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Abstract

Conventional speaker verification systems utilize information from different feature representations by
means of fusion. In this paper, we propose an alternative technique which achieves a similar effect
but utilizes a more effective feature selection technique.The underlying assumption of the method
is that different speakers may be better represented, and hence better verified, in different feature
spaces. This technique, which we term as feature-switching, performs verification using a feature
representation most suitable to the speaker under consideration. Out of a possible set of candidate
representations, the most optimal representation for a speaker is determined during enrollment. Then
verification is performed using the optimal feature of the claimed speaker. Experimental evaluation of
feature-switching is performed utilizing the classical GMM-UBM speaker verification system, as well
as the i-vector-based verification system. Our results show that feature-switching achieves improved
performance compared to conventional as well as fusion-based systems.
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1. Introduction

Feature extraction is an important step in
pattern recognition systems. For speech sig-
nals, feature extraction is a transformation from
the acoustic space to a feature space. In text-
independent speaker verification, the objective is
to determine if two utterances (the enrollment ut-
terance and the test utterance) are both spoken
by a particular speaker. We expect that the trans-
formation into the feature space effectively dis-
criminates the utterances spoken by the speaker
under consideration from those spoken by other
speakers. Most speaker verification systems, how-
ever, apply the same transformation, no matter
which speaker is being considered. In this pa-
per, we explore a new paradigm which exploits
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the diversity of information present in different
feature spaces for speaker verification. The un-
derlying assumption is that different speakers may
be better discriminated in different feature spaces.
Hence, performance can be improved by utilizing
the ‘well-suited’ feature space for each speaker.
We term this technique feature-switching and the
well-suited feature space as the optimal feature
space.

Traditionally, the diversity of different feature
transformations has been utilized by combining
them. These include the so-called early fusion,
which is a combination at the feature level, and
late fusion, which is at the classifier (or decision)
level. Combining the information from multi-
ple feature transformations usually results in im-
proved performance, albeit with an increase in
system complexity. Feature-switching aims to uti-
lize information from multiple feature representa-
tions in an unconventional manner. Early fusion
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systems typically work by concatenating feature
vectors; hence, the resulting feature space is of
higher dimensionality. This in turn, requires more
data to effectively train statistical models. Late
fusion requires individual systems to be developed
and fused; in platforms with limited processing or
storage space, this could be undesirable. A pop-
ular method for the late fusion of speaker verifi-
cation systems is by using logistic linear regres-
sion [1, 2, 3]. The feature-switching technique at-
tempts to get the benefit of multiple feature rep-
resentations while reducing system complexity at
the same time.

Most feature representations transform the
speech signal into its spectral representation. The
short-term Fourier transform is a complex quan-
tity, with information present in both magnitude
and phase spectra. It is known from linear system
theory, that non-minimum-phase signals have dif-
ferent information in magnitude and phase spec-
tra [4]. Several studies [5], [6], [7] have shown the
complementary nature of magnitude and phase,
and how combining feature vectors derived from
each of them improves performance in various
tasks. In this paper, we study the effectiveness
of feature-switching for speaker verification us-
ing feature representations from magnitude-based
and phase-based features. We perform feature-
switching using the standard Mel-frequency cep-
stra (MFCC) [8], which is derived from short-term
magnitude, and the modified group delay feature
(MODGDF) [9], which is derived from the short-
term phase. For each speaker, the better-suited
of these two representations is determined be-
forehand. Then, feature-switching is applied for
speaker verification by verifying some speakers us-
ing MFCC features, and others using MODGDF
features.

We study feature-switching for speaker ver-
ification in the context of the classical Gaus-
sian Mixture Model- Universal Background Model
(GMM-UBM) system [10], and the more sophisti-
cated i-vector based representation [11]. In both
cases, our studies show that feature-switching
improves verification accuracy, when compared
to conventional systems which use only a sin-
gle feature representation. In addition, feature-

switching also shows an improvement over fusion
systems.

The idea of feature switching for the GMM-
UBM framework was initially proposed in [6], and
was extended in [12] on older speech corpora.
NTIMIT data was used in [6], and NIST 2003
speaker recognition evaluation (SRE) data was
used in [12]. In this work, feature-switching is
evaluated on the GMM-UBM framework, using
the more challenging NIST SRE 2010 data [13].
Also, a new feature selection method is proposed
to apply feature-switching on the i-vector frame-
work, and experimental evaluation is performed
on the same dataset.

