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ABSTRACT

State-of-the-art systems for spoken language identification
(LID) use i-vector or embedding extracted using a deep
neural network (DNN) to represent the utterance. These
fixed-length representations are obtained without explicitly
considering the relevance of individual frame-level feature
vectors in deciding the class label. In this paper, we propose
a new method to represent the utterance that considers the
relevance of the individual frame-level features. The pro-
posed representation can also preserve the locally available
LID-specific information in the input features to some ex-
tent. To better utilize the local-level information in the new
representation, we propose a novel segment-level matching
kernel based support vector machine (SVM) classifier. The
proposed representation of the utterance based on the rele-
vance of frame-level features improves the robustness of the
LID system to different background noise conditions in the
speech. The experiments conducted on speech with different
background conditions show that the proposed approach per-
forms better than state-of-the-art approaches in noisy speech
and performs similarly to the state-of-the-art systems in clean
speech condition.

Index Terms— spoken language identification, language
relevance factor, self-attention, support vector machine

1. INTRODUCTION

The success of a language identification (LID) system mainly
depends on the type of features used and the method used to
model the frame-level features to extract the utterance-level
representation. State-of-the-art LID systems use frame-level
features like mel-frequency cepstral coefficients (MFCCs)
or bottleneck features (BNFs) to represent the speech utter-
ance [1, 2, 3, 4]. But, these methods lead to a variable-length
representation of speech, posing a challenge in building the
back-end classifier. Typically, i-vector analysis is performed
on these frame-level feature vectors to obtain an utterance-
level representation [2, 3, 5, 6]. However, i-vectors are com-
puted in an unsupervised fashion without using language
labels. Hence the techniques such as linear discriminant
analysis (LDA) and within-class covariance normalization
(WCCN) are necessary before feeding them to a back-end

classifier.
This motivated researchers to use deep neural network

(DNN) to extract fixed-length embeddings of speech [7, 8,
9, 10] which allows explicit use of class information. The
work in [7] and [9] uses a fixed-dimensional representation
called x-vector. The DNN used for extracting x-vector has
a statistics pooling layer to compute the mean and standard
deviation of all frame-level features. A similar approach
is reported in [10] to extract a fixed-length representation
called DNN-based embeddings. However, all these methods
do not explicitly consider the relevance of individual frame-
level feature vectors in deciding the language label during
the utterance-level embedding extraction. Though it can be
assumed that LID-specific contents are equally distributed
among all frame-level features in a clean speech sample,
this is not the case when the speech contains real-world
background noise. In the presence of background noise, the
amount of LID-specific contents carried by different parts of
the speech sample can vary significantly [11].

To address this issue, self-attention based DNN (SA-
DNN) can be used, which computes the utterance-level em-
bedding of the speech as a weighted average of frame-level
feature vectors [11, 12, 13, 14]. The SA-DNN assigns a
relevance factor (attention weight) to each frame-level fea-
ture vector indicating its importance (relevance) in deciding
the class label. This enables the system to automatically
ignore the parts of the speech sample that might have been
significantly affected by noise.

Apart from these, some recent papers have shown that
utilizing the locally available information in the input fea-
ture vectors obtained by analyzing them at a segment-level
granularity can lead to better performance in applications like
speech emotion recognition, speaker identification [15], [16],
and LID [17]. Unlike the classifiers used in traditional ap-
proaches that uses the class-specific information available
in the utterance-level representation (like i-vector and x-
vector [5, 7]) to predict the class label, the classifiers used
in [15, 16, 17] uses the class-specific information available at
a more finer segment-level granularity obtained by dividing
the utterance into smaller segments. The sequence-kernel
based SVM classifiers used in these systems [15, 16, 17] are
designed to preserve the temporal order of the input feature
vectors to enable them to utilize the local-level information



in the input. However, like i-vector and x-vector based ap-
proaches, these sequence-kernel based approaches do not
consider the relevance of individual frame-level feature vec-
tors in deciding the class label.

