking the embeddings produced from differ-

ent classes. The low number of significant singular values obtained

using SVD on the response matrix indicates that the embeddings

across classes lie in similar directions, hence the feature map has

redundancy. The major contributions of this letter can be summa-

rized as follows: 

• Our proposed pruning framework can be applied to identify

redundancy in CNNs. This can be utilized to create efficient

classifier ensembles using information from multiple layers. 
• The proposed method can also be used to compress or prune

the CNN architecture by explicitly removing the redundant

filters from the network. 

The rest of this letter is organized as follows. In Section 2 , we

describe SoundNet briefly and give a brief background on pre-

viously proposed redundancy removal method. In addition, we

demonstrate how geometry of feature maps can be used to de-

termine the redundancy. The proposed method is described in

Section 3 . Performance evaluation and conclusion are included in

Sections 4 and 5 respectively. 

2. Background 

2.1. A brief descripton of SoundNet 

SoundNet, as proposed in [9] , is a deep convolutional net-

work which is trained on raw audio signals by transferring knowl-

edge from vision into sound. Even though the network is trained

from audio without any ground truth, the network learns sound-

related detectors. SoundNet has 1-D feature maps similar to the 2-

D feature maps as in conventional vision-based CNNs. The 8-layer

SoundNet has the architecture shown in Fig. 1 . The architecture has

convolution and pooling layers denoted as C and P respectively.

The convolution layer C1 produces 16 feature maps each of size

661,501 (when input to the network is 30 second long audio sam-

pled at 44.1 kHz). The size and number of feature maps for other

layers is shown in the Fig. 1 . In the ensemble framework as pro-

posed in [10] , global sum pooling (aggregation) is performed on

each of SoundNet’s feature maps, resulting in a reduced-dimension,

fixed-length representation for each layer, which are used as fea-

tures for SVM classifier. 

2.2. Redundancy removal using ANOVA 

ANOVA-based redundancy removal method [11] is a hypothesis

testing method which uses analysis of variance method (ANOVA)

[12] to identify the redundant feature maps in SoundNet. In this
3 A response matrix is created by stacking the embeddings produced by various 

classes corresponding to a given feature map. 

i

 

t  

T  
ethod, the assumption is that the embeddings produced by a re-

undant feature map across various classes would have same dis-

ribution. This implies that the redundant feature map does not

rovide discriminative information across classes. To identify such

eature map, our null hypothesis is that the embedding produced

cross various classes for the feature map has same mean. There-

ore, we test the null hypothesis by computing the p-value of re-

ponse matrix corresponding to each feature map using ANOVA.

he high p-value corresponding to a given feature map signifies

hat the feature map is redundant and vice-versa. We rank the im-

ortance of feature maps according to their decreasing order of p-

alues and use a greedy algorithm that can be used to select few

mportant feature maps by using the KL-divergence criterion. The

L-divergence is computed between the distributions obtained us-

ng embeddings from all feature maps and a subset of the selected

eature maps. More detail about this can be found in [11] . 

.3. Identifying redundant feature maps in SoundNet 

The ANOVA-based redundancy removal method is a statisti-

al method which can underestimate the redundant feature maps

ue to magnitude-variance. To overcome this, we identify the dis-

rimination between the redundant and important feature maps

cross examples from various classes by analysing the geometry of

he embeddings obtained for feature maps. This can be observed

n Fig. 2 , which shows a 2-D vector representation obtained us-

ng principal component analysis on embeddings produced by a

iven feature map for four examples each from four acoustic scene

lasses; shop, hallgare, tubestation and kidgame, from the LITIS

ouen’s dataset [13] . 

The embeddings produced by examples of different classes in

3 layer for feature maps 12 and 56, lie in different directions and

ence, these feature maps are important in discriminating these

lasses. Whereas, for feature map number 13 and 47, the embed-

ings lie in the same direction and hence, these feature maps are

edundant and provide no additional information in discriminating

he classes. With this visual observation, we aim to identify and

liminate the similarly activated feature maps (e.g. 13, 47 as shown

n Fig. 2 . 