The rest of the paper is organized as follows:
The effect of separability of features in different
feature spaces is analysed in section 2. The pro-
cess of selecting the optimal feature and feature-
switching is explained in section 3. The candidate
features used for feature selection is explained in
section 4 followed by experimental evaluation in
section 5. We conclude in section 6.

2. Separability analysis in different feature
spaces

The underlying hypothesis for feature-
switching is that representations of speakers are
separated differently in different feature spaces.
To study this, we perform separability studies in
MFCC space and MODGDF space.

In the classical GMM-UBM framework [10],
a speaker is represented by a GMM. Given fea-
ture vectors extracted from a speech utterance,
the likelihood ratio of the speaker GMM and the
UBM is computed. Better separation between the
GMM and the UBM implies improved accuracy in
verification.

Figures 1 and 2 illustrate the separability ob-
tained in MFCC and MODGDF feature spaces
for two speakers. In these figures, MFCC and
MODGDF feature vectors are reduced to two di-
mensions using the Sammon mapping technique
[14]. The mean vectors of a 32-component speaker
GMM and UBM are plotted in two-dimensional
space.
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(a)

(b)

Figure 1: Sub-figures (a) and (b) show a speaker and back-
ground model centroids for a speaker in MFCC and MOD-
GDF spaces. This speaker and the UBM are better sepa-
rated in the MODGDF space.

Sammon mapping represents high dimensional
vectors in a lower dimensional space such that
the geometric relations between the original data
points are preserved as much as possible. The
measure used by Sammon mapping is designed to
minimize the differences between corresponding
inter-point distances in the two spaces [15].

It can be seen that in Figure 1, there is bet-
ter separation between the speaker GMM and the
UBM in the MODGDF space when compared to
the MFCC space. If this Sammon mapping re-
flects the properties of the higher dimensional

(a)

(b)

Figure 2: Sub-figures (a) and (b) show a speaker and back-
ground model centroids for a speaker in MFCC and MOD-
GDF spaces. This speaker and the UBM are better sepa-
rated in the MFCC space.

space then, this speaker is better discriminated
against the UBM in the MODGDF space. Simi-
larly, for another speaker, the better separation is
observed in the MFCC space (Figure 2).

A similar analysis is performed in i-vector
space by considering i-vectors derived from differ-
ent feature representations. For a given speaker,
target trials are those spoken by the speaker him-
self or herself, and are also called true-speaker tri-
als. Non-target trials are spoken by other speak-
ers, and are also called impostor trials. 500-
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(a)

(b)

Figure 3: Sub-figures (a) and (b) show the i-vectors de-
rived from MFCC and MODGDF for target and impostor
trials. For this speaker, target and impostor i-vectors are
better separated in the MFCC space.

dimensional i-vectors are reduced to two dimen-
sions using Sammon mapping. The better sepa-
ration of target and non-target i-vectors for two
different speakers in MFCC and MODGDF space
can be readily seen in Figures 3 and 4 respectively.

3. Optimal feature selection and feature-
switching

Speaker verification is a two-class problem.
A verification trial consists of a test utterance
from an unknown speaker, and a speaker claim.

(a)

(b)

Figure 4: Sub-figures (a) and (b) show the i-vectors de-
rived from MFCC and MODGDF for target and impostor
trials. For this speaker, target and impostor i-vectors are
better separated in the MODGDF space.

Feature-switching can be naturally applied to the
verification scenario by performing verification
in the well-suited feature space of the claimed
speaker. This well-suited feature representation
is henceforth termed as the optimal feature. The
optimal feature is determined for every speaker
during enrollment and stored in a look-up table.
During testing, the optimal feature of the claimed
speaker is looked-up, and verification is performed
in the optimal feature space. The overall archi-
tecture of the feature-switching system is shown
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in Figure 5.

Figure 5: System architecture for training and testing
phases in feature-switching.

3.1. Determining the optimal feature for the
GMM-UBM framework

For the GMM-UBM framework, the method
of determining the optimal feature for a particu-
lar speaker, given a set of candidate feature rep-
resentations, was described in [12]. The optimal
feature is determined by evaluating the represen-
tation ability and discrimination ability of each
candidate feature representation. Given an enroll-
ment utterance, the mutual information between
extracted feature vectors and the complex Fourier
transform (CFT) is used as an estimate of the in-
formation captured by the feature vectors. Thus,
the representation ability of the feature represen-
tation is given as

mi(C, X), (1)

where mi represents the mutual information, C is
the complex short-time Fourier transform repre-
sentation of an utterance, and X is a set of feature
vectors computed from the utterance.

