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This paper proposes a data-efficient, semi-supervised, two-pass framework for segmenting bird vocaliza-
tions. The framework utilizes a binary classification model to categorize frames of an input audio record-
ing into the background or bird vocalization. The first pass of the framework automatically generates
training labels from the input recording itself, while model training and classification is done during
the second pass. The proposed framework utilizes a reference directional model for obtaining a feature
representation called directional embeddings (DE). This reference directional model acts as an acoustic
model for bird vocalizations and is obtained using the mixtures of Von-Mises Fisher distribution
(moVMF). The proposed DE space only contains information about bird vocalizations, while no informa-
tion about the background disturbances is reflected. The framework employs supervised information
only for obtaining the reference directional model and avoids the background modeling. Hence, it can
be regarded as semi-supervised in nature. The proposed framework is tested on approximately 79,000
vocalizations of seven different bird species. The performance of the framework is also analyzed in the
presence of noise at different SNRs. Experimental results convey that the proposed framework performs
better than the existing bird vocalization segmentation methods.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Birds are of significant importance in maintaining the equilib-
rium of various ecosystems. However, many bird species are facing
the threat of population decline due to habitat destruction and glo-
bal climate change [1]. As a result, there is a pressing need to study
the effects of human activities and climate change on avian diver-
sity. Surveying and monitoring of bird species in their natural habi-
tat are generally the first steps in analyzing these effects [2]. Many
bird species are highly vocal, hence, acoustic monitoring provides a
passive and convenient way to monitor birds. The development of
sophisticated programmable recording devices has made acoustic
monitoring feasible. Acoustic data recorded by these devices can
be analyzed to perform various tasks such as species identification,
the tracking of migrant species or in examining the avian biodiver-
sity of a given region. Manual processing of this data is tedious and
time-consuming, and requires considerable knowledge of bird
vocalizations. Hence, it is essential to develop automatic methods
for processing the recorded acoustic data.
Segmenting bird vocalizations and discarding the background is
the principal step in many bioacoustic tasks such as studying the
semantics of bird songs or species identification. The performance
of this segmentation step directly influences the overall perfor-
mance of other subsequent tasks [3]. Bird vocalization segmenta-
tion appears to be a specialized version of sound event detection
(SED). These two tasks differ from each other in nature of the target
acoustic events. The typical target events, such as gun-shot, baby-
cry, glass-break and dog-bark, in any SED task (such as the DCASE
challenges [4]) are well-defined i.e. the knowledge about the
temporal-frequency structure of the target events is present as
prior information. However, in bird vocalization segmentation,
the nature of the target event (bird vocalizations) is not well
defined. This can be attributed to the large amount of variations
present in the frequency profiles of vocalizations of different spe-
cies. This task of bird vocalization segmentation is often challeng-
ing in the field conditions due to reasons listed below:

� Background modeling: The presence of various biotic (e.g. vocal-
izations of other animals) and abiotic (such as rain, wind or
human-induced sounds) background sounds make it difficult
to isolate the bird vocalizations from the background. Irrespec-
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tive of the source, these background disturbances are unpre-
dictable and highly volatile. This makes the acoustic modeling
of the background non-trivial.

� Bird vocalization modeling: The vocalizations of different bird
species can be significantly different from each other. For exam-
ple, the temporal-frequency modulations present in Cassin’s
vireo (a North American song bird) vocalizations are completely
different from the temporal-frequency modulations present in
vocalizations of Greater sooty owl and Hooded crow. Apart from
that, many species exhibit a large repertoire of vocalization
types, which results in high intra-class variations. Hence, com-
ing up with one universal acoustic model that can be used for
segmenting the vocalizations of many bird species is not
straight-forward.

� Lack of labeled training data: Like other bioacoustic tasks, bird
vocalization segmentation also suffers from the scarcity of
labeled training data. This limits the use of data-intensive
state-of-art audio classification frameworks such as convolu-
tional neural networks (CNN). In recent times, large datasets
with weak labels (i.e. presence or absence of birdcalls) have
been released for the audio tagging tasks (also known as bird
activity detection) [5]. These datasets lack vocalization-level
time-stamps or frame-level labels and can be used for training
powerful neural networks in a weakly supervised setup [6] for
segmenting bird vocalizations. However, the segmentation per-
formance of these weakly supervised neural networks is not on-
par with their supervised counterparts.

In this work, we propose a data-efficient semi-supervised two-
pass framework which overcomes the aforementioned challenges
associated with the task of bird vocalization segmentation. The
proposed segmentation framework does not require any explicit
background acoustic model and utilizes a reference bird vocaliza-
tion acoustic model to discriminate between bird and non-bird
sounds. This reference vocalization model is obtained using a very
small amount of the labeled training data. Since only bird vocaliza-
tions are modeled (not the background), the proposed framework
can be considered as a semi-supervised framework. This notion
of semi-supervision is borrowed from non-negative matrix factor-
ization (NMF) based speech enhancement literature where either
speech samples or noise is used for training [7,8].

Given a reference model for bird vocalizations, the proposed
framework is a two-pass process. During first pass, the reference
vocalization model is utilized to convert the input audio recording
into a frame-wise feature representation called directional embed-
dings (DE). The feature space corresponding toDEretains information
only about the bird vocalizations andmost of the background distur-
bances are inherently not reflected in the feature space (more details
are in Section 3). Mutual information (MI) is obtained between con-
secutive pairs of DE frames to get an initial estimate of the regions
containing the background and vocalizations respectively. MI exhi-
bits high values for the background and low values for vocalization
regions (see Section 4). A fixed number of audio frames exhibiting
highest and lowest MI are then automatically labeled as background
and vocalizations respectively. These labels andDE features are given
as input to the second pass of the framework. In the second pass, a
classificationmodel is trained on the DE features using the generated
labels. This trained classification model is utilized to classify each
input audio frameasbackgroundorbirdvocalization. Fig. 1 illustrates
the proposed two-pass semi-supervised framework for bird vocaliza-
tion segmentation, where a support vector machine (SVM) is used as
the classification model in the second pass.

