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ABSTRACT

State-of-the-art spoken language identification (LID) networks are
vulnerable to channel-mismatch that occurs due to the differences
in the channels used to obtain the training and testing samples. The
effect of channel-mismatch is severe when the training dataset con-
tains very limited channel diversity. One way to address channel-
mismatch is by learning a channel-invariant representation of the
speech using adversarial multi-task learning (AMTL). But, AMTL
approach cannot be used when the training samples do not contain
the corresponding channel labels. To address this, we propose an
auxiliary within-sample similarity loss (WSSL) which encourages
the network to suppress the channel-specific contents in the speech.
This does not require any channel labels. Specifically, WSSL gives
the similarity between a pair of embeddings of same sample obtained
by two separate embedding extractors. These embedding extractors
are designed to capture similar information about the channel, but
dissimilar LID-specific information in the speech. Furthermore, the
proposed WSSL improves the noise-robustness of the LID-network
by suppressing the background noise in the speech to some extent.
We demonstrate the effectiveness of the proposed approach in both
seen and unseen channel conditions using a set of datasets having
significant channel-mismatch.

Index Terms— channel-mismatch, spoken language identifica-
tion, within-sample similarity loss, domain-mismatch

1. INTRODUCTION

State-of-the-art spoken language identification (LID) networks are
vulnerable to channel-mismatch occurring due to the mismatch in
the channels (like recording devices, type of encoding, etc.,) used
to collect the training and testing samples. Though the impact
of channel-mismatch can be reduced by having sufficient training
samples with different channel conditions, collecting such kind of a
training dataset is a difficult task. Hence, we need to utilize the avail-
able training dataset in a best possible way so that the robustness of
the LID-network can be improved. Encouraging the LID-network to
learn a channel-invariant representation of the speech using adver-
sarial multi-task learning (AMTL) is one such way.

Recently, AMTL has been used successfully to enforce domain-
invariance in many applications like speech recognition [1], speaker
verification/recognition [2, 3, 4, 5], speech emotion recognition [6],
etc. In AMTL approach, the overall network is typically considered
to have three parts: a front-end feature extractor, a primary classifier
for the main task and an auxiliary domain classifier for identifying
the domain of the training samples [7]. By using training samples
belonging to multiple domains with corresponding domain labels,
AMTL forces the network to learn features that are discriminative for
the main task but invariant across domains. For example, in [8, 9],
the domain classifier is trained with labels “source” and “target” to

obtain features that are invariant across these two domains. Sim-
ilarly, in [2], domain classifier is trained with labels like “Quiet”,
“TV”, and “Music” to obtain features invariant across different types
of background conditions. The adversarial training between the fea-
ture extractor and the domain classifier in AMTL forces the features
to be invariant across the given domains.

However, AMTL approach cannot be used when the training
samples do not contain the corresponding domain labels. For ex-
ample, if a LID dataset does not contain the corresponding chan-
nel/speaker labels for the training samples, then AMTL cannot used
to learn a channel/speaker-invariant representation. Furthermore,
some LID datasets do not contain any channel diversity, as all sam-
ples are obtained from same type of channel (recording device).
For example, dataset in [10] contains speech samples collected only
through telephone lines, [11, 12] contains samples collected using
mobile phones only and [13] contains samples recorded only using
high quality recording devices in a controlled environment. Again,
AMTL cannot be used in this case to learn channel-invariance, as
it requires samples from at least two separate domains to enforce
invariance.

Motivated by these, we propose a novel within-sample similarity
loss (WSSL), which encourages the LID-network to learn a channel-
invariant representation of the speech without using any channel la-
bels. Specifically, the WSSL gives the similarity between a pair of
utterance-level embeddings of same speech sample that are obtained
using two separate embedding extractors. These embedding extrac-
tors are designed to capture similar information about the channel-
specific contents in the speech (that remain almost constant through-
out the utterance) and dissimilar information about the LID-specific
contents in the speech. Using WSSL, the network is encouraged to
suppress the similarities between these two embeddings, leading to
suppression of channel related contents in the speech. Furthermore,
the proposed WSSL encourages the two embedding extractors in the
network to suppress the background noise to some extent and en-
code complementary LID-specific contents in the speech, leading to
better performance even in noisy background conditions.

We demonstrate the effectiveness of the proposed approach us-
ing a set of training and testing datasets having significant differ-
ences in their characteristics. We also release both training and test-
ing datasets used in this paper so that the obtained results can be
reproduced.