The mutual information (MI) between two
random variables is a measure of how much infor-
mation about one variable can be obtained, given
knowledge of the other [16]. In [17] the connec-
tion between MI and classification accuracy for
a speaker verification system is illustrated. In
[16, 18] MI is used to choose appropriate feature
representations from several possible options.

The CFT is a representation of the acoustic
signal. The CFT representation is the basis for

deriving information from the magnitude or phase
spectra. MFCCs are derived from the magni-
tude spectrum, and the MODGDF features are
derived from the phase spectrum. Thus, view-
ing the CFT, MFCC, and MODGDF as alternate
representations of the acoustic signal, the MI be-
tween CFT and MFCC is an approximation of
how much information is captured from the mag-
nitude spectrum. Similarly, the MI between CFT
and MODGDF is an approximation of the infor-
mation captured from the phase spectrum. Thus,
whenever spectral features are used, the MI be-
tween the CFT representation and a feature rep-
resentation X is a metric to measure the informa-
tion captured in the feature space from the acous-
tic space.

As in Equation (1), if C represents a collection
of N-point CFT vectors and X represents a col-
lection of feature vectors (MFCC or MODGDF),
derived from the same utterance, the MI between
C and X is estimated as in Algorithm 1 [19].

A speaker model is said to be more discrim-
inative if it is well separated from other speaker
models. In the context of GMM-UBM speaker
verification, the “other” speaker model represents
the alternate hypothesis (or in other words, the
UBM.) Intuitively, if some of the components of a
speaker model are well-separated from the UBM
in a particular feature space, then that speaker
model is better discriminated from most of the
other speakers’ models in that feature space. On
the other hand, if the speaker model is close to
the UBM, then the speaker model will not have
much speaker-specific information.

The discrimination ability is determined by
estimating the Kullback-Leibler divergence (KL-
divergence) between the UBM (λubm) and the
speaker GMM (λspk) adapted from it. Because of
the one-to-one correspondence between the mix-
ture components of the background model and the
speaker model, the KL-divergence can be approx-
imated.
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Algorithm 1 Mutual information calculation

Input: CFT of a speech signal: C = {ci}, and
feature vectors of the speech signal : X = {xi}
where i = 1, 2, · · · ,M (M = number of frames).
Output: Mutual information between C and X.

1: Vector quantize the set C to form a codebook
A. Vector quantize the set X to form a code-
book B. Let both codebooks have P centroids.

2: Let Ĉjand X̂k denote centroids in A and B
with j = {1, 2, · · · , P} and k = {1, 2, · · · , P}.
The relative frequency of each centroid is an
approximate measure of the probability of oc-
currence of that centroid. The mapping of an
element ci to a codevector Ĉj is denoted by

Q(ci) = Ĉj.

P (Ĉj) =
|i : Q(ci) = Ĉj|

M
(2)

P (X̂k) =
|i : Q(xi) = X̂k|

M
(3)

where |.| denotes the cardinality.

3: The joint probability of occurrences of the
centroids Ĉj and X̂k is given by the number of

points belonging to the cluster pair (Ĉj, X̂k)

P (Ĉj , X̂k) =
|i : Q(ci) = Ĉj and Q(xi) = X̂k|

M
(4)

4: Using Bayes rule, the conditional probability
is obtained from the joint probability

P (X̂k|Ĉj) =
P (Ĉj, X̂k)

P (Ĉj)
(5)

5: From the probabilities, we can estimate the
entropy of CFT : H(C), entropy of X : H(X)
and average conditional entropy : H(C|X) as
follows

H(C) = −E
[
log

2
P (C = ci)

]
(6)

H(X) = −E
[
log

2
P (X = xi)

]
(7)

H(X|C) =
∑
c

P (C = c)H(X|C = c) (8)

6: Compute mi(C,X) = H(X) − H(X|C).

As in [20], for two unimodal Gaussian distri-
butions f̂ and ĝ, the KL-divergence has the closed
form expression

kld(f̂ , ĝ) =
1

2

[
log
|Σg|
|Σf |

+ Tr|Σ−1
g Σf | − d+

(µf − µg)
TΣ−1

g (µf − µg)
]
,

(9)

where f̂ = N (µf ,Σf ) and ĝ = N (µg,Σg).
For multi-modal speaker models λspk, whose

means µspk,i are adapted from the means µubm,i of
the UBM model λubm (the covariances and mix-
ture weights are same as that of the UBM), the
KL-divergence is approximated by [21]

kld(λspk, λubm) ≈
K∑
i=1

πi kld(fi, gi), (10)

where,

λspk =
K∑
i=1

πi fi,

λubm =
K∑
i=1

πi gi,

fi = N (µspk,i,Σi), and
gi = N (µubm,i,Σi).
πi are the mixture weights and i varies from 1 to
K, the number of mixture components. Here, fi
and gi are the corresponding unimodal Gaussian
distributions.

