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While the large design degrees of freedom (DOFs) give meta-
surfaces a tremendous versatility, they make the inverse
design challenging. Metasurface designers mostly rely on
simple shapes and ordered placements, which restricts the
achievable performance. We report a deep learning based
inverse design flow that enables a fuller exploitation of the
meta-atom shape. Using a polygonal shape encoding that
covers a broad gamut of lithographically realizable res-
onators, we demonstrate the inverse design of color filters
in an amorphous silicon material platform. The inverse-
designed transmission-mode color filter metasurfaces are
experimentally realized and exhibit enhancement in the
color gamut. © 2022 Optica Publishing Group

https://doi.org/10.1364/OL.458746

Optical metasurfaces enable exquisite control over an inci-
dent wavefront’s properties and are being actively explored for
diverse applications in imaging, sensing, holography, and optical
computing. In its most general form, the optical metasurface is
a “surface-like” heterogeneous array of nanoresonators. Despite
their promise, metasurface designs reported in the literature are
still predominantly limited to ordered arrangements of primi-
tive geometries; e.g., circular [3], elliptical [4], rectangular [5],
and cross-shaped nanopillars [6]. Inverse designs using limited
degrees of freedom (DOFs) is considerably simple, but may
exhibit suboptimal optical performance in comparison to that
obtainable with the entire universe of lithographically realizable
designs. The metasurface design repertoire is slowly expanding
to include complex geometries like polygonal meta-atoms [7–9],
free-form geometries [10–14], extended meta-atoms [15], and
volumetric structures [16]. Typically, inverse design involving
complex geometries uses topology optimization or metaheuris-
tic optimization algorithms (like genetic algorithm, swarm
optimization, differential evolution etc. [17,18]). However, the
workflow for such inverse design, especially the geometry
parameterization step, is non-trivial. If not carefully chosen, a
parameterization could vastly enlarge the design space without
ensuring that most of the shapes remain realizable. The optical
response of complex shape sets is non-intuitive and enlarged
search spaces complicate the optimization process.

Artificial intelligence (AI) and related data-driven techniques
[19–22] are being increasingly explored for inverse design prob-
lems in nanophotonics. Current approaches for shape encoding
can be divided into three broad categories: (1) parametric rep-
resentation [23]; (2) pixelated image representation [24–26];
and 3) generative networks and learned latent space representa-
tions [27–29]. Approach 1 is the simplest but results in a very
restricted shape set. Approach 2, however, results in a large
space set, but a large fraction of this set is unfeasible result-
ing in a highly inefficient model creation. Zandehshahvar et al.
[29] implemented auto-encoders in generative adversarial net-
works (GAN) to map the design performance to a latent space
for manifold learning; but consider a limited number of design
classes. Lin et al. [30] used variational autoencoders in a GAN to
design geometries with predefined symmetries; however, coach-
ing the generative network to restrict itself to lithographically
feasible shapes remains a challenge. Wen and co-workers [28]
proposed “self-attention layers” in the progressive growth of
GAN (PGGAN) for design robustness. Chen et al. [31] pro-
posed a design under uncertainty framework in addition to a
GAN that takes fabrication uncertainty into account. However,
these methods result in complicated workflows as they require
training additional networks. Furthermore, adversarial training
of generative networks is known to exhibit problems like loss
oscillations.

In this work, we consider a polygonal shape encoding [8], a
parametric representation of meta-atom geometry (approach 1),
which broadens the shape gamut and enables the training of a
high-accuracy predictive model without requiring a large train-
ing dataset. We show that such a predictive model can be used
as a surrogate fitness evaluator for an evolutionary optimizer
resulting in significant reduction in optimization time without
compromising on solution quality. To demonstrate the utility of
our proposed design method, we consider an inverse design of
transmission-mode metasurface color filter arrays (CFA) [32]
in an amorphous silicon (a-Si) platform. The inverse-designed
structures are fabricated and performance improvements are
demonstrated experimentally.

We consider a periodic 100-nm-thick a-Si metasurface on
a silica substrate [see Fig. 1(a)] with a single polygon-shaped
nanoresonator in each unit cell. The polygons are encoded (see
Section S-1 in Supplement 1) via the polar coordinates of its
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Fig. 1. Encoding a gamut of lithographically realizable nanoresonator shapes. (a) Periodic metasurface with 8-fold symmetric free-form
nanoresonators. Inset: top view of a unit cell. (b) Expanded view of one octant of the 8-fold symmetric polygon with the vertices labeled with
corresponding r and θ. Highest value of angle (α) is marked with a dashed arc (see Section S-1 in Supplement 1). (c) Plethora of geometries
(symmetric and asymmetric) possible with the proposed polygonal encoding beginning with polygon definition and boundary smoothing.
Dimensionality of the parameter vector [shown in panel (b)] required to define the shape is specified for each example.

Fig. 2. Trained neural network used as a surrogate fitness estimator (see Fig. S1 in Supplement 1 for details).

vertices: radius (r) and angle weight (ϕ) and highest angle (α)
[Fig. 1(b)]. As seen in Fig. 1(c), this encoding can encompass
a wide gamut of shapes. We focus on polarization indepen-
dent metasurface color filters by imposing an 8-fold symmetry.
The number of points per octant is fixed to 3; giving us a 7-
dimensional parameter vector, which will be the “input” to our
deep neural network (DNN) surrogate model. The transmittance
and reflectance spectra at 32 wavelengths, with measurements
taken 10 nm apart in the visible wavelength range (400–710 nm),
constitute the “output” of the DNN model. Extensive details
regarding the ground truth generation, DNN training, and vali-
dation, as well as their timing along with DNN prediction results
for higher dimensional geometries, are provided in Section S-2
in Supplement 1.