We develop a representation, which we term deep and concise ,

o represent raw audio samples in an L -dimensional feature space.

he representation is deep and concise because it utilises interme-
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Fig. 2. 2-D vector representations of feature maps 12, 56, 13 and 47 from C3 layer 

of SoundNet for examples from four acoustic scene classes: shop, hallgare, tubesta- 

tion, kidgame (each class in different colours). The embeddings produced by the 

feature maps 12, 56 across classes lie in different direction while for 13 and 47, 

the embeddings across classes lie in the same direction. This illustrates that feature 

maps 12, 56 are important and 13, 47 are redundant. 
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4 SoundNet architecture unmodified; pruning only changes the number of feature 

maps being used in the ensemble framework. 
iate layers from a deep network, and redundant feature maps are

emoved. Specifically, s × N dimensional embeddings from a given

ayer are reduced to s × L dimensions, with L ≤ N . Furthermore,

he s × L is reduced to L × 1 by applying global sum pooling across

mbeddings produced by each feature map. Here N represents the

umber of feature maps and s is the length of the embeddings. 

. Proposed methodology 

Now we describe the SVD-based pruning framework to identify

edundant feature maps. The method is applied independently to

he embeddings produced by the feature maps from various layers.

e utilize the feature maps from pool1 to conv7 layers except p-

onv layers (batch normalization layer as shown in Fig. 1 (a)). 

Consider a set of embeddings from a particular layer of Sound-

et, which are generated by examples of all classes (say C classes)

f interest. In our evaluations, the classes come from acoustic

cenes. In a particular layer, each example generates N embeddings

f size 1 × s corresponding to N feature maps. Let there be p ex-

mples, and let the set of embeddings (normalized to zero mean

nd unit variance) be denoted P . Thus, P is a set of N response

atrices corresponding to each of the feature maps. Let each re-

ponse matrix of the set P be denoted as x z ∈ R 

p×s , where z

aries from 1 : N . 

SVD-based pruning: We perform singular value decomposition

or each x z as x z = U �V 

T , where, U ∈ R 

p×p and V ∈ R 

s ×s are unitary

atrices and � ∈ R 

p×s , has singular values along the diagonals. 

The number of non-zero singular values in � gives the number

f significant directions in which x z lies. The number of significant

ingular values of each element from P is computed. An element

f P (in other words, one of the N filters) with number of signifi-

ant values ≥ � is considered as an important, where � denotes

 threshold. 

Threshold to select important feature maps: Ideally, p exam-

les of C different classes should lie in C different independent di-

ections. This implies that � should be at least C , with an assump-

ion that there is no intra-class diversity. However, an acoustic
cene has independent sound events which can occur at any time,

hich may cause “time-shifting” in the embeddings produced by

he feature map. This can result in intra-class diversity, thereby in-

reasing the number of independent directions in which embed-

ings of p -examples lie. Choosing � such that C ≤ � ≤ min ( p, s )

ccommodates these variations. Here, min ( p, s ) denotes the max-

mum number of possible independent directions in the response

atrix. Repeating this process on each response matrix in P, re-

ults in designating each feature map as redundant or not. For

oundNet, this process is repeated on the total of 2320 feature

aps (across layers from P1 to C7). 

. Performance evaluation 

.1. Datasets used and experimental setup 

We use two acoustic scene classification (ASC) datasets for eval-

ation purposes: (a) TUT DCASE 2016 ASC dataset [14] , compris-

ng of a development set and an evaluation set, each of which has

5 acoustic scene classes, and, (b) Environmental Sound Classifica-

ion (ESC-50) dataset comprising of 50 acoustic scene classes [15] .

e employ the classifier ensemble framework described in [10] to

valuate the effectiveness of the pruning method. The framework

ombines the probability scores obtained from P1 to C7 layers, in-

luding p-convX (a total of 15 SVMs trained on deep concise rep-

esentations, one for each intermediate layer). In the classifier en-

emble, each feature map of SoundNet is aggregated via global sum

ooling. The redundancy for p-convX layer is chosen same as that

btained from the subsequent convX layer. 

The set P used to create the response matrices for different

eature maps is obtained from a subset of the DCASE develop-

ent fold 1 training dataset. We choose 10 examples randomly

rom each of the 15 classes to give p = 150. We choose � as

in ( p, s ) to accommodate the intra-class diversity completely. The

ffectiveness of the ensemble after the proposed pruning frame-

ork is evaluated using 4-fold cross-validation on the DCASE de-

elopment and DCASE evaluation dataset Table 1 ). The ensemble

f SVMs is trained using the training data of the DCASE devel-

pment dataset. The result is the average of the four folds. To

heck the generalizability of the pruning procedure, evaluation on

he ESC-50 dataset, which has completely different classes, is also

erformed. The pruning information obtained from DCASE is used

ere as well. The SVM ensemble is trained on the ESC-50 train-

ng data, and evaluated on the ESC test data, using the five ESC

olds. The results in Table 1 is the average of five-folds. The list

f files used for pruning is available at http://faculty.iitmandi.ac.in/

padman/public/Singh _ acousticScene _ SoundNet _ Pruning.zip . 