The optimal feature for a particular speaker
is determined from the combined representative
and discriminative measures of each of the P can-
didate features. For the p-th feature representa-
tion, we determine

θp = mi(C, Xp),

γp = kld(λspk,p, λubm,p),

where Xp are feature vectors, the speaker model
λspk,p and UBM λubm,p are in the p-th feature
space, and p ranges from 1 to P .

A linear combination of these two measures is
determined as

φp = αθp + (1− α)γp, (11)
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where α is a weighting parameter determined ex-
perimentally. The optimal feature p̂ for a given
speaker is determined as

p̂ = argmax
p
{φp} (12)

3.2. Determining the optimal feature in the i-
vector framework

The i-vector representation [11] is a fixed-
length representation of speech utterances. Given
an FM × 1 supervector of means, µ derived from
a UBM, a speaker and recording specific super-
vector s is assumed to be of the form

s = µ+ Tw. (13)

Here, the acoustic feature vector is F -
dimensional, the UBM has M components,
T is an FM × D low-rank matrix, and w is a
D × 1 latent vector with a standard normal dis-
tribution w ∼ N (0, I). The i-vector is estimated
as the mean of the posterior distribution of w,
given the utterance. Procedures to estimate the
hyperparameters µ and T , and estimate i-vectors
from an utterance can be found in [11].

The i-vector representing an utterance in-
cludes information about the speaker and the
channel. To compensate for unwanted channel ef-
fects, several preprocessing steps like length nor-
malization [22], and within-class covariance nor-
malization (WCCN) [23] are performed. A popu-
lar method to measure the similarity between two
i-vectors is the cosine distance [11].

To apply feature switching in the i-vector
framework, given an utterance, i-vectors are esti-
mated from different acoustic feature vectors and
their associated hyperparameters. The better-
suited i-vector representation for an enrollment
speaker is determined by comparing the speaker’s
i-vector with the i-vectors of N other speakers
from a held-out dataset. In our experiments,
NIST SRE 2008 [24] is used as the held-out
dataset to choose the optimal features. 1270 male
speakers and 1993 female speakers from the short2
training condition are chosen to estimate the op-
timal features for every enrolled speaker. The
short2 training condition includes both telephone

and microphone utterances. The optimal feature
space p̂ for the i-th speaker in the enrollment data
is estimated as:

p̂ = arg min
p
{Sp}, (14)

where

Sp =

N∑
j=1

d(wp,i, wp,j)

N
. (15)

Here, wp,j represents the i-vector for the j-th
speaker from the held-out dataset extracted us-
ing the p-th feature representation. wp,i repre-
sents the i-vector for the i-th speaker from the
enrollment dataset extracted using the p-th fea-
ture representation. d is a distance measure (for
example, cosine similarity) between i-vectors. For
the i-th speaker, the i-vector representation giv-
ing the minimum average similarity with the other
speakers from the held-out dataset is used as the
optimal feature representation. In summary, for
feature-switching, different speakers are verified
using i-vectors derived from different acoustic fea-
tures.

4. Features from magnitude and phase
spectra

The underlying assumption in feature-
switching is that information in different feature
representations can be utilized dynamically.
Earlier studies [5], [6], [7] have demonstrated
the complementary nature of the information
in magnitude and phase spectra. Standard
MFCC features are derived from the magnitude
spectrum. A popular method for utilizing infor-
mation from the phase spectrum is via group
delay functions [25]. The modified group delay
feature (MODGDF) [26], which is derived from
the modified group delay function [27], has been
explored as complementary features to MFCCs.
The procedure for extracting MODGDF features
is given in Algorithm 2 as in [9]. More details re-
garding the theory of MODGDF can be found in
[26] and [27]. In our experiments the MODGDF
parameters a, b and lifterω are set to 0.4, 0.9 and
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Algorithm 2 MODGDF feature extraction

Input: A frame of speech x(n)
Output: MODGDF features c(n)

1: Compute the DFT of the speech frame x(n)
as X(k).

2: Next, the DFT of the signal nx(n) is com-
puted as X̂(k).