Motivated by these, we propose a new representation for
the speech utterance that considers the relevance of individ-
ual frame-level features in deciding the language label along
with preserving the locally available LID-specific contents in
them. We propose to divide the input sequence of feature vec-
tors into a predetermined number of segments and then select
a subset of frames that are significantly relevant for LID in
each segment. The relevance of individual feature vectors are
decided based on their language relevance factor (LRF) val-
ues estimated using an SA-DNN. In each segment, a compact
representation of the selected feature vectors is computed to
obtain a fixed-length segment-level embedding. The speech
utterance is then represented as a sequence of these segment-
level embeddings. One advantage of this approach is that, it
enables us to improve the noise-robustness of the LID system
by dynamically ignoring the feature vectors that might have
been significantly affected by noise. One more advantage of
our proposed approach is that, by maintaining the order of
the segment-level embeddings, the proposed language rele-
vance factor (LRF) based representation preserves the locally
available information in the input feature vectors to some ex-
tent. To utilize the local-level information in this representa-
tion, we propose a novel segment-level matching kernel based
SVM classifier.

The main contributions of this paper are: 1) a DNN to pro-
duce frame-level LID-specific features along with their LRF
values, 2) a novel LRF-based representation of the speech
utterance (as a sequence of segment-level embeddings) for
noise-robust LID, 3) a novel segment-level matching kernel
(SLMK) based SVM for classifying the sequence of segment-
level embeddings into language classes, and 4) extensive ex-
perimentation with the proposed approach on clean and noisy
speech and comparison with state-of-the-art approaches.

The remainder of this paper is as follows. In Section 2,
we describe our approach for LID. In Section 3, a description
of the database used is given. In Section 4, details of various
experiments and corresponding results are given followed by
conclusions in Section 5.

2. PROPOSED FRAMEWORK

The proposed approach for LID is shown in Fig. 1. The over-
all system consists of a bidirectional long short-term memory
(BLSTM) based DNN with self-attention to extract frame-
level LID-specific features with corresponding attention val-
ues. In this work, we denote these attention values as lan-
guage relevance factor (LRF) values as they represent the rel-
evance of the feature vectors in deciding the language label.
We propose two approaches for LID. In the first approach,
the weighted sum of these LID-specific features is computed

to get a fixed-length representation of speech, which is then
applied as input to a classification layer. We call this end-to-
end LID system as LRF-Net in the rest of this paper. In the
second approach, we propose to divide the sequence of LID-
specific feature vectors into a predetermined number of seg-
ments and then select a subset of feature vectors with signifi-
cant LID-specific contents in each segment. In each segment,
the mean of the selected feature vectors is computed followed
by `1-normalization of the mean vector to get a segment-level
embedding. The given utterance is then represented as the
sequence of these segment-level embeddings. This utterance-
level representation is then applied to the proposed SLMK-
based SVM classifier which utilizes the locally available LID-
specific contents in the representation.

Fig. 1: Block diagram of the LRF-based framework for LID.

2.1. End-to-end LRF-Net

In our first approach, we use an end-to-end DNN called LRF-
Net. The proposed LRF-Net is a BLSTM-based DNN with
the self-attention mechanism as shown in Fig. 1. It contains
a pretrained bottleneck feature (BNF) extractor [18] to con-
vert the input speech into a sequence of 80-dimensional BNF
vectors. This BNF extractor network was originally trained
with 3096 phone states (from 17 languages) as targets and
consists of a cascade of two bottleneck networks. Each of the
extracted BNFs cover a total context of 31 frames (325 ms) of
input speech [18].

The architecture of the proposed LRF-Net is similar to
the network used in [17]. It contains 2 BLSTM layers with
256 and 64 nodes respectively in first and second layers to
process the input BNF sequence. These layers process the
sequence of input BNFs by dividing them into fixed-length
overlapping chunks of 35 BNF vectors (covering 665 ms of
speech in each chunk) to provide 128-dimensional LID-seq-
senones [17]. These LID-seq-senones are nothing but the ac-
tivations obtained at the output of the second BLSTM layer
for each chunk of BNFs. Each LID-seq-senone is a com-
pact representation of the LID-specific contents in the given



chunk of speech. The sequence of LID-seq-senones is then
processed by an LRF (attention) estimator containing a dense
layer followed by a layer with a single unit. Softmax oper-
ation is applied to the output of this single unit to compute
the attention weight for each frame. Unlike in [17], where
LID-seq-senones are treated independently, LRF-Net com-
putes the weighted average of these LID-seq-senones to get
a fixed-length utterance-level embedding (represented as c in
Fig.1) of the speech as explained below.

