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Abstract—In this paper, we apply speech and audio processing
techniques to bird vocalizations and for the classification of birds
found in the lower Himalayan regions. Mel frequency cepstral
coefficients (MFCC) are extracted from each recording. As a
result, the recordings are now represented as varying length sets
of feature vectors. Dynamic kernel based support vector machines
(SVMs) and deep neural networks (DNNs) are popularly used for
the classification of such varying length patterns obtained from
speech signals. In this work, we propose to use dynamic kernel
based SVMs and DNNs for classification of bird calls represented
as sets of feature vectors. Results of our studies show that both
approaches give comparable performance.

I. Introduction

Birds serve as important indicators of ecosystem health.
Traditional field techniques to track and identify different bird
species have required much human effort. Automatic analysis
of bird call recordings have recently become popular [1].
Reliable techniques for tasks such as species identification
allow scientists and ecologists to analyze long recordings
obtained from the field. Several techniques applied to the
processing of speech and audio signals can be applied to bird
calls. This paper focuses on identification of bird species from
their calls. As in any pattern recognition task, the challenges in
bird call identification is in the choice of the features and in the
choice of the classifiers. Several works in the literature show
that spectral features like Mel frequency cepstral coefficients
(MFCC) are widely used to represent bird sounds [2], [3] and
classifiers such as Gaussian mixture model (GMM) [4], [5]
and support vector machines [6] are commonly used.

The main focus of this work is to explore state-of-the-art
techniques applied to speech and audio signals for representing
bird calls and for their classification. As in speech signal
processing, short-time analysis of bird call signal involves per-
forming spectral analysis on each frame of about 20 millisec-
onds duration and representing each frame by a real valued fea-
ture vector. The bird call signal of an utterance with T frames is
represented as a sequential pattern X = (x1, x2, . . . , xt, . . . , xT ),
where xt is a feature vector for frame t. The duration of the
calls (either of the same species or across different species)
varies from one recording to another. Hence, the number of
frames also differs from one recording to another. In the tasks
such as classification of bird phrase [7] there is a need to model
the temporal dynamics and correlations among the features in
the sequence of feature vectors. However, in the task such as
bird call identification, preserving sequence information is not
critical. In such cases, the bird call signal is represented as a

set of feature vectors.

In this regard, we utilise commonly used techniques for the
classification of varying length patterns of speech and audio
signals that are represented as sets of continuous valued feature
vectors in bird call identification. Conventionally, Gaussian
mixture models (GMMs) [8] are used for classification of
varying length patterns represented as sets of feature vectors.
The maximum likelihood (ML) based method is commonly
used for the estimation of the parameters of the GMM for
each class. When the amount of the training data available per
class is limited, robust estimates of the model parameters can
be obtained through maximum a posteriori adaptation (MAP)
of the universal background model (UBM), to the training data
of each class [9]. The UBM is a large GMM trained using the
training data of all classes.

Classification of varying length sets of feature vectors using
support vector machines (SVMs) requires design of a suitable
kernel as a measure of similarity between a pair of sets of fea-
ture vectors. The kernels designed for varying length patterns
are referred to as dynamic kernels [10]. Probabilistic sequence
kernel [11], GMM supervector kernel [12], GMM-UBM mean
interval kernel [13], GMM-based intermediate matching ker-
nel [10] and GMM-based pyramid match kernel [14] are some
of the state-of-the-art dynamic kernels for sets of feature
vectors. Their effectiveness has been shown in the tasks such
as speaker identification and speech emotion recognition [10],
[12], [13]. In this work, we show the effectiveness of these
dynamic kernel based SVMs for classifying bird calls.

In recent years, deep learning techniques are setting new
standards in different tasks related to speech data. Recent
works on fully connected deep neural networks (DNNs) [15],
[16] are shown to outperform traditional baseline systems in
the tasks such as speaker identification, language identification
and speech recognition. In this work, we explore the effective-
ness of fully connected DNNs for the classification of bird
calls in similar lines as they are used for speaker identification
and language identification tasks.