2. PROPOSED FRAMEWORK

The block diagram of the proposed approach is given in Fig.1. It
contains a feature extractor block to extract an utterance-level em-
bedding (represented as u-vector in Fig.1) of the input speech with
parameters (weights and biases of the network) θF and a language
classifier block with parameters θC . During training, the parameters
of the LID-network θnet = {θF ,θC} are tuned such that the ob-



Fig. 1: Block diagram of the proposed approach with WSSL. Orange
coloured frames in sequence of BNFs indicate the frames selected as
input within an analysis window.

tained u-vector carries only LID-specific contents in the speech by
ignoring channel-specific contents.

2.1. Feature extractor block for obtaining fixed-length u-vector

The role of the feature extractor block (θF ) is to provide an
utterance-level embedding (represented as u-vector in Fig. 1) of
the input speech sample. This block contains a pre-trained bottle-
neck feature (BNF) extractor at the front-end to convert the speech
utterance into a sequence of 80-dimensional BNFs [14]. This BNF
extractor was originally trained for identifying 3096 phone states
from 17 languages. Each of the extracted BNFs covers a total con-
text of 31 frames (325 ms) of input speech [14]. Since BNFs are
extracted for every input speech frame, successive BNFs have an
overlap of 30 frames (96% overlap).

The input sequence of BNFs is then analyzed by two embedding
extractors to provide two utterance-level embeddings (represented as
e1 and e2 in Fig. 1) of the speech. The architecture of the embed-
ding extractor is shown in Fig. 2, which is motivated by the network
in [15] and [16]. It contains two bidirectional long short-term mem-
ory (BLSTM) layers with 256 and 64 nodes respectively in first and
second layer. These BLSTM layers analyze the input sequence of
BNFs by dividing it into fixed-length chunks (with 50% overlap be-
tween successive chunks) to generate LID-seq-senones [15]. These
LID-seq-senones are nothing but the activation obtained at the out-
put of second BLSTM layer for each chunk of BNF vectors [15].
The mean and standard deviation of these LID-seq-senones are then
computed using a statistics pooling layer. The concatenated mean
and standard deviation are then passed through a dense layer with
128 nodes to get the utterance-level embedding of the speech (repre-
sented as e1 or e2 in Fig. 1).

The only difference between these two embedding-extractors is
in the way they analyze the input BNF sequence. While the embed-
ding extractor-1 analyzes the sequence of BNFs by dividing them
into fixed-length chunks of 0.5 seconds, the embedding extractor-2
uses chunks of 1 second. Further, embedding extractor-1 considers
all BNF vectors within the chunk as input (high resolution within

Fig. 2: Block diagram of the embedding extractor used for obtaining
the embedding e1 or e2.

small context of 0.5 seconds) whereas embedding extractor-2 uses
only alternative BNF vectors within the 1 second chunk (low resolu-
tion within context of 1 second). Since successive BNFs have high
overlap, the amount of information loss due to this skipping is very
less; though they encode information differently.

The motivation for analyzing the input at two different resolu-
tions is the following. It can be observed that, in a given clean speech
sample, the channel related contents remain constant throughout the
utterance. Hence, the input sample can be assumed as a combina-
tion of a fast changing component (the foreground speech) and a
constant (or slowly changing) component related to channel. Since
two embedding extractors analyze the input at different resolutions,
they capture dissimilar information about the foreground speech and
similar information about the channel which remains constant. This
variation between e1 and e2 allows us to use the proposed WSSL,
which we will explain in the section 2.1.1.

The outputs from two embedding extractors are then concate-
nated and passed through a dense layer. Output of this dense layer
gives a compact utterance-level representation of the input speech
sample (represented as u-vector in Fig.1). Note that, this u-vector
can be directly fed to a language classifier to form an end-to-end
LID-network as in Fig. 1 (excluding WSSL block). Let N be the
number of nodes in the output layer of this classifier with softmax
activation. For an input sample x, let the output of the language
classifier be P (yl|x,θF ,θC); where yl ∈ {l1, l2, ...., lN} denote
the language classes. For the training sample x, we can compute the
cross entropy loss for the language classifier as:

Ll(θF ,θC) = −log(P (yl|x,θF ,θC)). (1)

Note that, training the LID-network with only language classifica-
tion loss (Eq.1) does not prevent the network from encoding the
channel-specific contents in the speech. This effect is more sig-
nificant when the training dataset contains very limited channel
diversity. To improve the robustness of the LID-network towards
an unseen target domain, the network should be trained to learn a
channel-independent representation of the speech. We propose a
novel within-sample similarity loss for achieving this.