A sequence of LID-seq-senones, H = (h1, ..,ht, ..,hT ),
where ht ∈ R128, and T is the length of a sequence, is ob-
tained by passing the sequence of BNFs through the first 2
BLSTM layers of LRF-Net. Since this network will be trained
for LID, the layers in the LRF-Net will learn to discriminate
between the languages. Hence, each LID-seq-senone in H
will contain more language-discriminative information than
the input BNF. So, we call them as LID-specific features. Us-
ing H, an intermediate representation at the output of LRF
estimator is computed as:

γt = tanh(tanh(Waht + ba)Wγ + bγ). (1)

Here, Wa, ba, Wγ and bγ are parameters of the LRF esti-
mator block which are to be learned along with other param-
eters of the LRF-Net. Using γ = (γ1, ..., γt, ...γT ), the LRF
(attention) vector α ∈ RT , is then computed as:

α = softmax(γ). (2)

Using H and α, a fixed-length representation of the speech
utterance is computed as:

c = Hα. (3)

This weighted average of LID-seq-senones (c, where c ∈
R128) is then applied to the final dense output layer for classi-
fication. The network is trained for end-to-end LID using cat-
egorical cross entropy loss function. Note that, the obtained
compact representation (c) considers the relevance of indi-
vidual LID-seq-senones which might vary significantly due
to the presence of background noise in a real-world speech
sample. Hence, unlike i-vector and x-vector, utterance-level
embedding c is noise-robust to some extent.

However, the obtained compact representation (c) does
not preserve the locally available LID-specific information in
the sequence of LID-seq-senones since it is computed as a
weighted average of LID-seq-senones. Hence, we propose
a new representation for the utterance that is computed us-
ing the LID-seq-senones with significant LRF values and pre-
serves the locally available LID-specific information in them
to some extent.

2.2. Proposed locality preserving LRF-based representa-
tion for the utterance

The Algorithm 1 explains the procedure of obtaining the
proposed locality preserving representation of the utterance.

Given LID-specific features H and LRF vector α of an ut-
terance, we divide them into a predetermined L number of
segments of approximately equal length. In each segment, we
select a predetermined k number of LID-seq-senones that cor-
respond to the top-k LRF values. At each segment, the mean
of the selected LID-seq-senones is computed followed by `1-
normalization of the mean vector to obtain a segment-level
embedding. Each segment-level embedding is a compact
representation of the LID-specific contents available at that
segment. By preserving the order of these segment-level
embeddings, the overall temporal variations in the input se-
quence can be preserved. The utterance-level representation,
Ĥ, is then obtained as a sequence of segment-level embed-
dings.

Algorithm 1 Extracting the LRF-based representation for the
utterance (Ĥ) as a sequence of segment-level embeddings

Inputs:
(i) Sequence of LID-seq-senones,

H = (h1,h2, . . . ,ht, . . . ,hT ) where, ht ∈ R128.
(ii) Corresponding LRF (attention) values,

α = (α1, α2, . . . , αt, . . . , αT ) where, αt ∈ R.
(iii) L: total number of segments (j = 1, 2, ..., L).
Procedure:

Divide H and α into L segments.
Let {hji}

Tj

i=1 and {αji}
Tj

i=1 be the set of LID-seq-senones
and corresponding set of LRF values, where, Tj indicates
the number of LID-seq-senones and corresponding LRF
values in jth segment.
for segment number j = 1 to L do

Select k LID-seq-senones from {hji}
Tj

i=1 having maxi-
mum LRFs using top-k approach.
Compute the mean of selected LID-seq-senones and
`1-normalize it to get segment-level embedding of the
jth segment, ĥj .

end for
Obtain utterance-level representation as sequence of
segment-level embeddings: Ĥ = (ĥ1, ĥ2, .., ĥj, .., ĥL).

Outputs:
(i) Utterance-level representation of the speech sample Ĥ.

While it is possible to feed this utterance-level represen-
tation (Ĥ) to a simple classifier like Gaussian linear classi-
fier [9, 10], we propose to use a classifier that utilizes the
locally available LID-specific information in the represen-
tation. Recently, different types of sequence-kernel based
SVM classifiers have shown to be effective in speech emotion
recognition, speaker identification [15], [16] and LID [17].
These kernels find the similarity between two arbitrary length
sequences by dividing them into increasingly finer segments
and matching the corresponding segments at every level of
the pyramid. These kernels use a class-independent Gaussian
mixture model (CIGMM) based approach for obtaining a bag-



Algorithm 2 Segment-level matching kernel (SLMK) for se-
quence of segment-level embeddings KSLMK(Ĥm, Ĥn)

Inputs:
(i) Utterance-level representations,

Ĥm = (ĥm1, ĥm2, .., ĥmj , .., ĥmL)
Ĥn = (ĥn1, ĥn2, .., ĥnj , .., ĥnL)