The paper makes following contributions. First, we explore
Mel frequency cepstral coefficients (MFCCs) and logarithm of
the Mel filterbank energy coefficients (log MFECs) to represent
an audio recording as a set of feature vectors. Secondly,
we explore the effectiveness of state-of-the-art techniques in
speech technology such as GMMs, dynamic kernel based
SVMs and DNNs for the identification of bird species from
their calls.



The rest of this paper is organized as follows. In Section II,
a review of dynamic kernels for sets of feature vectors is
presented. Details of fully connected deep neural networks
are presented in Section III. The database and features used
in our experiments are given in Section IV. Studies on bird
call identification are presented in Section V. We conclude in
Section VI.

II. Dynamic kernels for sets of feature vectors

In this section, we review the approaches to design dynamic
kernels for varying length patterns represented as sets of fea-
ture vectors. Different approaches to design dynamic kernels
are broadly divided into explicit mapping based approaches
and matching based approaches [10].

A. Explicit mapping based approaches

These approaches involve mapping a set of feature vectors
onto a fixed-dimensional representation and then defining a
kernel function in the space of that representation. In this
work we propose to explore probabilistic sequence kernel
(PSK) [11], GMM supervector (GMMSV) kernel [12] and
GMM-UBM mean interval (GUMI) kernel [13] as the dynamic
kernels for sets of feature vectors constructed using the explicit
mapping based approaches.

1) Probabilistic sequence kernel: Let X = {x1, x2, . . . , xT }
be a set of feature vectors. Probabilistic sequence kernel
(PSK) [11] maps a set of feature vectors onto a probabilistic
feature vector obtained using GMMs. The PSK uses UBM with
Q components [9] and the class-specific GMMs obtained by
adapting the UBM. A feature vector x is represented in a higher
dimensional feature space as a vector of responsibility terms
of the 2Q components (Q from a class-specific adapted GMM
and Q from UBM) as Ψ(x) = [γ1(x), γ2(x), ..., γ2Q(x)]⊤. Since
the element γq(x) indicates the probabilistic alignment of x to
the qth component, Ψ(x) is called the probabilistic alignment
vector. A set of local feature vectors X is represented as a
fixed dimensional vector ΦPSK(X), given by

ΦPSK(X) =
1

T

T
∑

t=1

Ψ(xt) (1)

The dimension of ΦPSK(X) is D=2Q. Then, the PSK be-
tween two examples Xm = {xm1, xm2, ..., xmTm

} and Xn =

{xn1, xn2, ..., xnTn
} is given as

KPSK(Xm,Xn) = ΦPSK(Xm)⊤S−1
ΦPSK(Xn) (2)

The correlation matrix S is a D × D matrix and is defined as
follows:

S =
1

M
R⊤R (3)

where R is the M ×D matrix whose rows are the probabilistic
alignment vectors for the feature vectors of all examples in the
training data set and M is the total number of feature vectors
in the training data set.

2) GMM supervector kernel: The GMM supervector
(GMMSV) kernel [12] performs a mapping of a set of feature
vectors onto a higher dimensional vector corresponding to
a GMM supervector. An example-specific adapted GMM is
built for each example by adapting the means of the UBM

using the data of that example. Let µ
(X)
q be the mean vector

of qth component in the example-specific adapted GMM for
an example X = {x1, x2, . . . , xT }. A GMM vector Ψq(X) for an
example X corresponding to the qth component of GMM is
obtained as follows:

Ψq(X) =
[√

wqΣ
− 1

2
q µ

(X)
q

]⊤
(4)

where, wq and Σq are the mixture coefficient and covariance
matrix of qth component in UBM. The GMM supervector for
the example X is given by

ΦGMMSV(X) = [Ψ1(X)⊤,Ψ2(X)⊤, ...,ΨQ(X)⊤]⊤ (5)

The dimension of GMM supervector is D=Qd, where Q is
the number of components in UBM and d is the dimension
of the feature vector. The GMMSV kernel between a pair of
examples Xm and Xn is given by