DE forms the nucleus of the proposed framework. As discussed
earlier, DE provides ability to discriminate bird sounds from non-
bird background disturbances. Hence, the utilization of DE in the
proposed framework helps in decreasing false alarm rate
significantly. DE are obtained by projecting the time-frequency
representations of an input audio on a dictionary (which forms
the reference vocalization model). The atoms of this dictionary
are unit vectors pointing in the dominant directions of bird vocal-
izations. These dominant directions are learned by clustering a
small amount of audio frames (henceforth termed as training data)
containing bird vocalizations on the unit hypersphere. Clustering is
achieved using mixtures of Von-Mises Fisher distribution (moVMF)
[9] and the mean directional vector of each cluster forms an atom
of the dictionary. Also, moVMF can be seen as equivalent of Gaus-
sian mixture models (GMM) on the unit hypersphere. Clustering
the spectral frames on the unit hypersphere helps in capturing
the information about the presence/absence of dominant fre-
quency bins rather than the frequency magnitudes. This mitigates
the effect of near-field and far-field conditions on the clustering
process to some extent. Hence, two similar vocalizations of a bird
species, recorded at different distances from the recording device,
are clustered together. This behaviour is not present in other clus-
tering techniques such as K-means where magnitude information
influences the assignment of a data point to any cluster. Instead
of moVMF, earlier studies [10,11] have used spherical K-means
to cluster the data for audio feature learning. However, moVMF
has been reported to provide better clustering than spherical K-
means [12]. The other advantage of moVMF is the presence of
the concentration parameter (see Section 3) which helps in dis-
carding mean vectors of clusters having very low concentration
around the mean. This helps in overcoming the effects of outliers
which can be introduced in the learning process of moVMF due
to incorrect labels in the training data.

The main contributions of this work are listed below:

� A semi-supervised two pass framework which can be used for
segmenting vocalizations of many bird species in various
recording environments. The framework does not require any
background modeling and utilizes a very small amount of train-
ing data to learn a bird vocalization acoustic model. Also, the
framework avoids the train-test conditions mismatch by using
a classifier trained on the DE features extracted from the input
recording itself.

� Treating the audio frames as directional data to mitigate the
effect of near-field and far-field conditions. This directional data
is obtained by projecting the audio frames on the unit
hypersphere.

� Utilizing moVMF as an acoustic model to capture the behaviour
of a particular class (in this case, bird vocalizations). To the best
of authors’ knowledge, this is the first study to treat moVMF as
an acoustic model.

� An intermediate feature representation (directional embed-
dings) suitable to facilitate bird vocalization segmentation in a
semi-supervised manner. This feature representation equips
the proposed framework with the ability to discriminate
between bird and non-bird sounds.

The rest of the paper is organized as follows: In Section 2, various
existing studies targeting bird vocalization segmentation and acous-
tic event segmentation are discussed. The proposed directional
embeddings based feature learning is described in Section 3. The pro-
posed framework is discussed in Section 4. Later, we discuss experi-
mental details, results and conclusion in Sections 5–7 respectively.
2. Previous studies

The literature contains many studies addressing the task of bird
vocalization segmentation. These studies can be categorized into
the following:



Fig. 1. Proposed semi-supervised framework for bird vocalization segmentation.
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Manual segmentation: A few early bioacoustic studies dealing
with bioacoustics [13,2] have used manually segmented bird
vocalizations. Manual segmentation can be tedious and unfeasible
if large amount of audio data has to be processed.

Segmentation using time-domain features: Segmentation meth-
ods based on time-domain features such as energy, entropy and
inverse spectral flatness (ISF) have been used for segmenting bird
vocalizations. Many studies[14–16] threshold the energy envelope
to extract syllables from bird song recordings. Spectral entropy
[17] and KL-divergence [18] have also been used to extract bird
vocalizations from audio recordings. The regions containing bird
vocalizations tend to exhibit lower entropy in comparison to the
background regions. Also, KL-divergence between normalized
power spectral density (PSD) of an audio frame and the uniform
density is an indicator of entropy; lower KL-divergence corre-
sponds to high entropy and vice versa. Lakshminarayanan et al.
[18] exploited this behavior for segmenting bird vocalizations. In
one of our earlier studies, we used short term energy (STE) and
inverse spectral flatness (ISF) for segmentation [19].

All these methods are unsupervised in nature which is desir-
able. However, these methods are not able to discriminate bird
vocalizations from any other sound event. Also, the performance
of energy/ISF based methods rapidly deteriorate as the SNR
decreases.

Methods based on spectrogram processing: Various spectrogram
processing based methods [20–23] have been proposed in the lit-
erature for bird vocalization segmentation. These methods have a
common theme. First, morphological processing is applied on spec-
trograms to remove the low-energy background acoustic events.
Then, thresholding is applied on the sum of frequency magnitudes
of each frame of the morphologically processed spectrogram to
segment the vocalizations. Apart from these methods, Koluguri
et al. [24] proposed to use directional filtering on a spectrogram
enhanced using a multiple window Savitzky-Golay filter. This
enhancement procedure can enhance far-field sounds which are
often ignored by many other methods. The directional filtering is
applied in four different directions to capture the time-frequency
modulations of bird vocalizations. Like time-domain based meth-
ods, these spectrogram based methods are also not able to distin-
guish bird vocalizations from other background sounds and output
any high-energy acoustic event as bird vocalization.

Other Methods: A noise-robust template matching based
method is proposed by Kaewtip et al. [25]. This method performs
well in challenging conditions. However, the major disadvantage
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of template matching is that we must know beforehand what
vocalizations we wish to segment. Hence, this method may not
scale in real-world scenarios. Neal et al. [26] proposed a noise
robust bird vocalization segmentation method which uses a ran-
dom forest classifier to yield a probability mask from the spectro-
grams. A hard threshold is applied on this probability mask to
generate the binary decision i.e. bird/non-bird at pixel level of
the spectrogram. The main disadvantage of this method is that it
requires large amount of labeled training data which is usually
scarce.

In our earlier studies [19,27], we proposed model-based unsu-
pervised frameworks for segmentation. These frameworks
bypasses the need of thresholding by using a classification model.
However, like other existing methods, these frameworks are also
not able to distinguish between bird and non-bird sounds. We also
proposed a semi-supervised framework [28] that utilizes a singular
value decomposition (SVD) based feature representation to dis-
criminate between bird/non-bird sounds. The ideal number of sin-
gular vectors required to obtain maximum discrimination between
bird and non-bird sounds depend on the species under study. This
limits the effectiveness of this method in field conditions.

3. Feature learning: directional embedding

Feature learning, in the context of bird vocalization segmenta-
tion, deals with finding a representation, which not only highlights
the bird vocalizations but also removes background sounds. In this
section, we describe the proposed feature representations called
directional embedding (DE) for segmenting bird vocalizations.
Von Mises-Fisher mixture model (moVMF), which is based on
directional statistics, is used to learn a dictionary whose atoms cor-
respond to the dominant directions of bird vocalizations. The mean
directions of mixtures of vMF are regarded as dominant directions.
As discusses in Section 1, the DE representation is obtained by pro-
jecting the spectrogram of an audio recording on this dictionary.
Here, first we explain the pre-processing step to convert the input
audio recordings into a super-frame representation. Then, we
describe moVMF to obtain the dictionary of dominant directions
(the reference vocalization model). Later, the method to obtain
DE from an audio recording using the trained moVMF is explained.
A discussion comparing DE with features obtained from NMF is
also included in this section. The overall process to obtain DE is
documented in Algorithm 1.