(ii) L: total number of segments.
Procedure:

for segment number j = 1 to L do
Compute matching score between embeddings of jth

segment ĥmj= [ĥmj1, ĥmj2, .., ĥmjd, .., ĥmjD] and
ĥnj= [ĥnj1, ĥnj2, .., ĥnjd, .., ĥnjD] as:

Sj =

D∑
d=1

min(ĥmjd, ĥnjd) (4)

end for
Compute SLMK score between Ĥm and Ĥn as:

KSLMK(Ĥm, Ĥn) =

L∑
j=1

Sj (5)

Outputs:
(i) KSLMK(Ĥm, Ĥn).

of-code-words representation for each segment. Motivated by
the ability of sequence-kernels to utilize the local-level class-
specific contents in the speech, we propose a segment-level
matching kernel (SLMK) based SVM classifier to classify
the sequence of segment-level embeddings. This SLMK is
very simple compared to the sequence-kernels in [15], [16]
and [17], as it has to simply compute the similarity between
two fixed-length sequences of segment-level embeddings
while preserving the order of segments. The proposed ap-
proach for computing the similarity between two utterances,
Ĥm and Ĥn, using SLMK is given in Algorithm 2. As each
segment-level embedding is a pseudo-probabilistic represen-
tation (due to `1-normalization), a histogram intersection
matching (Eq. 4) is used to match corresponding segments
from two sequences [19]. The final matching score (SLMK)
is obtained as the sum of the matching scores at the segment-
level as given in Eq. 5.

Note that, the proposed SLMK is a valid kernel because
of the following reason. The similarity score computed in
SLMK is based on histogram intersection matching ker-
nel [19] which is a valid positive semi-definite kernel and
the sum of valid positive semi-definite kernels is also a valid
positive semi-definite kernel.

3. DATABASE

The LID dataset used in this study contains a set of closely
related 9 Indian languages, provided by IIIT-Hyderabad [12,

13]. The details about the number of hours of speech data, the
number of male and female speakers in both train and test sets
is given in Table 1. This corpus contains read speech samples
recorded in a controlled environment with a sampling rate of
16 kHz. We have divided larger speech files into smaller files
such that all speech samples used in this experiment have a
duration between 2 to 4 seconds. The training dataset contains
50465 files and testing dataset contains 16025 files. We have
downsampled all speech files to 8 kHz in our experiments.
This dataset is available upon request, for non-commercial
and academic research purpose.

Many languages in this corpus are closely related. Major-
ity of the phonemes are common among these languages [12].
For example, south Indian languages like Kannada, Malay-
alam and Telugu belong to the Dravidian language family and
have many similar words. Similarly, Assamese, Bengali, Gu-
jarati, Hindi and Punjabi belong to the Indo-Aryan language
family. Since these languages are closely related, the correct
identification of a language is very challenging.

Table 1: Details about the Indian languages used in the study
along with duration (Hours), number of male (#M) and fe-
male (#F) speakers.

Language Train Test
Hours #M #F Hours #M #F

Assamese 12.40 22 11 1.94 3 3
Bengali 9.91 24 35 1.53 15 15
Gujarati 9.71 115 75 2.18 37 36
Hindi 10.96 41 28 3.23 16 19

Kannada 10.08 21 16 0.99 10 4
Malayalam 10.08 7 6 3.07 9 7
Manipuri 5.31 5 6 2.50 3 3

Odia 9.81 31 31 2.45 9 9
Telugu 10.43 21 21 3.15 4 4

To simulate the real-world speech samples containing
various types of indoor and outdoor noises, we have added
the audio samples from DCASE-2017 scene classification
development dataset1 [20] to the clean speech samples. We
have used the audio samples from 4 scenes (out of total 15),
namely, Lakeside beach, Bus, Car, and City center as back-
ground noise types. We divided these 4 scenes into 2 sets. In
set 1 (Lakeside beach and Bus), only 70% of samples from
each class are used for corrupting the clean speech in training
dataset. Remaining 30% of samples are used for corrupting
the test dataset. This represents the test dataset under seen
background conditions as the background noise conditions
in these samples are already shown to the system during
the training. The samples from set 2 (Car and City center)
scene classes are added only to testing samples (resembling
unseen types of background noise). These audio examples
were originally recorded at 44.1 kHz sampling rate with a

1http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/index



binaural microphone. In our experiments, these samples have
been converted to monaural followed by low-pass filtering to
retain frequency components only upto 4 kHz and then down-
sampled to 8 kHz. Due to the addition of these acoustic scene
samples to the clean speech, the resulting SNR of the speech
varies between -0.5db to 19.22db with a mean of 7.34db.