KGMMSV(Xm,Xn) = ΦGMMSV(Xm)⊤ΦGMMSV(Xn) (6)

3) GMM-UBM mean interval kernel: The GMM-UBM
mean interval (GUMI) kernel [13] performs a mapping of a
set of local feature vectors onto a higher dimensional vector
corresponding to a GUMI supervector. In GUMI kernel, an
example-specific adapted GMM is built for each example by
adapting the mean vectors and covariance matrices of the

UBM using the data of that example. Let µ
(X)
q and Σ

(X)
q be

the mean vector and the covariance matrix of qth compo-
nent in the example-specific adapted GMM for an example
X = {x1, x2, . . . , xT }. A GUMI vector Ψq(X) for an example X
corresponding to the qth component of GMM is obtained as
follows:

Ψq(X) =















Σ
(X)
q + Σq

2















− 1
2
(

µ
(X)
q − µq

)

(7)

where, µq and Σq are the mean vector and covariance matrix
of qth component in UBM. The GUMI supervector is obtained
by concatenating the GUMI vectors of different components
as

ΦGUMI(X) = [Ψ1(X)⊤,Ψ2(X)⊤, ...,ΨQ(X)⊤]⊤ (8)

The dimension of GUMI supervector is D=Qd. The GUMI
kernel between a pair of examples Xm and Xn is given by

KGUMI(Xm,Xn) = ΦGUMI(Xm)⊤ΦGUMI(Xn) (9)

B. Matching based approaches

Given two sets of feature vectors, the matching based
approach computes the kernel function by matching individual
feature vectors from these sets.

In this work, we propose to use GMM-based intermediate
matching kernel [10] and GMM-based pyramid match ker-
nel [14] as the dynamic kernels designed using the matching
based approaches.



1) GMM-based intermediate matching kernel: An interme-
diate matching kernel (IMK) [17] is constructed by matching
the two sets of feature vectors using a set of virtual feature
vectors. For every virtual feature vector, a feature vector is
selected from each set of feature vectors and a base kernel for
the two selected feature vectors is computed. The IMK for a
pair of sets of feature vectors is computed as a combination
of these base kernels. In [10], the set of virtual feature vectors
considered are in the form of the components of the UBM.
For every component of the UBM, a feature vector each from
the two sets of feature vectors, that has the highest probability
of belonging to that component (i.e., value of responsibility
term) is selected. Then a base kernel is computed between the
selected feature vectors. The responsibility of qth component
for a feature vector x, γq(x), is given as

γq(x) =
wqN(x|µq,Σq)
∑Q

j=1
w jN(x|µ j,Σ j)

(10)

where wq is the mixture coefficient of the component q, and
N(x|µq,Σq) is the normal density for the component q with
mean vector µq and covariance matrix Σq. The feature vectors
x∗mq and x∗nq respectively in Xm and Xn, are selected using the
component q as

x∗mq = arg max
x∈Xm

γq(x) and x∗nq = arg max
x∈Xn

γq(x) (11)

The GMM-based IMK is computed as the sum of the values of
the base kernels computed for the Q pairs of selected feature
vectors as follows:

KGMMIMK(Xm,Xn) =

Q
∑

q=1

k(x∗mq, x
∗
nq) (12)

The Gaussian kernel k(x∗mq, x
∗
nq) = exp(−δ||x∗mq − x∗nq||2) is used

as the base kernel. Here δ is the width parameter of the
Gaussian kernel that is empirically chosen.

2) GMM-based pyramid match kernel: In the pyramid
match kernel (PMK), a set of feature vectors is mapped onto
a multi-resolution histogram pyramid. The kernel is com-
puted between a pair of examples by matching the pyramids
using a weighted histogram intersection match function at
each level of the pyramid. In [14], the UBMs built with
increasingly larger number of components are used to con-
struct the histograms at the different levels in the pyramid.
At level l, a UBM of Q = bl components is built us-
ing the feature vectors in the training examples of all the
classes. Here, b is considered as branching factor. The his-
togram vectors hl(Xm) = [hl1(Xm), hl2(Xm), . . . , hlQ(Xm)]⊤ and
hl(Xn) = [hl1(Xn), hl2(Xn), . . . , hlQ(Xn)]⊤ with Q-dimensions,
corresponding to the sets of feature vectors Xm and Xn, is
then obtained by soft quantization. A histogram intersection

kernel, K
(l)