3: Compute the cepstrally smoothed spectra of
X(k) and denote it as S(k). The parameter
lifterω is used to control the length of the win-
dow in the cepstral domain.

4: Compute the MODGD as:

τm(k) =

(
τ(k)

|τ(k)|

)
(|τ(k)|)a

where

τ(k) =
XR(k)X̂R(k) +XI(k)X̂I(k)

|S(k)|2b

and the parameters a and b are used to control
the dynamic range of the MODGD.

5: Compute the MODGDF features by taking
the DCT:

c(n) =

Nf−1∑
k=0

τm(k) cos(n(2k + 1)π/Nf ),

0 ≤ n < Nc

where Nf is the DFT size and Nc are the
number of cepstral coefficients.

8 respectively as mentioned in [9] (see Algorithm
2).

5. Experimental evaluation

This section details the experimental eval-
uation of speaker verification in the feature-
switching framework. We give details about the
dataset used, the development of the feature-
switching system, and comparisons with baseline
and fusion systems.

5.1. Development and evaluation data

Speaker verification experiments are per-
formed on a subset of the NIST 2010 SRE dataset.

The data contains telephone and microphone ut-
terances under varying vocal effort, as detailed
in [13] are used for enrollment and evaluation.
These are summarised in Table 1. Gender-specific
hyperparameters for the speaker recognition sys-
tems including the UBM and the T-matrix are de-
veloped using data from SRE99, SRE03, SRE04,
SRE05, SRE06, SRE08, and SRE08-extended
data.

5.2. Baseline verification systems

Feature-switching is performed on two speaker
verification frameworks: the GMM-UBM system,
and the i-vector system. The evaluation metric
used is the equal error rate (EER), and is evalu-
ated separately for male and female genders.

Voice activity detection (VAD): VAD is
an important component in speech processing sys-
tems. In our systems, speech frames of 25 ms size,
with a frame shift of 10 ms are utilized. Since the
utterances are fairly clean, a simple VAD using
a threshold on average short-term energy is uti-
lized. This typically discards about 20-25% of the
input frames.

GMM-UBM system: GMM-UBM sys-
tems are developed separately for MFCC and
MODGDF feature representations. Conven-
tional short-time feature vectors are extracted in
each feature domain. Gender-dependent 1024-
component UBMs are built from development
data. Speaker-dependent GMMs are generated
for the enrollment data by adapting the means of
the top 10 maximum contributing mixture com-
ponents of the UBM. For each test utterance, sim-
ilarity scores are computed as the ratio of the
log-likelihood of the extracted features with the
speaker model and the UBM.

The baseline systems are denoted as follows.
The names of the various systems compared are
self-descriptive and individual systems are built
for each gender.

1. UBM-MFC: Baseline GMM-UBM verifica-
tion system with MFCC features

2. UBM-MGD: Baseline GMM-UBM verifica-
tion system with MODGD features
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Table 1: NIST 2010 conditions used in the evaluation

Condition Channel Training vocal effort Testing vocal effort

C5 Telephone Normal Normal

C6 Telephone Normal High

C7 Microphone Normal High

C8 Telephone Normal Low

C9 Microphone Normal Low

i-vector system: Conventional short-time
feature vectors are extracted and first and second
order supervector statistics are computed using a
1024-component UBM. A total variability matrix
of size 38912 × 500 is randomly initialized and
estimated using development data, as detailed in
[11, 28]. 500-dimensional i-vectors are estimated
for each enrollment utterance and test utterance.
Preprocessing steps to reduce channel variabil-
ity including i-vector length normalization [29],
linear discriminant analysis (LDA) and within-
class covariance normalization (WCCN) are ap-
plied to the i-vectors. The LDA projection matrix
is learned by utilizing speaker-specific recordings
from the development data. Cosine similarity be-
tween enrollment and test i-vectors is utilized to
determine the similarity score between them. The
different baseline systems developed in this frame-
work are referred to as ivec-MFC and ivec-MGD.
As before, these are gender-specific.

In both the GMM-UBM and the i-vector
frameworks, similarity scores calculated between
the test and enrollment utterances are subjected
to T-normalization (T-Norm) [30]. T-Norm also
known as test normalization is performed during
test phase. The log-likelihood ratio or the cosine
similarity score (S) of a test utterance (X) is com-
puted. 200 speakers from the NIST 2008 SRE
having no overlap with the enrollment speakers
in NIST 2010 are used as possible cohort speak-
ers. For every test trial, out of these 200 speakers,
50 speakers with the highest likelihood scores on
the same test utterance are chosen as final set of
cohort speakers. The mean (µX) and standard
deviation (σX) of these 50 scores are estimated

and used to normalize the score (S) as

Stnorm =
S − µX

σX
(16)

The EERs of these baseline systems are listed in
Table 2.