2.1.1. Proposed within-sample similarity loss (WSSL)

In order to encourage the feature extractor block to suppress the
channel-specific contents in the input speech, we propose an auxil-
iary loss function called within-sample similarity loss (WSSL). The
WSSL is used along with the primary language classification loss
(Eq. 1). Since the channel related contents in the speech do not
change within a given speech utterance, the two embedding extrac-
tors capture similar information about this. By penalizing the net-
work for capturing similar information in the two embeddings e1
and e2, the network learns to suppress the contents that are common
to both embeddings. Simultaneously, the primary language classi-
fication loss continuously forces the network to capture more and
more LID-specific contents. Due to the combined action of these



two losses, the network learns to capture complementary (dissimi-
lar) LID-specific information in two embeddings and ignore other
contents that are common to both the embeddings. Note that, unlike
AMTL, WSSL does not require any channel labels for suppressing
channel information. We define the WSSL as follows:

Lw(θF ) = αLcos(e1, e2)− βL2(e1, e2) (2)

Where, Lcos(e1, e2) = e1·e2
‖e1‖‖e2‖

and L2(e1, e2) = ‖e1 − e2‖2
are respectively the cosine similarity and Euclidean distance be-
tween the embeddings. The scalar values α and β are the trade-
off parameters used to decide the impact of Lcos(e1, e2) and
L2(e1, e2) respectively in the training process.

2.2. The training procedure
We train the LID-network with the following total loss function.

LT (θF ,θC) = Ll(θF ,θC) + Lw(θF ) (3)

During the training, the parameters of the LID-network θnet =
{θF ,θC} are optimized such that the network encodes complemen-
tary LID-specific contents in the speech and ignores all irrelevant
contents in the input that are common to both the embeddings. This
improves the robustness of the LID-network.

3. DATASETS USED IN THE STUDY

In this study, we consider a set of closely related 8 Indian languages
namely, Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam,
Odia and Telugu. To highlight the effect of channel-mismatch, we
use a set of datasets having significant differences in their character-
istics. First one is the IIT-Mandi read speech dataset which contains
clean audio files from news broadcasts. These audio samples are
recorded in a controlled environment using high quality recording
devices. It contains about 38 hours of speech with approximately
4.5 hours of speech in each language. There are around 15 speakers
in each language. In each language, we use approximately 4 hours of
speech for training (Readsp-Train) and remaining portion for testing
(Readsp-Test). Since the background conditions in the Readsp-Test
are same as that in train set, this is called seen test set.

Since the amount of speech and number of speakers in Readsp-
Train are limited, we additionally use a part of the IIIT-Hyderabad
dataset [13, 17] for training in some of our experiments. Like
Readsp-Train, this dataset also contains read speech samples recorded
in controlled environment. This dataset is available upon request. In
each language, we use approximately 6 hours of speech (about 25
speakers in each language) from this dataset. By combining samples
from IIIT-Hyderabad dataset, we get a combined training dataset
called combined-Readsp-Train, having approximately 10 hours of
speech in each language with at least 40 speakers.

Another dataset is the IIT-Mandi YouTube dataset (YouTube-
Test) which contains spontaneous/teaching style speech from per-
sonal interviews and educational videos obtained from YouTube.
These samples are collected using different types of recording de-
vices with different real-world background conditions. Hence,
there is significant channel-mismatch between the training dataset
(Readsp-Train) and YouTube-Test datasets. In each language, it con-
tains about 1 hour of speech from at least 10 speakers. In this work,
this dataset is used only for testing. Since the background condi-
tions in this dataset are unseen by the network during the training,
this represents the unseen test set. All speech samples used in this
work have a duration between 2 to 12 seconds. We release both
Readsp-Train/Test as well as YouTube-Test datasets with this paper1.

1https://speechiitmandi.github.io/air/

4. RESULTS AND DISCUSSION

In this section, we study the effectiveness of the proposed method.
Performances are given in accuracy (%) and the Cavg (%) met-
ric [18]. Lower values of Cavg indicates better performance.

Here, we first demonstrate the effectiveness of the proposed
WSSL in improving the channel-invariance of the LID-network by
training the network using clean speech. Followed by this, the effec-
tiveness of the WSSL in improving the noise-robustness is shown
using samples with artificially added noise.

4.1. Training with clean speech samples

In this section, we train our networks using only clean speech sam-
ples and test their performance on samples from Readsp-Test and
samples from YouTube-Test.