HIK
=
∑Q

q=1
min
(

hlq(Xm), hlq(Xn)
)

is then computed

to obtain the number of matches between a pair of histogram
vectors corresponding to a pair of examples Xm and Xn at each
level, l = 0, 1, . . . , L. Here, L is the total number of levels in
the pyramid. The matching is a hierarchical process from the
bottom of the pyramid to the top of the pyramid. The number
of new matches at a level l is calculated by computing the
difference between the number of matches at that level and
the number of matches at its immediately higher level and is

given by K
(l)

HIK
(Xm,Xn) − K

(l+1)

HIK
(Xm,Xn). The number of new

matches at each level is weighted according to the number
of components of UBM at that level. The GMM-based PMK
between a pair of examples is computed as a weighted sum of
the number of new matches at different levels of the pyramid
and is given as,

KPMK(Xm,Xn) =

L−1
∑

l=0

1

bL−l
(K

(l)

HIK
− K

(l+1)

HIK
) + K

(L)

HIK
(13)

In our experiments, we compare the performance of the
SVM-based classifiers using the kernels reviewed in this
section.

III. Deep neural networks

In this section, we briefly describe fully connected deep
neural networks (DNNs) that are commonly used for the tasks
on speech signals.

Let X = {x1, x2, . . . , xT } be a set of feature vectors cor-
responding to a speech signal and each xt corresponding to
a spectral feature extracted from tth frame. In the speech
domain it is common that the input feature vector to the DNN
corresponding to xt is the supervector of contextual vectors
around xt. The input feature vectors to the DNN is obtained by
stacking every d-dimensional feature vectors xt by l contextual
vectors to the left and r contextual vectors to the right. Thus,
the total number of stacked frames is l + r + 1. Therefore, the
dimension of input feature vectors to the DNN is D = d(l+r+1)
corresponding to every frame xt. (For the initial and final few
feature vectors, some form of padding or repetition is used.)
Thus there are D visible units in the input layer of the DNN.
There will be J hidden layers and each hidden layer contains
k units with a rectified linear unit (ReLU) activation [15]. The
output layer is the softmax output layer, with one output for
each class. Typically, J varies from 2 to 3 and k varies from
256 to 1024 for typical speech tasks [15], [16]. For each input
vector corresponding to xt, the DNN outputs a score fc(xt) for
each class c. For any test example, the class label is decided
as

arg max
c

T
∑

t=1

fc(xt) (14)

Figure 1 shows the complete topology of the baseline fully
connected DNN. Stochastic gradient descent with error back-
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Fig. 1. DNN topology with D input units, J hidden layers with k units in
each layer and n softmax output units.



propagation [15], [16] is used for training the DNN. Initial-
ization of the weights have to be done with care [16]. In this
work, we use supervised pre-training for this purpose [18]. The
idea of pre-training is to learn one layer of weights at a time
with the outputs in one layer acting as the input for training
the next layer. After this pre-training, the multiple layers of
weights can be used as a much better starting point for a fine-
tuning phase during which back-propagation through the DNN
slightly adjusts the weights found in pre-training.

IV. Databases and features used in the studies

The dataset used in our study was collected at the Great
Himalayan National Park, situated in the lower Himalayas, in
north India. The recordings were collected manually using a
directional microphone and were labelled with the species by
experienced birdwatchers. The same equipment was used in all
the recordings, and the recordings have no overlapping calls.

Recordings from 26 different passerine species were used
in this study. The durations of the recordings varied from 86
seconds to 15 seconds and the average duration was about
40 seconds per species. Long recordings were segmented into
individual calls by analyzing the amplitude of the samples.
These served as training and testing examples. In order to avoid
biasing towards any class having larger number of training
examples, we have considered about 14 seconds of data for
the training of each class and the remaining data were used
for testing. This leads to a total of 232 training examples and
the test set includes a total of 329 examples. Table I shows
the details of the database used for the study. The evaluation
metric is the identification accuracy obtained on the test set.