Algorithm 1: Procedure to obtain the proposed DE
representation

Training: Obtaining dominant directions of bird vocalizations
Input: Training audio recordings. Output: A dictionary of the

mean directions.
� Obtain magnitude spectrograms of all the training audio
recordings.
� Convert each spectrogram into the super-frame based
representation and project each super-frame on the unit
hypersphere as explained in Section 3.
� Use the available ground truth of the training audio
recordings to extract and pool the unit norm super-frames
corresponding to the bird vocalization regions. The
background super-frames are simply discarded.
� Learn a moVMF having Z mixtures on the selected unit
norm super-frames.
�Form a dictionary, M having Z atoms, whose atoms are the
mean directions of the mixtures of VMF (moVMF).

Feature learning: Obtaining DE for any audio recording
Input: An audio recording and the dictionary of the mean
directions.

Output: DE features.
� Calculate the spectrogram from any input audio recording.
� Process this spectrogram to obtain super-frames.
� Project these super-frames on the dictionary M (learned
during training) to obtain the proposed DE representation.
3.1. Pre-processing audio recordings

Most bird vocalizations exhibit temporal and frequency (T-F)
modulations [29]. These modulations give specific character to a
bird vocalization. However, when the short-term Fourier transform
is applied to obtain the spectrogram of an audio recording, the
information about T-F modulations is smeared out as one frame
is not capable of capturing these modulations effectively. These
T-F modulations are not only helpful in classifying bird sounds
but also provides important cues to discriminate them from other
background sounds. Hence, we embed the temporal context
around each frame to capture these modulations. A moving win-
dow of w frames with a stride of a single frame is used to embed
this temporal context. The w frames within the moving window
are concatenated, one below the other, to form a super-frame. If
the T-F representation has dimensions of d� n (d frequency bins
and n frames), then after applying concatenation process, a
wd� n dimensional super-frame based representation is obtained.
This representation is used for both learning the dictionary and for
segmenting the input recordings.

For learning the dictionary, we are interested in clustering the
unit norm representations of super-frames on the unit hyper-
sphere. Therefore, we normalize each training super-frame to get
a unit norm vector that lies on the surface of the unit hypersphere.
The magnitude information is lost due to this transformation.
However, the desired information about dominant frequencies is
still preserved. Fig. 2 illustrates the process of converting any input
spectrogram into a unit norm based representation.

3.2. Mixtures of von Mises-Fisher distribution (moVMF)

The super-frames obtained by concatenation of w d-
dimensional frames lies in the Euclidean space, Rwd and the unit
norm variants of these super-frames lie on surface of the unit
hypersphere, Swd�1. Mixtures of von Mises-Fisher distribution [9]
can be used as clusters of these unit norm vectors. moVMF has
found its application across many fields in various applications
such as speaker clustering [30], medical imaging [31], text mining
[32] and estimation of shadow and illumination in computer vision
[33]. Taking a cue from these studies, we propose to use vMF mix-
ture modeling to cluster unit norm representations of the super-
frames. Originally two variants of moVMF were proposed: soft
assignments and hard assignments [9]. In this work, we utilize
moVMF with soft assignments only.

To learn moVMF as the bird vocalization model, the training
audio recordings are manually segmented, using the available
ground truth, to extract the bird vocalization regions. The super-
frames corresponding to these bird vocalization regions are pooled
together. Suppose X ¼ x1;x2; . . . ;xNf g is a set of unit norm repre-
sentations of these pooled super-frames where xi 2 Rwd; kxik ¼ 1

and thus xi 2 Swd�1. The xi has wd-variate vMF distribution if its
probability density is [9,34]:

q xi;l;jð Þ ¼ Cwd jð ÞexpjlTxi ; ð1Þ



Fig. 2. Schematic representation of the process to convert a spectrogram into the unit norm based representation.
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where klk ¼ 1;j > 0 and wd P 2. Cwd jð Þ is a normalizing constant
defined as:

Cwd jð Þ ¼ j wd=2ð Þ�1

2pð Þwd=2Iwd=2�1 jð Þ
: ð2Þ

Here Iwd=2�1 :ð Þ is a modified Bessel’s function of first kind and of
order wd=2� 1. The density function, q xi;l;jð Þ, is parameterized
by mean direction, l, and concentration parameter, jwhich charac-
terizes the concentration of unit norm vectors around the mean
direction. As j! 0;q xi;l;jð Þ becomes the uniform density on
the surface of the unit hypersphere. On the other hand, when
j! 1, it reduces to a point density.

Building on this, the density of any unit norm vector, xi drawn
from a mixture of Z different vMF distributions is defined as:

q xi; lz

� � Z
z¼1; jzf g Z

z¼1

� �
¼
XK
z¼1

pzq xi;lz;jz
� � ð3Þ

where pz P 0 and
P Z

z¼1pz ¼ 1. An Expectation-Maximization (EM)
algorithm is used for estimating the mixture parameters. The mix-
ture log-likelihood is defined as:

l X ; pz;lz;jz
� � Z

z¼1

� �
¼
XN
i¼1

log
XZ
z¼1

q xi;lz;jz
� � !

subject to jj lz jj¼ 1 and jz P 0:

ð4Þ

In the E-step, the probability of xi being sampled from zth mix-
ture (ciz) is calculated as:

ciz ¼
pzq xi;lz;jz

� �
XZ
l¼1

plq xi;ll;jl
� � : ð5Þ

During the M-step of EM, this ciz is used to calculate parameter
updates which maximizes the log-likelihood defined in Eq. (4).
These parameter updates are defined below:

pz ¼ 1
N

XN
i¼1

ciz; lz ¼ 1
N

XN
i¼1

xiciz; r ¼ klzk
Npz

;

lz ¼ lz=klzk; jz ¼ r wd� r2
� �

= 1� r2
� �

:

ð6Þ
The complete EM algorithm and detailed derivation of EM
updates is documented in Banerjee et al. [9].

3.3. Obtaining directional embeddings (DE) using moVMF

The trained moVMF model is used to obtain directional embed-
dings (DE) of an input test audio recording. An under-complete dic-
tionary, M 2 Rwd�Z (wd is dimensions of a super-frame and Z is the
number of unit mean vectors), is formed using the mean directions
of the mixtures (lz) as its atoms. This dictionary forms the refer-
ence vocalization model. The mean directions of the mixtures hav-
ing very low concentration are not included in the dictionary. To
obtain the DE for an audio recording, its super-frame representa-
tion, P 2 Rwd�K , (wd is dimensions of a super-frame and K is the
number of super-frames in the test audio recording) is projected
on M as: Fproj ¼ MT � P; Fproj 2 RZ�K whose columns contains the
Z-dimensional DE representation for the input super-frames.