.2. Results and analysis: Ensemble framework without SoundNet 

rchitecture pruning 

In this section, 4 we report the analysis and results when only

he feature maps identified as important are being used in the en-

emble framework, while keeping the architecture of SoundNet un-

odified. Our pruning method has identified 631 feature maps as

mportant out of a total of 2320 feature maps across layers. 

Fig. 3 shows the cumulative pairwise Euclidean distance com-

uted between aggregated embeddings produced by feature maps

rom the C4 and C7 layers for fifty examples of two pairs of

coustic scenes. The distance rises steadily until important feature

aps obtained using the proposed pruning method are considered.

he feature maps beyond the 56th and 59th are redundant in C4

http://faculty.iitmandi.ac.in/~padman/public/Singh_acousticScene_SoundNet_Pruning.zip
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Table 1 

Comparative analysis of various ensemble frameworks without any fine-tuning. 

Various parameters Ensemble framework 

Without SoundNet architecture pruning With SoundNet architecture pruning 

Ensemble on all 

feature maps 

(Baseline 4 ) 

Ensemble on only 

important feature 

maps (Inf-FS) 

Ensemble on only 

important feature 

maps (ANOVA) 

Ensemble on only 

important feature 

maps (SVD-based) 

Ensemble on 

p-Snet (Inf-FS) 

Ensemble on 

p-Snet (SVD-based) 

#Param. of SoundNet 

(C1 to C7 layers) and 

storage 

28,74,320 11.50MB Same as Baseline Same as Baseline Same as Baseline 7,00,709 2.80MB 2,17,295 0.87MB 

#feature maps in 

C1-P1-C2-C3-C4- 

C5-P5-C6-C7 Layers 

16-16-32-64- 

128-256- 

256-512-1024 

Same as Baseline Same as Baseline Same as Baseline 16-16-30-60 

-118-208- 

208-368-129 

16-16-32-41 

-56-88- 

88-235-59 

#FLOPS saved to 

compute deep concise 

representations 

N.A. 7.27% 12.53% 12.67% 7.27% 12.67% 

#feature maps 

ignored in SoundNet 

N.A. 52.00% 68.00% 73.00% 52.00% 73.00% 

Accuracy on DCASE 

Development 

89.12% 88.78% 88.78% 88.87% 86.20% 88.17% 

Accuracy on DCASE 

Evaluation 

93.32% 93.07% 93.33% 93.27% 90.58% 89.80% 

Accuracy on ESC-50 93.79% 92.65% 93.00% 93.00% 92.75% 91.20% 

Fig. 3. Pairwise Euclidean distance between examples of scenes (forest path and 

train, office and train, bus and beach, car and cafe) as a function of number of 

feature maps used to compute deep concise representations for C4 and C7 layer. 

 

 

 

 

 

 

 

 

Fig. 4. Normalized distribution of accumulated Euclidean distance between deep 

concise representation of examples of two scenes ((a) Forest path and train, (b) Of- 

fice and train)) as a function of feature maps, computed for C3, C4, P5, C6 and C7 

layers of SoundNet. Here, the distribution in green color depicts when only impor- 

tant feature maps are varied to compute the distance. The red color shows the dis- 

tribution, while varying the redundant feature maps only. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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and C7 layer respectively, and the cumulative distance from these

points remains more or less constant. This implies the validity of

important feature maps obtained using our proposed method. 

Furthermore, Fig. 4 shows the histograms of the accumulated

Euclidean distance for two pairs of acoustic scenes. The first col-

umn shows the histograms for the important feature maps from all

SoundNet layers, and the second column for the redundant feature

maps from all layers. It can be observed that the important feature

maps contribute significantly to the accumulated Euclidean dis-
ance, whereas the contribution from the redundant feature maps

re negligible (average value close to zero). 

The computational complexity to obtain deep concise repre-

entation is measured as the number of floating-point operations

FLOPS) per second. A feature map ∈ R 

s , is aggregated to a scalar

alue using global sum pooling, which requires 2 s FLOPS ( s mul-

iplications and s -1 additions). For example, for the DCASE devel-

pment dataset, the FLOPS decreases by 12.67% and a total of 73%

f the feature maps are identified as redundant after applying the

roposed pruning method. 

The reduction in the dimensionality for different layers is equal

o the number of feature maps which are ignored for that layer.

his reduces the classifier complexity for a particular layer during

raining and inference time from O ( N ) to O ( L ), where N is the to-

al number of features maps and L is the number of feature maps

btained after pruning. 
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Fig. 5. Performance comparison with transfer learning methods for ESC-50 dataset. 