39-dimensional Mel frequency cepstral coefficients
(MFCCs) consisting of 12 base coefficients, 1 log-energy
and their corresponding delta and acceleration coefficients
were utilised as features. The MFCCs are extracted from
32 Mel filterbanks. A frame size of 20 ms and a shift of
10 ms are used. These features are used to build Gaussian
mixture models (GMMs), dynamic kernel based SVMs and
DNNs. Additionally, the logarithm of the Mel filterbank
energy coefficients (log MFEC) have also been utilised as
inputs to DNNs in speech tasks [15]. We also consider these
32-dimensional features from every frame for building the
DNNs.

In this study, we consider 7 contextual vectors to the left
and 7 contextual vectors to the right of every tth frame. This
makes the total number of stacked frames in the DNN as 15
and hence, the dimension of the input feature vectors is D =
d ∗15 corresponding to every frame. The d here may be either
39 or 32, depending upon the features considered.

V. Experimental studies on bird call identification

In this section, we first study the effectiveness of the
dynamic kernels for bird call identification using SVM-based
classifiers.

We consider SVMTorch [19] tool to build the SVM-
based classifiers. In this study, one-against-the-rest approach
is considered for the 26-class bird call identification task.
The value of trade-off parameter, C in the SVM is chosen
empirically. In this work, the best results are observed for
C = 0.001.

TABLE I. Database of bird calls. The total training data for each
species is approximately 14 seconds long.

Number of Number of
Bird Species samples for samples for

training test

Lesser Cuckoo 7 3

Black Throated Tit 8 12

Black and Yellow Grosbeak 10 12

Blackcrested Tit 5 9

Chestnut-crowned Laughingthrush 8 11

Eurasian Treecreeper 9 5

Golden Bushrobin 10 14

Great Barbet 10 20

Grey Bellied Cuckoo 10 7

Grey Bushchat 8 9

Greyhooded Warbler 7 3

Greywinged Blackbird 4 6

Himalayan Monal 11 25

Large-billed Crow 7 4

Orange-flanked Bushrobin 8 10

Oriental Cuckoo 9 7

Pale-rumped Warbler 6 6

Rock Bunting 6 7

Rufous-gorgetted Flycatcher 9 8

Rufous-bellied Niltava 9 9

Russet-backed Sparrow 14 38

Spotted Nutcracker 19 31

Streaked Laughingthrush 9 4

Western Tragopan 8 5

White-cheeked Nuthatch 10 52

Yellow-bellied Fantail 11 12

Table II compares the accuracies for the bird call identifica-
tion task obtained using the GMM-based classifiers and SVM-
based classifiers using the state-of-the-art dynamic kernels
mentioned in Section II. In this study, the GMMs whose
parameters are estimated using the maximum likelihood (ML)
method (MLGMM) or by adapting the parameters of the UBM
to the data of a class (adapted GMM) [9] are considered
for the GMM-based classifiers. The GMMs are built using
diagonal covariance matrices. The accuracies presented in
Table II are the best accuracies observed among the GMM-
based classifiers and the SVM-based classifiers with dynamic
kernels by varying the following parameters: Q, the number of
components in the GMM or the UBM; δ, the width parameter
of the Gaussian kernel used in GMM-based IMK; L, the
number levels in the pyramid and b, the branch factor used
in GMM-based PMK.