4. EXPERIMENTS AND RESULTS

The performance of systems in this paper are reported in
terms of two metrics: accuracy and the Cavg (given in NIST
Language Recognition Evaluation 2015 [21]). Lower values
of Cavg indicates better performance. We used Pytorch [22]
and LIBSVM [23] tools for implementing DNNs and SVM
classifiers respectively in this work.

4.1. Experiments on clean speech

In this section, we evaluate the performance of the proposed
method for clean speech and compare with state-of-the-art ap-
proaches.

4.1.1. Baseline systems

The first baseline system is a x-vector based LID system [9].
This system consists of 5 feed-forward layers at the front-
end to process the features at the frame-level followed by a
statistical pooling layer to compute the mean and standard
deviation. These statistics are then concatenated and further
processed by a segment-level layer to get 512-dimensional x-
vector. These x-vectors are then classified using a Gaussian
back-end [9]. The system is trained using all clean speech
samples in the training set. The result obtained is presented
in the 1st row of Table 2.

We have also implemented the Gaussian mixture model
based segment-level pyramid match kernel (GSPMK) based
LID system [17] that preserves the order of LID-seq-senones
during the classification. To compute GSPMK, each speech
utterance represented as a sequence of LID-seq-senones is
repeatedly divided to form a pyramid of increasingly finer
segments. Then GSPMK between a pair of varying length
sequence of LID-seq-senones is computed by matching the
corresponding segments at every level of the pyramid. The
final GSPMK value between a pair of sequence of LID-seq-
senones is computed as a weighted sum of the number of
new matches found at different levels of the pyramid of seg-
ments [17]. The result obtained for the GSPMK based LID
system is given in 2nd row of Table 2.

4.1.2. LID using end-to-end LRF-Net

The LRF-Net is basically a self-attention based LID system
as explained in section 2.1. The LRF estimator block in the
LRF-Net has a dense layer with 100 nodes followed by a layer

Table 2: Performance of baseline systems and LRF-Net. The
best performance is marked in bold.

LID system Cavg × 100 Accuracy(%)
x-vector 2.74 94.29

GSPMK+SVM 2.69 94.65
LRF-Net 2.58 95.20

with a single unit to produce LRF (attention) weights. The fi-
nal classification layer has 9 nodes to represent the languages.
Categorical cross-entropy loss is used to train the network.
The weights of the BNF extractor at the front-end are kept
unchanged during the training. Performance of LRF-Net is
given in 3rd row of Table 2.

It is seen that all 3 systems have performed almost equally
on clean speech. GSPMK with SVM (GSPMK+SVM) has
performed slightly better compared to x-vector based system
by utilizing the local-level LID-specific contents in the LID-
seq-senones. The end-to-end LRF-Net has provided the best
performance among the baseline systems. This indicates that
even in clean speech, the utterance-level representation com-
puted as a weighted average of the LID-seq-senones carries
slightly more language-discriminative contents than the tradi-
tional approaches.

4.1.3. LID using proposed LRF-based representation with
SLMK-based SVM

Here, we evaluate the effectiveness of the proposed utterance-
level representation with SLMK-based SVM classifier. The
LID-specific features and corresponding LRF values are ob-
tained using the pretrained LRF-Net. We experimented by
varying the number of segments (L) used to represent the ut-
terance. Results obtained by varying the number of LID-seq-
senones selected in each segment (k) are given in Table 3.
Since some speech samples have as low as 192 frames of
speech (after voice activity detection), we limited the maxi-
mum number of segments to 20. Also, we have not reported
the results whenever the total number of frames to be consid-
ered (L× k) are greater than 192 as few test samples will not
satisfy this condition.

From Table 3 it is observed that, the performance of the
proposed LRF-based representation with SLMK-based SVM
is very sensitive to the number of segments and number of
LID-seq-senones selected in each segment. In general, in-
crease in the number of segments has led to better perfor-
mance. The system has performed slightly better than the
LRF-Net in one case (with L=16 and k=10). Last column in
Table 3 shows the results when all LID-seq-senones in a seg-
ment are considered irrespective of their LRF values. Both
LRF-Net and LRF-based representation with SLMK-based
SVM (in 3 cases) have performed slightly better than this
system by considering the relevance of individual LID-seq-
senones.