4.1.1. Baseline systems

To compare the effectiveness of the proposed WSSL, we use 2 base-
lines that are trained using only language classification loss (without
WSSL). First one is the x-vector based LID system [19]. It processes
the sequence of BNFs to obtain 512-dimensional x-vector which are
then classified using a Gaussian back-end [19]. The clean speech
samples from Readsp-Train dataset (having approximately 4 hours
of speech per language) is used for training this system. Results ob-
tained for this system on seen and unseen test sets are shown in 1st

row of Table 1.

Table 1: Performance in accuracy (Acc) and Cavg of baselines and
LID-systems with WSSL in seen and unseen test sets.

LID system
seen test set
Readsp-Test

unseen test set
YouTube-Test

Acc Cavg Acc Cavg

x-vector 83.25 9.05 62.50 22.50
Lnet baseline 84.50 8.60 62.85 22.25

Lnet baseline comb 87.45 7.00 65.45 19.15
Lnet WSSL 88.90 6.45 68.10 17.90

Lnet WSSL comb 90.04 6.05 71.90 15.25
Lnet fine tuned 81.20 11.20 79.55 10.10

Second one is a baseline LID-network (Lnet baseline) which
contains only feature extractor and language classifier blocks in
Fig.1 (excluding WSSL block). The language classifier contains
a dense layer with 128 nodes with tanh activation followed by the
output layer. Results obtained for this system when trained on
Readsp-Train are given in 2nd row of Table 1. For the comparison,
we also trained a baseline LID-network using the combined-Readsp-
Train dataset (containing 10 hours of speech per language with more
speakers). Results obtained for this network (Lnet baseline comb)
are given in the 3rd row. In this case, the number of nodes in
each hidden layer in the network has been increased to twice as the
training dataset contains more diversity.

It is seen that, both x-vector and Lnet baselines perform very
well on clean samples from Readsp-Test but, poorly on YouTube-
Test. Since both x-vector and Lnet baseline systems have seen only
clean speech samples with limited channel diversity during the train-
ing, both of them have become vulnerable to unseen channel con-
ditions in the YouTube-Test. In spite of using a combined training
dataset with more speaker diversity, the Lnet baseline comb has pro-
vided only slight improvement in performance in unseen test set.
This clearly indicates that, simple data-augmentation alone is not



sufficient; we need a sophisticated training strategy too, to improve
channel-invariance of the LID-network.

4.1.2. Effectiveness of the proposed WSSL

Here, we experiment by including the WSSL in the training process
as in Eq. 3. The value of trade-off parameters α and β (in Eq. 2)
are empirically set as 0.35 and 0.15 respectively. The 4th row in Ta-
ble 1 shows the performance of the network trained on Readsp-Train
(Lnet+WSSL). The performance of network trained on combined-
Readsp-Train (Lnet+WSSL comb) is given in 5th row.

It is seen that, both Lnet+WSSL comb and Lnet+WSSL have
performed significantly better than baselines on unseen test set.
Clearly, the inclusion of WSSL has allowed the networks to learn
a channel-invariant representation, leading to significantly better
performance. Note that, both these systems have performed better
in seen test set too, compared to baseline systems. This clearly indi-
cates that, WSSL encourages the network to capture complementary
LID-specific contents in two embeddings and it does not suppress
any LID-specific contents in the speech.

For the purpose of comparison, we have also given the perfor-
mance of a LID-network that has been fine-tuned to the YouTube-
Test dataset. In this, we have used approximately 30% samples from
YouTube-Test for fine-tuning a pretrained network (Lnet baseline).
During the fine-tuning process, the parameters of only last two lay-
ers of the Lnet baseline has been modified, keeping all other layers
unchanged. The results obtained for this system (Lnet fine tuned)
when tested on the remaining 70% samples from YouTube-Test as
well as on Readsp-Test are given in 6th row of Table 1.

Note that, unlike Lnet fine tuned system, our proposed WSSL
approach does not use any samples from the YouTube-Test for
training/fine-tuning. The comparison with Lnet fine tuned is done
only for showing the effectiveness of the proposed WSSL. In spite
of not using any samples from YouTube-Test for training/fine-
tuning, the performance of Lnet WSSL is comparable to that of
Lnet fine tuned on unseen test set.