Nature of DE coefficients: The magnitude of DE coefficients (Fproj)
obtained from a super-frame corresponding to the bird vocaliza-
tions is significantly higher than the magnitude of DE coefficients
calculated from the background regions. This can be attributed to
the differences in alignments of bird and background super-
frames with the unit mean directions (which form the atoms)
accumulated in the dictionary. A bird vocalization super-frame is
aligned in the directions of unit mean vectors, which leads to the
high magnitude of DE coefficients. On the other hand, the back-
ground super-frames show no correlations with the dictionary
atoms. Thus, the DE coefficients of background regions are charac-
terized by their relatively lowmagnitude. This difference in magni-
tude of the DE coefficients leads to the distinction between bird
vocalizations and background. This behavior is illustrated in
Fig. 3. A dictionary (containing 10 mean directions) learned from
the vocalizations of Cassin’s vireo, a North American songbird, is
used to obtain DE (shown in Fig. 3(b)) from the spectrogram shown
in Fig. 3(a). A context window of 5 i.e. w ¼ 5 is used for obtaining
the super-frames. By analyzing Fig. 3(b), it is clear that only bird
vocalization information is reflected in DE space and most of the
other background disturbances are implicitly removed. It must
be noted that no explicit filtering process is applied in DE space
to remove the background sounds. This background filtering is a



Fig. 3. (a) Spectrogram containing two vocalizations of Cassin’s Vireo (b) DE
obtained using the proposed approach from (a).
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result of non-alignment of background super-frames with the dic-
tionary atoms.

Directional embeddings can also distinguish bird vocalizations
from various types of biotic and abiotic background sounds such
as the sound of rain, waterfall, human speech and insects. This
behavior is highlighted in Figs. 4–6. Fig. 4(a) shows the spectro-
gram of two Cassin’s vireo vocalizations with overwhelming
waterfall sound present in the background (SNR 0 dB). The DE
obtained for this spectrogram, depicted in Fig. 4(b), indicates that
the proposed representation is able to filter-out most of the back-
ground. Fig. 4(c) and 4(d) depict the spectrogram of an audio
recording containing human speech with a Cassin’s vireo vocaliza-
tion and its respective DE. It is clear from Fig. 4(d) that, as desired,
the speech information is not reflected in the DE space. Also, Fig. 5
depicts the robustness of DE against a commonly occurring biotic
background disturbance in the field conditions, namely cicadas.
These insects are highly vocal and often overwhelm the bird vocal-
izations, making it difficult to correctly segment them. Fig. 5(a)
shows the spectrogram of an audio containing Cassin’s vireo song
phrases with cicadas constantly vocalizing in the background. DE
representation obtained for this spectrogram is shown in Fig. 5
(b). The analysis of this figure highlights that DE is correctly able
to identify the bird vocalizations even in the presence of over-
whelming noise produced by cicadas. The same dictionary as
described earlier is also used here.

To further analyze this behavior, we created an artificial audio
recording containing a Cassin’s vireo vocalization, an emerald dove
vocalization (which has relatively low frequency vocalizations) and
the sound of a siren. The spectrogram of this audio recording is
shown in Fig. 6(a). Again, the aforementioned dictionary learned
from Cassin’s vireo is used. The analysis of Fig. 6(b) shows that
the DE space has most of the information about the Cassin’s vireo
vocalization. However, no dominant information about emerald
dove vocalization or the siren is present. This is due to the fact that
mean directions are learned from the vocalizations of Cassin’s
vireo, whose frequency profile is significantly different from the
frequency profiles of dove vocalizations and siren sounds. In many
applications, the siren is undesired (which is achieved in the DE
space). Other applications might require that both the dove and
Cassin’s vireo vocalizations are captured properly (which is not
achieved in this illustration.) This exhibits the trade-off between
the generalization ability and background removal ability of DE.
The DE can be generic as long as the frequency profile of target
vocalizations is similar to the ones used for learning the dictionary.
This behavior may not an issue in many field conditions, as a dic-
tionary learned from one species can be used to segment
vocalizations of many target species, which exhibit similar fre-
quency profiles. For example, a Cassin’s vireo dictionary can be
used to segment vocalizations of many song bird species. Fig. 7
depicts the DE obtained for eight different species using Cassin’s
vireo dictionary. The analysis of this figure highlights the general-
ization claim (under restriction of the similarity between the refer-
ence and testing vocalizations). This claim is further corroborated
in the experimentation (see Sections 5 and 6).

3.4. Comparison with Non-negative matrix factorization

Non-negative matrix factorization (NMF) has been successfully
used in various tasks such as acoustic scene classification [35],
speech enhancement [36] and voice activity detection [37]. For
the task of bird vocalization segmentation, a dictionary or refer-
ence model of vocalizations can be learned using supervised or
semi-supervised NMF [7]. Since the proposed framework does
not use the background modeling, we are only considering the
semi-supervised NMF where the vocalization dictionary is kept
constant and the background atoms are updated in each iteration.
The feature representation obtained using NMF can distinguish
between bird sounds and silence regions effectively. However, this
representation also reflects the presence of most of the background
sounds. Both of these behaviors are evident in Fig. 8. The semi-
supervised NMF features (see Fig. 8) obtained for spectrograms
shown in Fig. 4(c) and 6(a) show the significant presence of back-
ground acoustic events in the feature domain. This can be attribu-
ted to the fact that NMF models the source spectra by a convex
cone which often contains the regions where source spectra does
not exist [8]. Moreover, these regions can contain other undesir-
able background acoustic events. This may hinder the ability of
NMF to distinguish bird vocalizations from other background
sounds in a semi-supervised setup.

In addition to this, obtaining NMF representation is computa-
tionally expensive (iterative and requires multiple matrix updates)
in comparison to the calculation of DE from a pre-trained
dictionary.
4. Method

In this section, first, we formulate the problem statement and
then, we describe the proposed framework for bird vocalization
segmentation.

4.1. Problem formulation

The objective of the bird vocalization segmentation is to tempo-
rally locate any bird vocalization irrespective of its nature (call or
song) and the species producing the vocalization. There are two
steps in formulating this problem: feature representation and clas-
sification. First, a short-term feature representation is obtained
from an input recording, where a feature vector xi 2 R y (y is the
number of features) is obtained for the ith frame. In classification
stage, xi is classified as the bird vocalization or the background.

