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Abstract—This paper applies the framework of robust prin-
cipal components analysis (RPCA) to the problem of classifying
acoustic soundscapes. RPCA provides a mechanism to decompose
a data matrix as the sum of a low-rank matrix and a sparse
matrix. In the context of data representing acoustic soundscapes,
the low-rank matrix represents the slow-changing background
sound events, and the sparse matrix represents the occasional
foreground sound events. The data representations are obtained
as feature embeddings from pretrained deep convolutional net-
works. The paper investigates the effectiveness of classifying
acoustic soundscapes by using the foreground or background
information alone. Further, by using the subspace projection
technique of nuisance attribute projection (NAP), the undesired
components from the foreground or background are removed.
Our results indicate that RPCA and subspace projections in-
deed provide benefits in improving discrimination for classifying
acoustic soundscapes.

Index Terms—Acoustic scene classification, robust PCA, sub-
space projections

I. INTRODUCTION

Real-world data in many situations can be seen as occa-
sional events happening in a (relatively) slow-changing envi-
ronment. For example, such a situation can be in a surveillance
video captured by closed-circuit camera. Here, there is a
mostly constant background, inter-spaced by occasional move-
ments of people or objects in the video. Another example is the
acoustic environment inside a bus. There is the constant sound
of the engine (the slow-changing component), interspaced by
the door opening or people talking (occasional events). Yet
another example is the acoustic environment in a restaurant.
There is the constant murmur of diners and the clink of cutlery
(the slow-changing part) and the occasional sounds of laughter
or more unusual sounds.

For analysing and classifying acoustic soundscapes such
as these, it sometimes may be useful to separate the slow-
changing background sounds (the sound of the bus engine
or the murmur of diners) from the occasional sound events
(opening of the bus door or laughter in the restaurant). The
framework of robust principal component analysis (RPCA)
provides a method to perform this separation [1] [2]. RPCA
decomposes a set of observations represented by a data matrix
M as

M = L+ S,

where L is a low-rank matrix representing the slowly-changing
background events, and S is a sparse matrix representing the

outliers or occasional events.
This paper examines the task of soundscape classification or

acoustic scene classification (ASC) utilising the RPCA frame-
work. The paper also examines if the removal of background
and using only the foreground (and vice versa) helps in better
classification. Furthermore, by using the subspace projection
method of nuisance attribute projection (NAP), it is also
explored if partial removal of either can be useful. Individual
acoustic soundscapes may be classified into broader categories
such as indoor, outdoor or vehicle etc. In this situation, the
background may be very different across categories. At the
same time, soundscapes within a category may have similar
backgrounds, and hence the foreground may be crucial in
discriminating between them.

Vaswani et al. [1] [2] in their review papers gave a detailed
description about RPCA, the problems in learning the sub-
space, and various algorithms to solve the low-rank and sparse
matrix decomposition. They also provide details about various
RPCA applications in computer vision and video analytics,
dynamic and functional MRI and detecting anomalies in
computer and social networks. Huang et al. [3] applied RPCA
to separate singing voice from monaural recordings, where
they use the augmented Lagrange multiplier method borrowed
from Lin et al. [4] to solve the low-rank and sparse matrix
decomposition.

Source separation is a related problem. There are a few
works where the authors apply source separation for ASC,
though the explicit low-rank and sparse formulation as in
RPCA is not applied. Mun et al. [5] trained a recurrent
neural network (RNN) for source separation and used mid-
layer features from RNN as novel discriminative features.
Han et al. [6] proposed a neural network based ensemble
model trained with spectrograms generated from binaural
audio, background subtraction and harmonic-percussive source
separation to achieve better classification accuracy.

In recent years, most of the works in ASC uses time-
frequency representations such as log-mel spectrogram [7]
[8], constant-Q transform spectrogram [9] and scalogram [10].
These time-frequency representations are treated as images
and features (also called embeddings) are extracted using
convolution neural networks (CNN) for downstream classi-
fication. However, a few methods use raw audio signals for
extracting features. Arshdeep et al. [11] used SoundNet, a deep
convolution neural network (DCNN) for extracting features



from raw audio signals. In this paper, we explore both time-
frequency representation (log-mel spectrogram) as well as raw
audio signals for extracting embeddings by deploying pre-
trained deep convolution neural networks (DCNN) as feature
extractors.