Note that SoundNet architecture is kept same. 
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Fig. 6. An end-to-end network for fine-tuning the pruned SoundNet (p-Snet) with 

fully connected layer at the end. Here, in each box, C and P denotes the convolution 

and pooling layers for a particular layer along with number of feature maps. 
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Comparison with other related pruning work: We compare

he proposed pruning method with the technique described in

2] and the ANOVA-based method in our earlier work [11] . The

ethod in [2] performs pruning by identifying the important fea-

ure maps using infinite feature selection (Inf-FS) as proposed in

16] method. We apply this method to identify the important fea-

ure maps in the different layers of SoundNet independently. The

nf-FS, ANOVA and proposed SVD-based method eliminates 52%,

8%, and 73% of the total number of feature maps respectively. The

umber of FLOPS saved in the above methods is 7.27%, 12.53% and

2.67% respectively. 5 

The SVD-based pruning method performs similar to the Inf-

S method and the ANOVA-based method, but with more fea-

ure maps being identified as redundant. The first four columns

n Table 1 compares the various parameters, in the context of en-

emble of classifiers on the important feature maps of SoundNet.

he baseline network is the ensemble framework which uses all

eature maps from various layers. 

The proposed pruning method generalizes quite well; as shown

n Table 1 (fourth column, last two rows), the degradation is less

han 1% as compared to the baseline 6 for DCASE Evaluation data.

he pruning was established using 150 examples from DCASE De-

elopment data. The experiment also demonstrates that the prun-

ng works effectively on the evaluation on the ESC-50 dataset as

ell. 

Performance comparison with transfer learning methods:

e also compare the performance of the pruned ensemble frame-

ork obtained using SoundNet (which is a pre-trained network)

ith other similar pre-trained based approaches employed for

lassification. The results of the comparison is as shown in Fig. 5 . It

an be observed that our ensemble framework with the proposed

VD-based pruning provides 12.21%, 18.15% and 26.11% improve-

ent over the works detailed in [6] , [8] and [9] respectively and

5.25% improvement over human performance [15] . The state of

he art [17] performance for ESC-50 dataset is 86.5% without using

ny pre-train information. For DCASE 2016 development dataset,

ur proposed method gives approx. 16% improvement over the

imilar existing study in [6] . 

.3. Results and analysis: Ensemble framework with SoundNet 

rchitecture pruning 

In the previous subsection, the proposed pruning method is ap-

lied on SoundNet feature maps in the context of the classifier en-

emble. In this process, the architecture of SoundNet is unmodi-

ed. In this section, we experimentally demonstrate that the pro-

osed method can also be used to identify the redundant filters
5 SoundNet architecture unmodified; pruning only changes the number of feature 

aps being used in the ensemble framework. 
6 SoundNet architecture unmodified; pruning only changes the number of feature 

aps being used in the ensemble framework. 

t  

t  

n  
hich can be eliminated from the architecture. In order to remove

he redundant filters from SoundNet, we apply the pruning infor-

ation of redundant feature maps obtained after SVD-based prun-

ng to modify the network architecture, we henceforth term the

ew pruned SoundNet architecture as pruned SoundNet (p-Snet) . 7 

rom each layer of the pre-trained SoundNet, we perform struc-

ured pruning [18] , in which all the connections or weights which

re connected to the redundant feature maps are eliminated. This

eads to removal of the filters completely associated with the re-

undant feature maps. 

The p-Snet still preserves the pre-train information of the re-

aining filters, but redundancy is now explicitly removed. 

The last two columns of Table 1 shows the various parameters

or the ensemble framework with p-Snet obtained using the pro-

osed SVD-based and Inf-FS method. It can be observed that the

-Snet using SVD-based pruning retains only 8% of the parameters

long with 13x lesser model size as that of the baseline SoundNet,

hich is also lesser than as that using Inf-FS method. 

After pruning, the number of feature maps for the deeper lay-

rs of p-Snet gets reduced significantly whereas the shallow lay-

rs have more or less same number of feature maps. It is also

otable that the reduction in performance for on DCASE develop-

ent, evaluation and ESC-50 datasets is not more than 4% using

-Snet without performing any fine-tuning. 

.4. Fine-tuning of p-Snet 

Next, we perform re-training of p-Snet (obtained after SVD-

ased pruning) to compensate the performance loss owing to re-

oval of some of the connections from SoundNet. As shown in

ig. 6 , an end-to-end network is built with p-Snet followed by a

ully-connected neural network, which has single hidden layer and

n output layer. Once the end-to-end network gets re-trained, the

esulting fine-tuned p-Snet is used in the ensemble framework as

xplained previously. 