Score-level fusion: Score-level fusion, also
called late fusion (LF) is achieved by fusing the
scores of individual feature-based baseline sys-
tems [31]. Our preliminary experiments had
shown that score fusion outperforms the feature-
level fusion (early fusion). Hence further experi-
ments are done only on late fusion. The fusion of
scores are a linear combination of the MFCC and
MODGDF scores, given as,

Slf = βSMFC + (1− β)SMGD (17)

where Slf is the late fusion score, SMFC is the
MFCC score and SMGD is the MODGDF score.
Since our aim here is to compare the performance
of feature-switching with the best performing late
fusion, the optimal weighting parameter β was es-
timated using the evaluation data. A search over
the range of β values from 0 to 1 was done to
obtain the best verification performance. These
late fusion systems are denoted as LF-UBM and
LF-ivec. The performance of the fusion systems
is given in Table 2.

5.3. Feature-switching

In the proposed feature-switching framework,
different speaker claims are verified using differ-
ent feature representations. Experimental eval-
uation of feature-switching is performed in both
GMM-UBM and i-vector frameworks. The details
of these systems are given below.
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Algorithm 3 Optimal feature selection for a speaker in GMM-UBM framework

Input: Mutual Information : θp, KL-Divergence : γp
Output: Optimal feature index p̂.

1: procedure determineOptimalFeature(θp, γp) . p - index of candidate feature spaces
2: for each p in P do . P ={MFCC, MODGDF}
3: for each α in [ 0.0 to 1.0 ] do
4: Aα = (α ∗ θp) + (1− α) ∗ γp . Aα is the linear combination of θp and γp with weight α
5: α = α+ 0.1 . α increases with a step size of 0.1
6: end for
7: φp = max{Aα}
8: end for
9: p̂ = argmax

p
{φp}

10: return p̂ . p̂ is the optimal feature space for this speaker
11: end procedure

Figure 6: Testing phase of feature-switching system

GMM-UBM feature-switching system:
The baseline systems (UBM-MFC and UBM-
MGD) described in section 5.2 form the con-
stituent systems for feature-switching. This is
shown in Figure 6. For each enrollment speaker,
the optimal feature is determined from the enroll-
ment utterance, as described in Section 3.1. Here,
the number of candidate features P is two, with
p = 1 meaning MFCC features and p = 2 meaning
MODGDF features (Equation 11).

The weighting parameter α is used as a
trade-off between mutual information and KL-
divergence, for determining the optimal feature of
a given speaker (Equation 11). Different speakers
can have different α values. Since there is no the-
oretical insight to determining the correct weight
parameter, the following procedure is adopted for
each of the N enrollment speakers. For a given
speaker, the value of φp is determined across var-
ious values of α as,

φp = max (αθp + (1− α)γp), (18)

where the values of α are varied from 0 to 1 in

steps of 0.1. θp and γp are defined in Equation
11. Once φp is determined for p = 1 (MFCC) and
p = 2 (MODGDF), the optimal feature is com-
puted as in Equation 12. This procedure is sum-
marised in Algorithm 3. The feature-switching
system developed in this framework is denoted as
FS-UBM.

i-vector feature-switching system: As in
the case of the GMM-UBM system, the MFCC
and MODGDF i-vector systems described in Sec-
tion 5.2 are the constituent systems for the
feature-switching system. For each speaker, the
optimal feature representation is computed as de-
scribed in Equation 14. The total number of tar-
get speakers (N) in male and female speaker ver-
ification systems are 2100 and 2651 respectively.
The feature-switching systems developed in this
framework are denoted as FS-ivec. The result-
ing EERs for these systems are also described in
Table 2. Note that, for both GMM-UBM and
i-vector-based systems, the optimal feature is de-
termined for a speaker based on the enrollment
data alone and is independent of the testing con-
dition.