The rest of this paper is organized as follows. Section II
describes the RPCA framework in brief. Section III introduces
the subspace projection method we employ to manipulate the
fineness of the background or foreground supression . Section
IV describes the proposed framework. Section V presents the
experimental results. We conclude the paper in Section VI.

II. ROBUST PRINCIPAL COMPONENT ANALYSIS

Traditionally, principal component analysis (PCA) is used to
learn a representation or basis for a given set of observations.
By utilising the significant columns of the PCA matrix, a
subspace can be formed where most of the observations lie.
But PCA is sensitive to outliers or data corruptions. This
situation can arise easily in real-world data. Robust PCA
(RPCA) overcomes this issue by assuming that outliers are
additive and sparse. RPCA is a convex program that recovers
low-rank matrices when a fraction of their entries are corrupted
[3]. The low-rank matrix can be recovered by solving the
following convex optimization problem:

minimize ||L||∗ + λ||S||1, (1)

subject to L+ S =M, (2)

where M,L and S ∈ Rn1×n2, || · ||∗ and || · ||1 denote
the nuclear norm (sum of singular values) and the L1-norm
(sum of absolute values), respectively. λ > 0 is a trade-off
parameter between the rank of L and the sparsity of S. For
more details about RPCA and the algorithms used to solve the
decomposition please refer to [1].

Fig 1 illustrates the procedure of RPCA applied to an
audio signal. The spectrogram representation M of the audio
signal is approximated as the spectrograms L + S. Here
L represents the background sounds and S represents the
foreground sounds. Time-domain signals are obtained from L
and S by utilising the inverse short-time Fourier transform and
the phase of the original audio signal. Spectrograms from an
audio example including those of foreground and background
are illustrated in Figure 2.

III. SUBSPACE PROJECTIONS

In some situations, the RPCA solution may not give the
best desirable separation. For example, in acoustic scenes such
as a library or a metro station, complete separation of the
background from the foreground may not be possible. In these
cases, it may be useful to be able to separate a part of the
background or the foreground. One way to achieve this is by
using subspace projections as described below.

Nuisance attribute projection (NAP) is a technique used
in speaker recognition to compensate channel effects on the
speech signal. This is achieved by removing dimensions that
are irrelevant to the task [12] [13]. A similar technique was

Fig. 1: RPCA based foreground and background separation.
The phase of original audio signal is used to reconstruct
foreground and background signals [3].
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Fig. 2: Mel spectrograms, for an audio example from sound-
scape “beach”, before and after RPCA. Top: The original audio
M . Middle: The background L. Bottom: The foreground S.
The spectrograms are shown in log scale for better visualiza-
tion.

applied in face recognition to remove illumination artifacts
[14]. NAP is used to remove the unwanted session/nuisance
variations from a vector representation of the data item of
interest.

NAP attempts to remove the unwanted variations by apply-
ing the following transform to the data vector X , to get the
nuisance-removed vector X̃:

X̃ = X–BBTX = (I–BBT )X. (3)

Here B is an orthogonal basis matrix whose columns span
the nuisance space, and I is the identity matrix. B can
be estimated by learning a suitable representation from a
collection of nuisance data.

In our context, the nuisance factor could be either the
background of the acoustic scene or the foreground, depending
on what we are trying to suppress when the classification



Fig. 3: Illustration of constructing background basis and fore-
ground basis for NAP.

is performed. The process of learning the basis matrix is
illustrated in Fig 3. Taking enough examples of signals con-
taining only background signals, a basis is learnt using PCA,
to give the background basis Bb. A similar process is done
for developing the the foreground basis Bf .

IV. THE PROPOSED FRAMEWORK

The proposed framework is illustrated in Figure 4. After
feature extraction, the input audio signal is represented by
the vector X . This vector contains information from both the
foreground and the background. If we assume that most of the
information for classifying an acoustic scene comes from the
background, we can consider the foreground sound events as
the nuisance attributes. In this case, NAP is performed on X
by subtracting the nuisance components of X:

Xb = X–BfB
T
f X (4)

Here Xb is the vector that represents the “foreground-
removed” representation. Similarly, if we assume that the fore-
ground contains most of the information to classify the scene,
we consider the background sound events as the nuisance
attributes. NAP is then performed on X by subtracting the
nuisance components of X:

Xf = X–BbB
T
b X (5)

Here Xf is the “background-removed” representation. By
varying the number of components (in other words, columns)
in the NAP basis, we can control the amount of foreground
or background to be suppressed in Xb or Xf respectively.