The next phase concerns the use of such trained DNNs as a
surrogate fitness estimator (Fig. 2) in an evolutionary optimiza-
tion [8,9]. Specifically, we use multi-island differential evolution
(DE) as the evolutionary algorithm (see full details in Section
S-3 in Supplement 1). For comparison purposes, we also used
the full simulator for fitness evaluation. Henceforth, the normal
and surrogate DE optimizations are referred to as DE_S4 and
DE_NN, respectively. As the interest is in designing color fil-
ters, the color matching functions of expected colors (RGB or
CMY) are taken as target spectra and fitness values are assigned
to the polygon metasurface structures on the basis of how close
the predicted spectra are to the target.

For a typical DE optimization [8] with fixed number of islands
(3) and population size (70), the time taken for DE_S4 and
DE_NN are ∼72 minutes and 100 seconds, respectively. For

robust DE optimization [9] with the same number of islands (3)
and population size (70), DE_S4 and DE_NN take ∼18.5 hours
and 155 seconds, respectively. This shows a radical advantage
of DE_NN over DE_S4 and will be especially useful when the
surrogate creation cost can be amortized across multiple opti-
mizations. First, despite being significantly faster, optimizations
relying on surrogate fitness evaluation do not reach suboptimal
designs as seen by comparing DE_S4 and DE_NN [Figs. 3(a)
and 3(b)]. Direct and surrogate optimizations are observed to
both result in nearly identical designs with closely matching
optical response and perceptually similar coloration. This claim
is further reinforced by comparing direct and surrogate opti-
mization results for attaining various target functionalities, as
given in Fig. S-2 of the supporting document.

Lastly, the metasurface color filters optimized with DE_NN
were fabricated and experimentally characterized (see Fig. S-4
and Fig. S-5 of the supporting document for fabrication pro-
cess and experimental results in Supplement 1). The unit cell
geometries of fabricated structures (extracted with SEM microg-
raphy) are compared with the theoretical designs for RGB and
CMY color filters in Figs. 4(a) and 4(b), respectively. Roughly
40 µm×40 µm patches of color filters (120×120 arrays of the
unit cells) were fabricated and the optical characterization of
the color filters was performed. The transmitted experimental
colors are compared with expected simulated colors in all of the
RGB and CMY color filters and a great deal of similarity can be
observed between them. The experimental colors were picked
from the optical characterization images and the chromaticity
coordinates were calculated; shown in Fig. 4(c). In RGB color

https://doi.org/10.6084/m9.figshare.19673781
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Fig. 3. Surrogate optimization of transmission-mode polygon-shaped metasurface RGB and CMY color filter arrays. (a),(b) Comparison
of the final optimal designs and their spectra obtained by DE_S4 and DE_NN. Corresponding CMFs are shown for reference. For surrogate
optimization both the DNN predicted spectra and that obtained by RCWA simulation are shown. Obtained colors are plotted in the CIE 1931
chromaticity diagram along with the corresponding color patches.

Fig. 4. Experimental results of polygon-shaped RGB and CMY color filters optimized by DE_NN. (a),(b) SEM images of fabricated color
filter unit cell geometries are compared with respective theoretical designs. The theoretical (obtained with simulation) and experimental colors
(obtained through optical characterization) are also compared. (c) Comparison of simulated and experimental color gamuts. (d) Comparison
of experimental color gamuts with the gamuts reported in Refs. [1,2]. (e) Arrangement of 1 µm × 1 µm RGB color filters in Bayer’s patterns
and checkerboard patterns. (SEM shown for reference.) (f) Comparison of an example image with colors limited to sRGB and experimental
RGB color space.

filters, for blue and red colors, the chromaticity coordinates of
fabricated and simulated colors are observed to lie in close prox-
imity; whereas the green color is observed to have a decreased
luminescence. In CMY color filters, similarity can be observed
between the simulated and experimental colors for cyan and
yellow filters; but magenta is observed near the gray point in
experimental design.

Color gamuts of cylindrical color filters built on the same
material platform for RGB [1] and CMY [2] color filters are
compared with the experimental gamut in Fig. 4(d). The exper-
imental color gamuts for this work are observed to show an
improvement; providing the efficacy of polygonal geometries.

The optical and SEM micrography of RGB color filters arranged
in 1 µm×1 µm Bayer’s patterns and checkerboard (BG, GR, BR)
patterns are provided in Fig. 4(e). It is observed that color purity
of the experimental filters hold true for a filter size as small
as 1 µm. Figure 4(f) shows an example image when its colors
are limited between the sRGB color space and the experimental
color space to show the extent of color purity obtained by the
designed polygonal color filters.

This work can be extended by considering optical characteris-
tics like incident-angle and polarization dependence. The design
turnaround time can be further improved by smart-sampling
strategies that reduce the burden of ground-truth generation
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[15]. In our previous works [33,34], we have explored surrogate-
assisted optimization in cases where the learned model has low
accuracy and found that using a combination of exact and sur-
rogate based approximate fitness evaluations can be used to
trade-off between optimality and computation budget.
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