5.4. Result analysis

The various speaker verification systems de-
scribed in Section 5 include four baseline sys-
tems (UBM-MFC, UBM-MGD, ivec-MFC, ivec-
MGD), two late fusion systems (LF-UBM, LF-
ivec) and two proposed feature-switching systems
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Table 2: EERs (in %)for NIST 2010 male and female trials, conditions C5-C9

(a) Male trials using UBM-GMM

System C5 C6 C7 C8 C9

UBM-MFC 11.1 12.1 10.6 8.0 4.1

UBM-MGD 14.0 14.4 7.4 9.7 5.6

LF-UBM 8.0 11.5 6.9 6.6 4.1

FS-UBM 3.1 5.4 3.4 3.0 2.1

(b) Female trials using UBM-GMM

System C5 C6 C7 C8 C9

UBM-MFC 11.0 14.3 18.8 7.7 2.6

UBM-MGD 16.2 15.5 10.1 8.5 5.1

LF-UBM 11.0 11.5 10.1 7.6 2.5

FS-UBM 8.9 6.8 8.5 5.3 2.0

(c) Male trials using i-vector

System C5 C6 C7 C8 C9

ivec-MFC 5.1 5.6 6.4 1.9 3.3

ivec-MGD 5.6 5.9 5.7 2.9 3.3

LF-ivec 4.5 5.4 2.9 1.9 2.6

FS-ivec 3.5 3.6 2.7 1.6 2.2

(d) Female trials using i-vector

System C5 C6 C7 C8 C9

ivec-MFC 7.9 8.4 10.2 3.4 3.2

ivec-MGD 4.0 4.2 9.2 2.2 3.0

LF-ivec 3.7 4.2 9.2 2.2 2.4

FS-ivec 3.2 3.5 6.0 1.6 1.9

Table 3: Distribution of the speakers to MFCC and MOD-
GDF optimal feature spaces.

Gender MFCC MODGDF Total

FS-UBM system

Male 668 (48%) 734 (52%) 1402

Female 1117 (64%) 641 (36%) 1758

FS-ivec system

Male 1331 (94.9%) 71 (5.1%) 1402

Female 114 (6.5%) 1644 (93.5%) 1758

(FS-UBM, FS-ivec). Each of these has corre-
sponding systems for male trials and female tri-
als. The performance metric is the equal error
rate (EER) [32]. The performance is tabulated in
Table 2.

Compared to the best baseline systems, the
score fusion systems provide an average relative
improvement of 9.7% for male trials and 3.8%
for female trials across all the conditions, in the
GMM-UBM case. In the i-vector case, the aver-
age relative improvement of score fusion systems
over the best baseline systems is 17.1% for male
trials and 5.5% for the female trials across all the
conditions.

The proposed feature-switching system out-
performs the score fusion systems and the base-
line systems in all the conditions. Compared to
the best baseline systems, the average relative

improvement across all the conditions is 58.6%
for male trials and 28.3% for female trials in the
GMM-UBM case and 33.8% and 27.1% in the i-
vector case.

Comparison with other i-vector systems:
The i-vector based speaker verification systems
described in [33, 34] uses Probability Linear Dis-
criminant Analysis (PLDA) and reports an EER
of 3.57% and 3.59% for female speakers on test
condition C5 respectively. For the same C5 test
condition, [33] reports an EER of 2.86% for male
data. In [35] EERs of 3.08% and 3.41% are ob-
served for male and female speakers in C5 test
condition with Gaussian PLDA (G-PLDA).

Comparison of the results in these systems
must take into account the fact that the develop-
ment data used by the systems and other configu-
rations like number of UBM components, i-vector
dimension, and final scoring methods are not the
same.

Although the feature switching systems pro-
posed in this work have performance similar to
that of the above-cited systems, it has a signifi-
cant improvement compared to that of the base-
line systems as in Table 2.

To understand why feature-switching brings
about improvements, we analyse the trials in the
various evaluation conditions. In the baseline sys-
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Table 4: The distribution of speaker trials in the feature spaces using feature-switching in GMM-UBM framework. EERs
of the best baseline system and feature-switching systems are compared and the lower EER is in bold.

GMM-UBM Framework

Gender Condition
No. of

trials

Best Baseline EER

and Feature Space

Feature

Switching

EER

No. of trials

evaluated in

MGD/MFCC (MGD%/MFCC%)

Male

C5 14065 11.1 (MFC) 3.1 3934/10131 (28.0/72.0)

C6 12975 12.1 (MFC) 5.4 2904/10071 (22.4/77.6)

C7 12938 7.4 (MGD) 3.4 3915/9023 (30.3/69.7)

C8 11116 8.0 (MFC) 3.0 2193/8923 (19.7/80.3)

C9 10815 4.1 (MFC) 2.1 3281/7534 (30.3/69.7)

Female

C5 16317 11.0 (MFC) 8.9 2501/13817 (15.3/84.7)

C6 15673 14.3 (MFC) 6.8 2400/13273 (15.3/84.7)