In the above equations, Bf represents foreground basis,
Bb represents background basis and X represents the feature
embeddings for the original (nonseparated) audio signal.

The information from the resulting vectors Xb and Xf can
be combined further by using feature fusion or decision fusion.
This has the effect of classifying with both the foreground
as well as the background, although in separate streams.
Moreover, NAP can be used to control the amount of nuisance
information being suppressed in either case.

Fig. 4: Proposed framework, using NAP to suppress fore-
ground or background. A combination is used to make the
final decision.

V. EXPERIMENTAL EVALUATION

We describe here the experimental evaluation of the pro-
posed method for acoustic scene classification. The primary
purpose of the experiments are to determine if separating
the slow-changing background and the sparse foreground is
effective when compared to not separating them. Hence, our
baseline systems extract embeddings from the input audio
signal without any separation and classifies them. This is
compared with various schemes where the background and
foreground are separated, including: (1) individual classifica-
tion using only background and only foreground, (2) applying
NAP, followed by individual classification using foreground
and background, and (3) combining the information from
foreground and background using feature fusion or decision
fusion. We also compare our results with the non-ensemble
methods reported in [8] and [6]. The compared system in [8]
uses PLDA classifier trained on features extracted from CNN
based models. These CNN models are trained on spectrogram
image features using log scaled filter-banks. The compared
system in [6] uses neural network trained on spectrograms
from background subtraction with a median filter.

A. Dataset

We used DCASE 2017 ASC (task 1) development dataset
[15]. This dataset has 15 scenes which are broadly cat-
egorized in to three categories namely vehicle (Bus, Car,
Tram, Train), outdoor (Urban park, Residential area, Lakeside
beach, City center, Forest path) and indoor (Grocery store,
Cafe/Restaurant, Home, Metro station, Library, Office). Audio
examples are recorded at 44.1 kHz sampling rate with a
binaural microphone then the recordings are split into audio
segments of length 10 seconds. We train and evaluate our
models (4-fold cross-validation) as per the guidelines provided
in the DCASE 2017 ASC task 1 [15].

B. Feature extraction and classification

We use two different feature extractors namely VGG16
and L3-Net to derive embeddings from audio signals. For the
embeddings from VGG16, we computed log-mel spectrogram



(a) Feature extraction using VGG16.

(b) Feature extraction using L3-Net.

Fig. 5: Feature extraction procedure used to derive embeddings
from the input audio signal.

for each audio signal using Hann window with window
size of about 40 ms and hop length 10 ms. These log-mel
spectrograms saved as colour PNG images are input into the
VGG16 model [16] as shown in Fig. 5a. We use the same
model and weights which are trained on Imagenet dataset
and extracted features from the last convolution block. The
extracted feature embedding is a column vector of length 8192
after flattening.

Similarly, we used Openl3 library which is an open source
implementation of L3-Net from the authors of [17]. L3-Net is
a pre-trained model trained on the AudioSet dataset. Openl3
library accepts raw audio signal as input, computes mel-
spectrogram with 128 bands and returns embedding of length
6144 × 1 for each audio frame. In our case it accepts raw
wave form (10 sec) as input and outputs embedding of size
6144 × 97 where 97 corresponds to the time dimension. We
average the embedding across time to get a column vector of
length 6144 as shown in Fig. 5b.

In all cases, our classifier is a simple support vector machine
(SVM) trained one-against-one on the input embeddings, using
a linear kernel. Since the objective of the paper is to determine
the effectiveness of foreground-background separation, we did
not perform any fine-tuning of the classifier.

The baseline systems described above also uses the same
feature extraction procedure. The results of the two baseline
systems are given in Table I. It can be seen that the L3-
Net embeddings perform better than VGG16 embeddings, as
it is trained with the large-scale AudioSet dataset, which is
fine-tuned with the proper and better design choices for audio
signals [17]. All results are in terms of classification accuracy.