4.2. Proposed framework

The proposed two-pass framework (Fig. 1) for bird vocalization
segmentation is described in this sub-section. Here, first we
describe pass 1 of the framework: the process to generate auto-
matic training labels from an input test recording using DE and
mutual information. Then, we discuss pass 2 of the framework,
where labels and the DE features, generated during pass 1 from
the input recording itself, are used for training a classification
model which in turn is used for making bird/background decisions.



Fig. 4. (a) and (c) Depicts the spectrograms of recordings having vocalizations of Cassin’s Vireo with overwhelming waterfall noise and human speech respectively. (b) and (d)
Illustrates their respective DE representation.

Fig. 5. (a) The spectrogram of an audio recording having Cassin’s Vireo vocaliza-
tions with significant background noise produced by cicadas (b) DE representation
obtained from the spectrogram shown in (a).

Fig. 6. (a) Spectrogram containing a Cassin’s vireo vocalization, a low frequency
emerald dove vocalization and an air horn (b) DE obtained from the spectrogram
shown above in (a).
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4.3. Pass 1: Generating automatic training labels

Obtaining DE from input audio recording: A test audio recording
and a dictionary containing unit mean directions of a trained
moVMF are given as input to pass 1 of the framework. The input
audio recording is converted into the super-frame based represen-
tation as described in Section 3.1. This super-frame based repre-
sentation is projected on the dictionary to obtain the DE
representation. This process is discussed in detail in Section 3.3.

Using mutual information to automatically generate labels: As dis-
cussed in Section 3.3, the magnitude of DE coefficients obtained
from non-bird super-frames is significantly less than DE coeffi-
cients of bird vocalization super-frames. Also, there is a large vari-
ation in magnitudes of DE coefficients of the bird super-frames.
This is because a bird super-frame exhibits varying degree of align-
ments with different unit mean directions of the dictionary. How-
ever, there is very little variation in magnitude of DE coefficients of
a non-bird super-frame. This can be attributed to the fact that a
non-bird super-frame has no or very little similarity with any of
the dictionary atoms. This dissimilarity leads to low magnitudes
(approaching zero) of DE coefficients. Fig. 9 highlights this
behavior.

The difference in magnitudes of DE coefficients between bird
and non-bird regions can be captured using mutual information
(MI) between DE features of two consecutive super-frames. MI of
a vector with itself is highest, therefore MI between two almost
similar DE feature vectors will be higher than the two which are
different. Since the DE feature vectors for any background sound
are almost similar (all coefficients approach zero), MI calculated
for background regions is almost constant and is higher than the
MI calculated for the bird vocalization regions. Fig. 10 illustrates
this behavior.

To calculate MI, DE vectors (Fproj) obtained from an input
recording are normalized using the softmax function [28] as:

f̂nj ¼
efnjXZ

z¼1

efnz

; for j ¼ 1;2; . . . ; Z: ð7Þ

Here fn is the nth column of Fproj. fnj represents the jth element of fn
and Z represents the dimensionality of fn. Since softmax function
calculates the categorical distribution of an event over Z different

events, f̂nj represents the probability estimate of the degree of the
alignment of fn with jth mean direction of the learned dictionary
M. As discussed earlier, the DE vectors of non-bird regions exhibit
no or very low alignment with any of the dictionary atoms. As a
result, these non-bird DE vectors (softmax normalized) become
almost equiprobable vectors i.e. each element of the normalized
DE vector exhibits almost same value. Similarly, elements of a nor-



Fig. 7. (a), (c), (e), (g), (i), (k), (m) and (o) depict the spectrograms containing vocalizations of Cassin’s vireo, Hutton vireo, Black-headed grosbeak, Greater sooty owl,
California thrasher, Western tanager, Black phoebe and Indian peafowl respectively. Their respective feature representations/DE are shown in (b), (d), (f), (h), (j), (l), (n) and
(p).

Fig. 8. (a) and (b) Depicts the feature representations of spectrograms shown in
Figs. 4(c) and 6(a) obtained by using semi-supervised NMF (with 20 atoms).

Fig. 9. Box plots of the DE coefficients calculated for (a) 100 background frames (b)
100 speech frames and (c) 100 Cassin’s vireo (CV) vocalization frames (d) 100 air-
horn frames and (e) 100 Califorina Thrasher (CT), a bird species frames. In all cases,
the dictionary/reference model learned from Cassin’s vireo vocalizations is used.
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malized DE vector, corresponding to a bird super-frame, exhibits
different probabilities of the degree of alignment of super-frame
with different mean directions.

MI between the normalized DE vectors of each pair of the con-
secutive super-frames (i.e. between nth and n� 1ð Þth columns of
normalized Fproj) is calculated as:
MI f̂n; f̂n�1

� �
¼ H f̂n

� �
þ H f̂n�1

� �
� H f̂n; f̂n�1

� �
: ð8Þ

Here HðÞ represents the entropy and can be calculated as:

H f̂n
� �

¼ �
XZ
j¼1

f̂nj log2f̂nj ; where Z is the dimensions of DE vector:

ð9Þ



Fig. 10. (a) DE representation obtained for spectrogram shown in Fig. 4(a). (b)
Normalized mutual information calculated for the DE representation shown in (a).
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Also, f̂nj is a multinoulli probability estimate (as discussed ear-

lier) and Z is the dimensions of f̂n.

The joint entropy H f̂n; f̂n�1

� �
can be calculated as:

H f̂n�1; f̂n
� �

¼ �
XZ
j¼1

P f̂n�1j ; f̂nj
� �

log2P f̂n�1j ; f̂nj
� �

; ð10Þ

where the joint probability estimate P f̂n�1j ; f̂nj
� �

is calculated as:

P f̂n�1j ; f̂nj
� �

¼
number of times f̂n�1j ; f̂nj

� �
jointly occurs in f̂n�1 and f̂n

Z
ð11Þ

MI, calculated using Eq. (7), is used to generate automatic train-
ing labels in the proposed framework. Q super-frames having low-
est and Q super-frames having highest MI are labeled as bird
vocalizations and background respectively. The rest of the super-
frames remain unused. These generated labels and DE feature vec-
tors are given as input to the second pass.
4.4. Pass 2: Training classification model and extracting segments

During the second pass, a classification model is trained using
the input labels (generated during pass 1) and DE feature vectors.
Once the model is trained, each DE vector of the input recording is
classified as either the background or bird vocalization. In this
work, we have used Support vector machines (SVM) for classifica-
tion. Since the features generated from the input recording is itself
used for training the classification model, the proposed framework
does not suffer from the classical problem of mismatch in training-
testing conditions. In bioacoustics, this mismatch is very common
due to the volatile/unpredictable nature of the field conditions and
differences in the audio recording devices.