C7 15398 10.1 (MGD) 8.5 4542/10856 (29.5/70.5)

C8 17495 7.7 (MFC) 5.3 2747/14748 (15.7/84.3)

C9 16716 2.6 (MFC) 2.0 4880/11836 (29.2/70.8)

Table 5: The distribution of speaker trials in the feature spaces using feature-switching in i-vector framework. EERs of
the best baseline system and feature-switching systems are compared and the lower EER is in bold.

i-vector Framework

Gender Condition
No. of

trials

Best Baseline EER

and Feature Space

Feature

Switching

EER

No. of trials

evaluated in

MGD/MFCC(MGD%/MFCC%)

Male

C5 14065 5.1 (MFC) 3.5 585/13480 (4.2/95.8)

C6 12975 5.6(MFC) 3.6 739/12236 (5.7/94.3)

C7 12938 5.7(MGD) 2.7 218/12720 (1.7/98.3)

C8 11116 1.9 (MFC) 1.6 683/10433 (6.1/93.9)

C9 10815 3.3 (MFC) 2.2 343/10472 (3.2/96.8)

Female

C5 16317 4.0 (MGD) 3.2 15720/597 (96.3/3.7)

C6 15673 4.2 (MGD) 3.5 15176/497 (96.8/3.2)

C7 15398 9.2 (MGD) 6.0 14686/712 (95.4/4.6)

C8 17495 2.2 (MGD) 1.6 16846/649 (96.3/3.7)

C9 16716 3.0 (MGD) 1.9 15945/771 (95.4/4.6)

tems, each evaluation trial gets verified in the
same feature space (be it the GMM-UBM case or
the i-vector case). Whereas in feature-switching,
the trials get evaluated in the optimal feature
space of the claimed speaker. This is summarised
in Tables 4 and 5. In Table 4, the first entry states
that the best baseline EER of 11.1% is achieved

when all the trials are evaluated in MFCC space.
But in feature-switching, based on the optimal
feature of the claimed speaker, 10131 trials were
evaluated in the MFCC space and 3934 trials were
evaluated in the MODGDF space. This differen-
tial evaluation resulted in a higher number of cor-
rect verifications, hence bringing down the EER.
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Figure 7: Score distribution of baseline systems (MFCC and MODGD) and feature-switching (FS) system for male
database in test condition C7 using i-vector case.

The other entries in Tables 4 and 5 give details
of the other cases. Figure 7 shows the score dis-
tribution comparison of true and impostor trials
for condition C7, for the baseline systems and
feature-switching system for male trials for the
i-vector case.

The distribution of enrollment speakers among
the optimal feature spaces are given in Ta-
ble 3. The optimal feature of a given speaker
does not need be the same for the GMM-
UBM feature-switching system and the i-vector
feature-switching system. In the GMM-UBM
feature-switching system, male speakers and fe-
male speakers are more or less evenly split in
the different feature spaces. Whereas, in the i-
vector case, most of the male speakers get MFCC
as their optimal feature and females get MOD-
GDF. These two verification systems are based
on different principles, and hence, it is difficult
to compare them directly. Steps like LDA and
WCCN may provide more discriminative abilities
to the i-vector framework. However, the results
give strong evidence that the differential evalu-
ations of different trials can improve the perfor-
mance.

6. Conclusion

In this paper, we developed the paradigm
of feature-switching to perform text-independent
speaker verification. By performing verification in
a feature space that is well-suited to the speaker
under consideration, improvements in accuracy
are obtained. The method is evaluated using the
classical GMM-UBM speaker verification frame-
work, as well as the i-vector framework on NIST
SRE 2010 data. Once the well-suited feature
representation of a given speaker is determined,
verification of that speaker can be performed in
that feature space. Our experimental evalua-
tion demonstrates that feature-switching provides
benefits above that of conventional system fusion.
On the NIST 2010 SRE dataset, an average im-
provement of 43.5% and 30.4% is attained in the
GMM-UBM and i-vector cases respectively.

In principle, the method of feature-switching
can be applied to any verification task; for exam-
ple, to face verification. In this paper, we have ap-
plied feature-switching between two feature rep-
resentations, which are derived respectively from
magnitude and phase, and are known to be com-
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plementary. The number of feature representa-
tions can be larger. Future research directions can
include a more robust procedure to determine the
optimal feature for a given speaker. An extended
version of this might be to have customized fea-
ture representations for every class under consid-
eration, and feature-switching between them dur-
ing verification.
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