It is seen that the adapted GMM-based classifier gives bet-
ter performance than the ML GMM-based classifier. The better
performance of the adapted GMM-based system is mainly due
to robust estimation of parameters using the limited amount of
training data available for each class, as explained in [9]. It is
also seen that performance of the SVM-based classifiers using
the state-of-the-art dynamic kernels is comparable to that of
the GMM-based classifiers. This is mainly because a GMM-
based classifier is trained using the non-discriminative learning
based technique, where as an SVM-based classifier using
the dynamic kernels is built using a discriminative learning
based technique. It is also seen that the GUMIK-based SVM
performed better than other dynamic kernel based SVMs and



TABLE II. Comparison of classification accuracy (CA) (in %) of the
GMM-based classifiers and SVM-based classifiers using PSK, GMMSV
kernel, GUMI kernel, GMM-based IMK and GMM-based PMK for bird
species recognition task. Q indicates the number of components considered in
building GMM for each class or the number of components considered in
building UBM or the number of virtual feature vectors considered. The pair

(L, b) indicates values of L, number of levels and b, branching factor
considered in constructing the pyramid. C indicates the trade-off parameter

in SVM.

Classification Model Q/(L, b) C CA

MLGMM 16 - 93.44

Adapted GMM 64 - 95.57

SVM
using

PSK 1024 0.005 96.35
GMMSV Kernel 512 1 96.05
GUMI Kernel 128 0.1 98.18
GMM-based PMK (7,3) 1 97.57
GMM-based IMK 128 0.1 97.87

the GMM-based classifiers.

Next, we study the effectiveness of DNNs for bird call
identification. Experiments are carried out using different ar-
chitectures i.e, different numbers of hidden layers (J) and
different number of nodes (k) in each hidden layer. Table III
presents the accuracies for the bird call identification task
obtained using the different architectures while using MFCCs
as well as log MFECs as features. It is seen that, in both
cases a DNN with 3 hidden layers (J = 3) and 512 units
(k = 512) in each hidden layer gives better accuracy (although
not significantly so.) It is also observed that, in all cases, the
DNN performed better while using log MFEC features than
conventional MFCC features.

TABLE III. Classification accuracy of DNN-based classifiers for bird
call identification task withMFCC and logMFEC features. Here, J and k

indicates the number of hidden layers and number of units in each hidden

layer considered respectively in the DNN.

J k MFCC log MFEC

256 95.44 97.17
2 512 96.05 98.18

1024 95.74 98.18

256 96.35 97.42
3 512 96.65 98.48

1024 96.35 98.18

The observed best accuracies of SVM-based classifiers us-
ing dynamic kernels and DNN-based classifiers are compared
in Figure 2 using bar charts. It is seen that the SVM classifiers
with GUMIK perform better than the DNN using MFCC
features. The classification accuracy of SVM with GUMIK
is comparable with DNNs using log MFEC as features.

VI. Conclusions

In this paper, we explored speech and audio processing
techniques for the identification of bird calls. We have explored
dynamic kernel based support vector machine (SVM) and fully
connected deep neural networks (DNNs) as classifiers for the
identification of birds. This work focused on studying the
calls of birds from the lower Himalayan regions. Twenty six
bird species are considered for the study. MFCC features are
extracted from each recording and is used to build dynamic
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1: MLGMM

2: Adapted GMM

3: SVM with GMMSVK

4: SVM with PSK

5: DNN using MFCC

6: SVM with GMMPMK
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Fig. 2. Comparison of classification accuracy (in %) of the GMM-
based classifiers, SVM-based classifiers using PSK, GMMSVK, GUMIK,
GMMIMK & GMMPMK and fully connected DNN-based classifiers for bird
call identification task.

kernel based SVM classifier and DNNs. The state-of-the-art
dynamic kernels such as PSK, GMMSV kernel, GUMI kernel,
GMM-based IMK and GMM-based PMK are considered to
match the bird calls. Log Mel-filterbank energy coefficients are
also considered as feature to build fully connected DNNs. The
performance of dynamic kernel based SVMs in identifying the
bird calls is compared with that of the DNN-based classifiers
and results are found to be comparable.

The recordings of bird calls considered for this study are
fairly clean. One of the future directions is to evaluate the
above methods in noisy conditions. This study would give
the robustness of the classifies considered in this work to
noise. It is shown in the literature that the convolutional neural
networks (CNNs) are more robust to the noise [20], [21].
Another direction to the future work is in exploring CNNs
for the bird recognition task.
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