Figs. 11(c) and 11(d) show the output of the proposed frame-
work for the input test audio recordings whose spectrograms are
shown in Figs. 11(a) and 11(b) respectively. The ‘0’ represents
the background while the ‘1’ represents the bird vocalization. The
analysis of this figure makes it clear that the proposed framework
can identify the bird vocalizations in an audio recording
successfully.
5. Experiments

This section describes the datasets and experimental setup used
for the performance evaluation of the proposed segmentation
framework.
5.1. Datasets used

Experimental validation of the proposed framework is per-
formed on the audio recordings of seven different species. These
species include Cassin’s Vireo (CV1), California Thrasher (CT), Hut-
ton Vireo (HV), Black-headed Grosbeak (BG), Grey Shrike-Thrush
(GS), Redthroat (RT) and Western Tanager (WT). The recordings
of these 7 bird species were obtained from the bird audio database
maintained by the Art & Science center, UCLA [38]. Apart from this,
a different set of Cassin’s Vireo recordings (CV2) [39] is also used
for the performance evaluation. All the audio recordings available
at both these sources are 16-bit monoWAV files having a sampling
rate of 44.1 kHz. The details about the number of recordings and
the number of vocalizations available for each species are tabu-
lated in Table 1. The choice of species used in this study is
restricted by the public availability of the strongly labeled datasets
(having segment level time stamps). The datasets used in this
study have both labeled and unlabeled audio recordings. However,
only the labeled audio recordings from all datasets are used here. A
list of audio file used in this study and the process to retrieve these
files is available athttps://bit.ly/2Oth03R. The ground truth pro-
vided with datasets is in terms of time-stamps (onset/offset times)
of the bird vocalizations. These time-stamps are processed to
obtain frame-level ground truths, which are used for evaluating
the segmentation performance.

To test the proposed framework in noisy conditions, back-
ground noise are artificially added to the recordings of the CV2
dataset. Four different types of background sounds i.e. rain, water-
fall, river and cicadas at 0 dB, 5 dB, 10 dB, 15 dB and 20 dB SNR are
added using Filtering and Noise Adding Tool (FaNt) [40]. These
background sound files are downloaded from FreeSound [41].
The bird vocalization recordings are most likely to be affected by
similar sounds in the field conditions.

5.2. Performance evaluation setup

Three experiments are designed to evaluate the segmentation
performance of the proposed framework. In the first experiment,
the segmentation performance of the proposed framework is com-
pared with various existing algorithms over the datasets men-
tioned earlier. Also, using the noisy versions of CV2, the
robustness of the proposed framework and other comparative
algorithms is evaluated in different SNR conditions. The second
experiment is conducted to highlight the generic nature of the pro-
posed framework. In this experiment, the dictionary learned from
one species is used to segment the vocalizations of another species.
The performance of this setup is compared with the segmentation
performance obtained when same species is involved in both train-
ing and testing. For performance comparison, frame-level F1-score
is used as a performance metric.

For comparison, six different existing methods (discussed in
Section 2) are used as baselines in this study. Apart from these
algorithms, a variant of the proposed framework is also used for
comparative studies. This variant targets the feature representa-
tion module of the proposed framework by replacing the DE with
a semi-supervised non-negative matrix factorization (NMF) (dis-
cussed in Section 3). Table 2 summarizes all the algorithms used
for comparative study.

Third experiment is conducted to compare the performances of
the weakly supervised neural networks with the proposed frame-
work. In Section 1, the authors explained that the problem of the
scarcity of strong training labels for the task in hand can also be
addressed by the data-intensive, weakly supervised neural net-
works that are trained for audio tagging tasks. These networks only
require the recording level labels during training and bypass the
need of strong or frame-level labels. The frame-level predictions

https://bit.ly/2Oth03R


Fig. 11. (a) and (b) depict the spectrograms of two input audio recordings containing the vocalizations of Black-headed grosbeak and California thrasher respectively. (c) and
(d) show the decisions outputted by the proposed framework on these audio recordings.

Table 1
Total audio recordings and number of vocalizations present in each dataset considered for the performance evaluation.

Dataset CV1 CV2 CT HV BG GS RT WT Total

No. of Recordings 497 13 97 5 108 12 7 3 744
Vocalizations (Approx.) 40 K 900 20 K 278 16 K 120 1.2 K 500 78998

Table 2
Methods used for comparative studies.

Algorithm Classification Method Nature

Two-pass segmentation (TP) [19] Gaussian Mixture Models (GMM) Unsupervised
SVD + MI (SVD) [28] Thresholding Semi-supervised
Morphological noise removal on spectrograms + Energy (FOD) [21] Thresholding Unsupervised
Morphological noise removal and finding connected segments + Energy (LAS) [22] Thresholding Unsupervised
Morphological Opened Spectrogram + Energy (MOS) [20] Thresholding Unsupervised
Spectrogram Enhancement and Directional Filtering + Energy (DF) [24] Thresholding Unsupervised
DE + SVM Based Framework (Proposed) SVM Semi-supervised
NMF + SVM (NMF), variant of the proposed framework SVM Semi-supervised
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generated by these networks are the by-product of audio-tagging
tasks. Although, to the best of our knowledge, no existing study
has used weakly supervised neural networks for bird vocalization
segmentation. However, for the proper performance evaluation of
the proposed framework, it is essential to incorporate such weakly
supervised neural networks in the performance comparison. Thus,
we utilize off-the-shelfweakly supervised convolutional neural net-
works, proposed in [6,42] for the performance comparison.1 In [42],
the authors used attention and localization mechanism in a CNN-
RNN (convolutional-recurrent neural network) architecture
(Att_loc_CNN) to detect the audio events. In [6], a gated convolution
neural network (GCNN) is proposed for detecting rare sound events.
The gated convolutional layers control the flow of information from
layer to other and act as attention mechanism. Both these networks
can be easily extended for bird activity detection (audio tagging task)
and hence, bird vocalization segmentation. Since the nature of meth-
ods listed in Table 2 is completely different from the weakly super-
vised neural networks, it is not possible to use the same type and
1 Python codes available at: https://github.com/yongxuUSTC/dcase2017_task4_
cvssp https://github.com/yongxuUSTC/att_loc_cgrnn.
amount of data for training. Hence, we train these networks on audio
recordings obtained from Wablr and Freefield datasets. These data-
sets are provided for training as a part of Bird Activity Detection Chal-
lenge, 2017 [5]. A total 16000 recordings (8000 bird and 8000 non-
bird approx.) are used for training both the networks. Each recording
is 10 s long and is sampled at 44.1 kHz. The testing is done on all the
datasets listed in Table 1.