Table 3: Cavg × 100 obtained by varying number of segments (L) and number of LID-seq-senones in each segment (k). Last
column indicates the performance obtained when all LID-seq-senones in a segment are used irrespective of their LRF values.

L Number of frames in each segment (k)
1 2 5 10 15 25 50 100 150 All

1 48.03 47.12 45.10 38.41 32.42 28.23 20.04 9.45 4.53 3.22
2 44.56 43.16 35.66 27.38 22.23 19.34 8.60 - - 3.13
4 34.90 31.02 25.39 16.40 10.23 7.54 - - - 3.10
8 25.10 21.14 14.51 5.75 2.63 - - - - 2.92
16 11.31 9.35 4.10 2.56 - - - - - 2.98
20 9.12 7.30 2.70 - - - - - - 2.96

From the results in Table 2 and 3, it can be seen that
the proposed LRF-based representation method has provided
only a slight improvement in performance compared to the
baseline systems and LRF-Net in the case of clean speech. It
indicates that, the proposed selection of feature vectors based
on their LRF values is not much effective in clean speech case.

However, in the case of noisy speech, some feature vec-
tors might have been significantly effected by noise. Hence,
selection of the feature vectors based on their relevance to
LID might be beneficial in this case. This motivates us to
evaluate the performance of the proposed method on speech
samples with different types of real-world background noise.

4.2. Experiments on noisy speech

Here, we use the speech samples with different types of real-
world background noise obtained by adding DCASE-2017
scene samples to the clean speech. We used a balanced train-
ing dataset containing 50% of speech samples with Beach
and other 50% of samples with Bus type of noise. The re-
sults obtained for the proposed LRF-based utterance repre-
sentation with SLMK-based SVM system (LRF-rep+SLMK-
SVM) tested on speech with Beach and Bus types of noise
(with L=16 and k=10) are shown in 5th row of Table 4. The
results obtained on speech with unseen types of noise from
set 2 (City center and Car) are also shown on the right side of
the Table 4. The performance of baseline systems are given
in the first 2 rows of Table 4. 3rd row in Table 4 shows the re-
sults obtained when all frames in the segment are considered
irrespective of their LRF values (LRF-rep+SLMK-SVM-All).
The performance of end-to-end LRF-Net is given in the 4th

row. Since the training dataset used in this case contains more
complexity than the dataset with clean speech samples, the
number of nodes in all hidden layers of LRF-Net has been
doubled.

It is seen that both LRF-Net and proposed LRF-based
representation with SVM systems (LRF-rep+SLMK-SVM)
have performed significantly better than all other systems by
considering the relevance of LID-seq-senones. Among these
two, LRF-rep+SLMK-SVM has performed better than LRF-
Net by utilizing the local-level LID-specific contents in the

Table 4: Cavg × 100 for different types of background noise.

LID system
noise type in test samples

seen noise unseen noise
Beach Bus City Car

x-vector 17.35 15.22 18.45 19.21
GSPMK+SVM 17.02 14.80 17.96 18.88

LRF-rep+
SLMK-SVM-All 17.23 15.22 18.32 19.04

LRF-Net 14.32 12.08 15.57 16.50
LRF-rep+

SLMK-SVM 13.40 11.36 14.52 15.64

speech. In general, all these systems are sensitive to unseen
types of background noise. Since both baseline systems and
LRF-rep+SLMK-SVM-All do not have any explicit mecha-
nism to handle the noise, they have performed poorly com-
pared to both LRF-Net and LRF-rep+SLMK-SVM. The rel-
evance based selection of LID-seq-senones and utilization of
locally available LID-specific information have enabled the
LRF-rep+SLMK-SVM system to perform comparatively bet-
ter even in unseen background noise conditions.

5. CONCLUSIONS

We proposed a novel method of representing speech utter-
ance using only frames with significant LID-specific contents.
The significance of individual frame-level feature is decided
based on its language relevance factor obtained using a self-
attention based DNN. This representation preserves the lo-
cally available information in the input to some extent. Re-
sults obtained show that the proposed representation of the ut-
terance used with the SLMK-based SVM classifier performs
similarly to the state-of-the-art approaches on clean speech
and it performs better than state-of-the-art systems in noisy
speech.

In the future work, we will explore different methods to
improve the robustness of the LRF-based LID system to un-
seen background noise conditions.
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