C. Effect of separating foreground and background

We now investigate the effect of the separation of fore-
ground and background using RPCA. RPCA is applied in the
manner depicted in Fig 1, where the input audio signal is
given to the algorithm, and two separate audio signals (one
for background and one for foreground) are generated. We
utilise the implementation of RPCA in [3], which utilised the

TABLE I: Results without NAP: baseline (no separation of
foreground and background), using only background, using
only foreground.

Baseline Background
only

Foreground
only

VGG16 + SVM 68.05 65.79 55.79
L3-Net + SVM 84.70 83.23 74.97

phase of the original audio signal to obtain the foreground
and background signals. Once the foreground and background
signals are obtained, we train separate SVM classifiers for
each. The results using only foreground or only background
using the two different embedding schemes are also given in
Table I. The results seem to indicate that the background is
more useful for classification than the foreground.

D. Effect of NAP

Learning basis for NAP: The nuisance basis for the fore-
ground Bf and the background Bb is learnt as depicted in Fig
3. RPCA is performed on the input audio signal as shown in
Fig 1 to generate foreground and background audio signals.
Feature extraction is done on these signals using with either
VGG16 or L3Net, and PCA is performed to determine the
columns of Bf and Bb. The corpora used for this consists of
all examples from all classes in the training set. By varying the
number of principal components to use (which form the the
columns of Bf or Bb), we control the amount of foreground
or background that will be removed while performing NAP
with Bf or Bb respectively.

We now examine the effect of partially suppressing the
background or foreground using NAP. The results of applying
NAP are shown in Fig 6. This demonstrates that there is
an improvement in classification accuracy on VGG16 embed-
dings by 0.65% as a result of suppressing the foreground, and
0.41% as a result of suppressing the background. For L3-Net
embeddings, there is an improvement of 0.38% and 0.17%
by suppressing the foreground and background respectively.
The number under each bar corresponding to NAP in Fig 6
indicates the size of the basis used for the projection. Only the
best performing results are shown. The results also indicate
that considering the foreground as the nuisance attribute (the
unwanted attribute) leads to higher performance gains in
classification, when compared to the background. This again
indicates that the background carries more useful information
for classification. The methods in [8] and [6] achieve similar
results, though they use more sophisticated feature extraction
and classification pipelines.

E. Fusion Based Analysis

Since the application of NAP did not deteriorate perfor-
mance, it motivates the combination of information from the
foreground and background. For this, we next apply fusion in
both, the embedding space (also termed early fusion) and the
decision space (also termed late fusion).



Fig. 6: Classification results after suppression via NAP. The
left subplot gives results for VGG16: baseline, after suppress-
ing foreground, after suppressing the background. The right
subplot gives the results for L3-Net: baseline, after suppressing
the foreground, after suppressing the background, and results
from [8], [6]. The number under NAP gives the number of
components in the NAP basis.

Fig. 7: Results of fusion after NAP. The numbers under each
bar gives the number of components in the NAP basis. The
number above is for the foreground basis and that below is
for the background basis.

The results of applying fusion are shown in Fig. 7. All the
results are higher than the respective baselines. The largest
improvement obtained for VGG16 embeddings was 2.25%
with decision fusion, using 200 components for the foreground
basis, and 50 components for the background basis. For L3-
Net embeddings the improvement was 1.96% with decision
fusion, using 200 components for the foreground basis and 50
components for the background basis. These are depicted in
the last orange bars in both subfigures of Fig 7. These results
are close to those achieved in [6].

F. Discussion

The improvements after applying NAP are modest, though
promising. The RPCA algorithm does introduce some artifacts
in both the generated foreground and background signals. Thus
the bases learnt for NAP are probably capturing these artifacts
as well. Suppressing the artifacts while learning the NAP
basis is part of future investigation. Also, choosing the correct
number of components in the NAP basis is crucial.

VI. CONCLUSION

This paper explored the use of RPCA to separate fore-
ground and background components of an audio signal to

perform acoustic scene classification. Our experiments indicate
that by using NAP subspace projections, suppression of the
foreground components achieve improvements in classification
accuracy. They also indicate that the background is generally
more useful than the foreground, but the foreground also
contains important cues that help in discrimination.
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