5.3. Parameter settings used

5.3.1. Parameters used in the proposed framework
For obtaining the spectrograms from audio recordings, STFT is

performed on 20 ms frames with an overlap of 50%, using 1024
FFT points. The super-frames are obtained by concatenating 5
frames i.e. w ¼ 5. The dictionary, M, with 10 atoms is learned from
the training vocalizations. moVMF with 15 mixtures is applied to
obtain the dominant directions of bird vocalizations. Out of these
15 mixtures, five having lowest concentration were discarded
(Z ¼ 10). While auto-labeling super-frames in pass 1, 2000 super-
frames having lowest MI are labeled as bird vocalizations while
2000 super-frames having highest MI are labeled as background

https://github.com/yongxuUSTC/dcase2017_task4_cvssp
https://github.com/yongxuUSTC/dcase2017_task4_cvssp
https://github.com/yongxuUSTC/att_loc_cgrnn
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(i.e Q = 2000.) All these values are experimentally determined on a
validation dataset. Support vector machines with cubic polynomial
kernel is used for classification in pass 2.
5.3.2. Parameters used in the other comparative algorithms
For SVD, the number of dictionary atoms used in the respective

study [28] i.e. 5, is also used here. For implementing directional fil-
tering (DF), an order of 3 and a matrix length of 21 is used to apply
Savitzky-Golay filtering. For NMF, 20 dictionary atoms are used. A
classical NMF algorithm [43] with Itakura-Saito distance is used
in this work. All these parameters including thresholds are tuned
empirically on a validation dataset to provide the optimal segmen-
tation performance. For weakly supervised neural networks, only a
small change is done in architectures to incorporate the required
inputs. Mel-spectrograms are given as input to these networks.
The input size is changed to 40� 1000 to incorporate 10 s of audio
recordings (1000 20 ms frameswith 50% overlap and 40 is the num-
ber of Mel bands). The rest of parameters and architecture details
proposed in the corresponding studies [6,42] are also used here.
5.3.3. Data distribution for training, testing and validation
For first experiment: From each dataset, two recordings are used

as validation set for tuning the threshold and parameters. These
recordings are not used for training or testing purposes. The
remaining audio recordings are used for the evaluation in a five
fold cross-validation manner and the results presented here are
averaged across these five folds. For each fold, 20% of the record-
ings are chosen from the dataset for learning the dictionary and
rest of the recordings are used for testing. The same test recordings
are given to the unsupervised methods for a fair performance com-
parison. It must be noted that the test recordings contain many
vocalization types, which are not present in the training recording
used for learning the dictionary.

For second experiment (cross-species segmentation): In this exper-
iment, one dataset (corresponding to a particular species) is used
for training i.e. for learning the dictionary while all the other data-
sets are used for testing. From the training dataset, two recordings
are randomly chosen as the validation set and out of the remaining
recordings, 20% of recordings are randomly chosen for learning the
dictionary. All the recordings present in the test datasets are used
for evaluating the segmentation performance.

For third experiment (comparison against weakly supervised neu-
ral networks): For weakly supervised neural networks, 80% of the
recordings in Freefield and Warblr are used for training while
remaining recordings are used for validation. The testing is done
on all the datasets listed in Table 1. For a fair comparison, only
the files used for testing the proposed framework in experiment
1 are used i.e. audio files used for validation are not used here. Also,
the segmentation performances of these networks are compared
against the average F1-score achieved across five-folds by the pro-
posed framework.
Table 3
Segmentation performance of different algorithms over different datasets (Results of first ex
the vocalizations of the species, which are targeted for segmentation. Entries in bold repr

Method

CV1 CV2 CT H

TP 0.69 0.72 0.68 0.
SVD 0.79 0.82 0.77 0.
FOD 0.61 0.62 0.58 0.6
LAS 0.6 0.6 0.57 0.6
MOS 0.52 0.57 0.53 0.6
DF 0.66 0.67 0.66 0.

Proposed 0.81 0.83 0.8 0.
NMF 0.76 0.78 0.76 0.7
6. Results and discussion

In this section, we describe the results obtained for three experi-
ments mentioned in the previous section. In addition to that, we also
discuss the various aspects of the proposed framework such as the
effectof increasing thesizeof contextwindow, increasing thenumber
of mixtures in moVMF and using MI over energy/entropy.
6.1. First experiment: comparison with existing methods

The segmentation performance of the comparative algorithms
including the proposed framework is depicted in Table 3. From
the analysis of Table 3, the following can be inferred:

� The proposed framework outperforms most of the existing algo-
rithms across all the datasets considered.

� SVD and the proposed framework significantly outperform the
unsupervisedmethods. This is due to their ability to discriminate
bird vocalizations frommost of the background disturbances.

� DF outperforms all the other spectrogram-processing based
methods. This can be attributed to the spectrogram enhance-
ment and directional filtering steps before applying energy-
based thresholding. This processing on spectrogram signifi-
cantly increases the energy contrast between vocalizations
and background leading to a better segmentation. However, like
other unsupervised methods, DF is also not able to discriminate
between bird and non-bird sounds.

� NMF variant of the proposed framework also outperforms most
of the existing algorithms and its segmentation performance is
second only to the proposed framework and SVD. Better seg-
mentation performance can be attributed to the reference mod-
eling of the bird vocalizations using NMF. However, as
discussed earlier, NMF may not be able to discriminate between
birds and other acoustic events effectively in a semi-supervised
setup, which leads to a poorer segmentation performance than
the proposed framework.

The segmentation performance of these methods is also evalu-
ated on four noisy versions of CV2, each having SNR of 0 dB, 5 dB,
10 dB, 15 dB and 20 dB. The results are shown in Fig. 12. These
results highlight the noise robustness of the proposed framework,
which shows no significant drop in segmentation performance as
the SNR deteriorates (20 dB–0 dB). Apart from this, all the semi-
supervised methods perform well at low SNR conditions. Again,
the feature extraction step in all these methods mitigate the effect
of the background noise to a large extent which results in better
segmentation performance. On the other hand, all the unsuper-
vised methods show a significant drop in performance on moving
from high to low SNR conditions. An average relative drop of 12%,
4.5%, 16%, 16.3%, 15.5%, 17%, 3.6% and 6.4% is observed in perfor-
mance of TP, SVD, FOD, LAS,MOS, DF, Proposed and NMF respectively
on moving from 20 dB SNR to 0 dB SNR across all noise types.
periment). F-Score is used as the metric for comparison. The dictionary is learned from
esent the best F-score obtained for the corresponding dataset.