The end-to-end network is fine-tuned using DCASE develop-

ent training data for 4-folds. This results in 4 different fine-

uned p-Snet networks. We report the average performance ob-

ained from the 4 fine-tuned p-Snet networks using the ensemble

ramework. For computational reasons, each of the 30 s audio from

he DCASE development training data is split into 3 s and given

o the end-to-end network. Similarly, we fine-tune the end-to-end

etwork for ESC-50 dataset as well with 5-folds. In this case, the
7 Online link: https://github.com/Arshdeep- Singh- Boparai/Pruned _ SoundNet . 

https://github.com/Arshdeep-Singh-Boparai/Pruned_SoundNet
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Fig. 7. Covergence plot for fold2 from ESC-50 dataset. (a) and (b) shows the accu- 

racy and loss as a function of number of epochs for training and validation dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Comparison of performance for fine-tuned p-Snet. 
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input to the network is the whole 5 s audio recording without

any segmentation. The SVM ensemble is trained as in the previous

setup. 

We use the Adam [19] optimizer with default parameters and

categorical entropy as a loss function. We initialize weights of p-

Snet from SoundNet and the weights of fully connected network

are initialized randomly. We experiment with several number of

hidden units in the fully connected layer and determine that 32

neurons with rectified linear unit (ReLU) activation function pro-

duces good results. The batch size is set to be 32. 

The end-to-end network is trained for 100 epochs. The fold-

wise test data from DCASE development and ESC-50 is respectively

used for validation. The final weights of the network are chosen

when the validation accuracy is maximum. Fig. 7 shows the con-

vergence plot of the loss and the accuracy for one of folds in ESC-

50 dataset. At around 30th epoch, the validation accuracy is max-

imum. Beyond this, the network is over-fitting. This can be ob-

served from (b), where the validation loss starts increasing and on

the other hand the accuracy does not increase. 

Fig. 8 shows the average accuracy computed over multiple folds

using the fine-tuned p-Snet in the ensemble framework. It can

be observed that the fine-tuned p-Snet improves the performance

over p-Snet and provides performance closer to the baseline 8 net-

work performance. The accuracy obtained with fine-tuned p-Snet
8 SoundNet architecture unmodified; pruning only changes the number of feature 

maps being used in the ensemble framework. 

 

c  

i

s 89.91%, 92.76% and 92.10% for the DCASE development, evalua-

ion and ESC-50 respectively, when fine-tuned using the respective

ataset. On the other hand, when p-Snet is fine-tuned with DCASE

evelopment and is being used to extract deep concise representa-

ions for ESC-50 or vice-versa, the performance degrades. 

.5. Discussion 

Our proposed pruning method does not consider directly the

odel accuracy while performing pruning. Moreover, there is no

eed to define a pruning ratio as being defined in many alternate

runing techniques to select the important connections. There-

ore, the proposed method eliminates the unimportant connections

ithout involving any extra user-defined parameters such as prun-

ng ratio. The proposed pruning method eliminates the entire filter,

nd hence improves the run-time as opposed to some of the other

runing works, which removes some of the connections in the fil-

er. In addition, our proposed framework does not involve any opti-

ization as opposed to the studies proposed in [3,20] to eliminate

edundancy. 

In contrast to the study proposed by [21] , which first removes

he connections for each layer and subsequently performs fine-

uning and involves a reconstruction error, we perform pruning

cross all layers without involving any reconstruction error and the

ne-tuning is done after the network is being pruned completely.

oreover, many studies use the entire dataset for pruning. In con-

rast, we use only 150 examples to perform pruning. 

. Conclusion 

In this letter, we propose a SVD-based pruning framework to

liminate redundant feature maps learnt at various intermediate

ayers in a pre-trained audio network. The proposed framework re-

uces computational complexity and dimensionality for layer-wise

nalysis while using an ensemble of classifiers. Moreover, we show

hat utilizing the redundancy information of feature maps, the pro-

osed method can be used to prune the filters from the network

rchitecture as well. The proposed method compresses the model

ize by a factor of 13 with marginal reduction in the performance.

he benefits of the proposed method include: It does not utilize

ny reconstruction error and also there is no need to specify prun-

ng ratio beforehand. Moreover, the proposed pruning utilizes only

 small subset of examples from DCASE development dataset, a to-

al of 150 examples and generalizes quite well for other datasets

s well. 
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