Not surprisingly, the Lnet fine tuned has performed slightly
poorer on seen test set compared to the performance of Lnet baseline.
This is because, the parameters of Lnet fine tuned have been opti-
mized for the YouTube-Test during the fine-tuning process. Hence,
samples from Readsp-Test have slight channel-mismatch with this
network. Note that, unlike Lnet fine tuned, the performance of
Lnet WSSL does not degrade on seen test set.

Apart from channel-mismatch, the LID networks are also af-
fected by background noise in the speech. In the next section, we
evaluate the effectiveness of WSSL in noisy conditions.

4.2. Training with noisy speech samples

Note that, the Readsp-Train used for training contains only clean
speech samples. To simulate the speech samples collected in vari-
ous indoor and outdoor scenarios, we artificially add samples from
4 acoustic scene classes from the DCASE-2017 scene classification
dataset [20, 21]. We used 70% audio samples from Lakeside beach,
Bus, Car and City center classes to corrupt the train data (Readsp-
Train) and remaining 30% samples to corrupt the Readsp-Test. The
addition of 4 types of noise results in 4 fold increase in the size of
both train and test sets. We denote the resulting training and test-
ing datasets respectively as Rdsp-Noise-Train and Rdsp-Noise-Test.
Due to the addition of noise, the SNR of the resulting speech samples
varies between 0.5db to 14.5db with a mean of 4.32db. Note that, we
do not artificially add noise to YouTube-Test samples, as they already
contain some real-world background noise.

Table 2: Performance of LID-networks with WSSL and AMTL in
seen and unseen test sets when trained using noisy speech samples.

LID system
seen test set

Rdsp-Noise-Test
unseen test set
YouTube-Test

Acc Cavg Acc Cavg

Lnet baseline noisy 65.60 20.25 63.40 21.60
Lnet WSSL noisy 68.80 18.20 69.15 16.85
Lnet AMTL noisy 73.50 14.15 64.50 19.90

LnetWSSL AMTL noisy 75.70 13.60 70.35 15.95

As the Rdsp-Noise-Train contains more complexity than Readsp-
Train, all networks trained on this dataset contain thrice the number
of nodes in each hidden later compared to their counterparts trained
on Readsp-Train. The 1st row in Table 2 shows the results obtained
for the baseline network Lnet baseline noisy (trained on Rdsp-
Noise-Train), on Rdsp-Noise-Test and YouTube-Test sets. The results
obtained for the network trained using WSSL (Lnet WSSL noisy)
are also given in 2nd row. The Lnet WSSL noisy has performed
significantly better than Lnet baseline noisy and slightly better than
Lnet WSSL (given in Table 1) in unseen test set. It has provided
about 3% improvement in accuracy in seen test set too, compared
to the Lnet baseline noisy. This indicates that, apart from channel-
specific contents, the WSSL also suppresses the noise in the speech
to some extent.

4.2.1. Comparison with AMTL approach

Since the noise samples are added artificially, the training samples
in Rdsp-Noise-Train contain the corresponding noise identity. This
allows us to build a noise-invariant LID-network using AMTL ap-
proach [1, 2]. In this case, the LID-network contains an additional
domain classifier for identifying the noise type in the speech. Like
language classifier, the domain classifier also takes the u-vector as
input. The domain classifier contains a dense layer with 256 nodes
with tanh activation followed by output layer with 5 nodes to rep-
resent the background conditions in the speech (clean speech and 4
types of noise). The results obtained for the network trained using
AMTL (Lnet AMTL noisy) are given on the 3rd row of Table 2.

It is seen that, the Lnet AMTL noisy has performed signifi-
cantly better on Rdsp-Noise-Test compared to Lnet WSSL noisy.
Unlike channel information, the background noise is mostly non-
stationary in nature. Hence, two embedding extractors capture
dissimilar information about the noise, due to which, WSSL is
less effective in suppressing the noise. However, on unseen test
set in which channel-mismatch is more dominant than noise, the
network with WSSL has given much better performance than
Lnet AMTL noisy. The last row in Table 2 shows the performance
of a network trained with both WSSL and AMTL. This system
has performed well on both noisy speech as well as in channel-
mismatched case. While AMTL improves the noise-invariance of
the network, the WSSL improves its channel-invariance, leading to
better performance in both the cases.

5. CONCLUSIONS

In this paper, we proposed a novel within-sample similarity loss
(WSSL) for improving the channel-invariance of the LID-network.
The results obtained indicate that the proposed WSSL significantly
improves the performance in channel-mismatched conditions. Also,
the combination of WSSL with AMTL significantly improves the
robustness of the LID-network to unseen target domain.
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