Datasets

V BG GS RT WT

7 0.64 0.64 0.66 0.69
8 0.76 0.78 0.79 0.8
7 0.59 0.6 0.63 0.65
8 0.57 0.57 0.61 0.64
5 0.57 0.58 0.6 0.62
7 0.64 0.65 0.7 0.71
8 0.77 0.79 0.81 0.81
6 0.74 0.72 0.72 0.76



Fig. 12. Segmentation performance of different algorithms on CV2 corrupted by (a) Rain, (b) River, (c) Waterfall and (d) Cicadas noise at different SNR. Here ‘Prop.’ represents
the proposed framework.

Table 4
Segmentation performance for cross-species train-test setup (Results of the second experiment). F-Score is used as the performance metric. The dictionary learned from one species
is used for segmenting all the other species considered in the study. Entries in bold represent the best F-score obtained for the corresponding dataset.

Training Dataset Testing Datasets

CT HV BG GS RT WT CV1

CT 0.79 0.81 0.78 0.76 0.79 0.79 0.78
HV 0.77 0.81 0.76 0.76 0.78 0.79 0.77
BG 0.78 0.8 0.78 0.77 0.79 0.8 0.79
GS 0.76 0.8 0.77 0.77 0.78 0.78 0.78
RT 0.78 0.79 0.76 0.75 0.8 0.78 0.79
WT 0.77 0.8 0.77 0.75 0.79 0.81 0.78
CV1 0.78 0.8 0.77 0.76 0.8 0.8 0.8
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6.2. Second experiment: generic nature of the proposed framework

In this experiment, the generic nature of the proposed frame-
work is evaluated using different species for training (learning
the dictionary) and testing. Table 4 tabulates the segmentation
performance observed for this cross-species setup. The analysis
of Table 4 shows that the best segmentation performance is
obtained when the training and testing species are same. However,
there is no dramatic drop in the performance when the dictionary
is learned from the vocalization of a species that is not being tar-
geted for the segmentation. Moreover, this drop in F1-score is min-
ute and segmentation performance across all the cases is near
optimum. This upholds the generalization claim of the proposed
framework.
2 http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-rare-sound-event-
detection.
6.3. Third experiment: comparison against weakly supervised neural
networks

The performances achieved by the proposed framework and the
weakly supervised neural networks on different datasets are listed
in Table 5. The analysis of Table 5 shows that the segmentation
performance of the proposed framework is better than the weakly
supervised neural networks considered in this study. The perfor-
mance of GCNN[6] and Att_loc_CNN[42] is not up to the expected
standards as these networks were designed for rare sound event
detection2 and not for the bird vocalization segmentation. Moreover,
the differences in training and test datasets may have also amounted
to the average performance of these neural networks. It must be
noted that both these networks were able to identify the presence
and absence of bird vocalizations. However, the onset-offset bound-
aries detected by Att_loc_CNN are much better than boundaries
detected by GCNN. This can be attributed to the fact that Att_loc_CNN
utilizes time-distributed convolutional operations on each input
frame, while GCNN utilizes two-dimensional convolutional opera-
tions at each layer. Due to these two-dimensional convolutional
operations, the field-of-view observed at each frame in the last con-
volution layer spans multiple input frames [44]. This elevated span
deters the ability of network to detect the correct onset-offset times.
Also, the results obtained from this experiment confirm that the
weak supervision provides a convenient way to tap into the massive
potential of huge datasets with weak labels.

http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-rare-sound-event-detection
http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-rare-sound-event-detection


Table 5
Segmentation performance of the proposed framework against weakly supervised neural networks.

Method Datasets

CV1 CV2 CT HV BG GS RT WT

GCNN [6] 0.59 0.62 0.63 0.65 0.6 0.58 0.59 0.61
Att_loc_CNN [42] 0.72 0.73 0.75 0.74 0.71 0.75 0.73 0.76

Proposed 0.8 0.83 0.8 0.8 0.77 0.79 0.81 0.81
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6.4. Effect of w and Z on segmentation performance of the proposed
framework

The context window (of sizew) controls the amount of spectral-
temporal information to be incorporated in a super-frame. This
helps in capturing frequency and temporal modulations present
in most of the bird vocalizations. The smaller value of w gives rise
to a super-frame representation having less context information
while using a large value of w increases the dimensionality of
super-frames which is often undesirable. The large values of w
can also affect the generic nature of the proposed algorithm. The
mean directions learned from the super-frames having very high
context information can get highly biased towards the vocaliza-
tions used for training. Therefore, an appropriate value of w must
be used. As discussed previously, we have used w ¼ 5 for all the
experiments. This value of w is determined experimentally and it
balances the trade-off between preserving the context information
and high dimensionality of the super-frames.

The number of mixtures (Z) in moVMF directly controls the
dimensionality of the feature representation. We intend to train
moVMF with less amount of training data (usually a single audio
recording). Hence, the number of mixtures should not be very
large. To choose an appropriate value of Z, we experimented with
Z ¼ 15;20 and 40. The behavior of DE for all these cases was same
i.e. no improvement was observed by increasing Z from 15 to 40.
This shows that the proposed DE representations can be learned
effectively using few mean directions only. Considering the dimen-
sionality of DE representation and usage of less training data, we
chose to use Z ¼ 15 for all the experiments.

6.5. Using MI over energy/entropy

Most of the information in DE space is about the bird vocaliza-
tions. However, DE space can also exhibit background information
to some extent (as can be seen in Fig. 4(b)). These background dis-
turbances are slowly varying and for two consecutive super-
frames, DE representations are almost same. Hence, MI for back-
ground regions will still be almost constant. However, metrics like
energy and entropy are known to be susceptible to these distur-
bances, leading to a varying energy/entropy for background
regions. This may lead to the poor automatic labeling in the pro-
posed framework. Therefore, MI is used in the proposed framework
over energy and entropy.
7. Conclusion

In this paper, we proposed a two pass semi-supervised frame-
work for bird vocalization segmentation. A feature representation
called directional embedding, tailored for this segmentation task,
has also been proposed. The proposed framework gets its semi-
supervised nature from the feature learning module which utilizes
a small amount of training data to model the dominant directions
of the vocalizations of many bird species. The utilization of this fea-
ture representation in the proposed framework helps in discrimi-
nating the bird vocalizations from other background acoustic
events. The segmentation performance of the proposed framework
has been evaluated on the datasets of seven different species and
the experimental results establish the superiority of the proposed
framework over various existing bird vocalization segmentation
methods.

One possible shortcoming of the proposed framework is that
when bird vocalizations used for learning the dictionary are similar
to the undesired background events, the framework cannot dis-
criminate between bird and non-bird sounds. However, it must
be noted that these cases rarely occur in field conditions. Future
work will deal with developing segmentation techniques which
could tackle such situations. Also, the proposed DE representations
will be explored in a supervised setup for species identification and
acoustic event detection.
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