
Sensors & Actuators: B. Chemical 381 (2023) 133395

Available online 23 January 2023
0925-4005/© 2023 Elsevier B.V. All rights reserved.

Rapid and reversible detection of trace amounts of H2S in air and packaged 
food using a biogenic bismuth oxide nanorod colorimetric sensor 

Monica Jaiswal a, Robin Kumar a,*, Ravi Mani Tripathi a, Ranu Nayak a, Jagjiwan Mittal a, 
Sumit Choudhary b, Satinder K. Sharma b 

a Amity Institute of Nanotechnology, Amity University, 201303 Uttar Pradesh, India 
b Indian Institute of Technology, Mandi, HP, India   

A R T I C L E  I N F O   

Keywords: 
H2S gas 
Bismuth Oxide 
Reversible sensor 
Meat packaging 
Colorimetric sensor 

A B S T R A C T   

A colorimetric reversible sensor has been developed for detection of trace amount of H2S gas in air and sealed 
meat packages. The active sensing area includes high surface area bismuth oxide (Bi2O3) nanorod prepared by 
green synthesis method. The as fabricated sensor demonstrates a rapid response in just 25 s for sensing 1 ppm 
H2S gas with distinct colour change in the active sensing area from white to brown. Sensing pellets were used to 
optimize the performance of the H2S sensor in terms of sensitivity and selectivity in air. Flexible nitrocellulose 
membrane filter papers coated with Bi2O3 were used to detect spoilage in packaged raw animal food products 
such as meat, poultry and fish. The sensor is reversible and can be recovered within a short cycle (3 min) of heat 
treatment at 300 ◦C. X-ray diffraction, Raman spectroscopy and band gap measurements confirmed partial 
conversion of Bi2O3 nanorods into Bi2S3 when exposed in the range of 1–100 ppm H2S gas.   

1. Introduction 

Hydrogen sulphide (H2S) is one of the most dangerous gases present 
in our environment. Exposure to low H2S concentration can lead to 
many critical health problems such as eye and throat injury, poor 
memory, dizziness, and loss of sense of reasoning and balance. At con-
centrations of 100 parts per million (ppm) or more, H2S can immediately 
lead to death [1]. Apart to human bodies, sulphur compounds can also 
corrode metallic equipment and poison catalysts, resulting in economic 
losses. Additionally, sulphur compounds in fuel gases will be oxidized to 
SO2, causing air pollution and health problems [2,3]. Emission sources 
are majorly petroleum/natural gas drilling and refining, coke ovens, 
tanneries, landfills, sewage plants, kraft mills, asphalt plants and natural 
gas industries etc.[4]. According to Occupational Safety and Health 
Administration (OSHA) the permissible exposure limit of H2S gas in air 
is 10 ppm for 8-hour work shift [5]. Numerous materials including 
semiconductor metal oxide, conductive polymers, quantum dots, 
nanocomposites with carbon nanotubes (CNT) have been explored and 
studied for sensing H2S gas to lowest concentration possible [6,7]. 

Many techniques have been explored to detect the presence of H2S 
gas, including conductivity impedance, potentiometry, amperometry, 
colorimetry, absorption, fluorescence etc.[8]. Visual detection of H2S 

using Colorimetric probes have drawn considerable attention due to 
various advantages such as rapid sensing, facile detection with the 
naked eye, and low-cost measurements [9]. Other than easy detection of 
H2S gas in air using colorimetric sensor, its application in smart food 
packaging is also a convenient solution in identifying spoilage of food. 
During meat storage, decomposition of sulfur-containing amino acids 
takes place due to enzymatic hydrolysis of bacteria, which produces a 
series of mercaptans, which eventually decompose into H2S. Hence, H2S 
is considered as an indicator to assess meat spoilage [10,11]. In recent 
years, various advanced colorimetric sensors for H2S are reported that 
includes use of ruthenium nanoparticles (Ru NPs) [12], silver and 
polymer composites [13], polyaniline coated fabric [14], copper and 
lead acetates [15,16], functionalized gold and silver nanoparticles [11, 
17], etc. These sensors have demonstrated high selectivity and sensi-
tivity towards detection of H2S typically during food spoilage. A Bismuth 
derivative based colorimetric sensor for H2S gas was explored where 
alkaline bismuth hydroxide (Bi(OH)3) could sense H2S gas as low as 30 
ppb at room temperature [18]. In spite of excellent sensitivity, the sensor 
was limited to one-time use being irreversible in nature. Another de-
rivative of bismuth, α-Bi2Mo3O12 shows change in colour in H2S gas, 
forming stable sulfides [19]. Surprisingly, reversibility of colorimetric 
H2S gas sensor is barely studied. To reduce the cost of sensor, 
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reversibility and hence reusability of gas sensors is one of the major 
properties. 

In view of developing a simple, low-cost and highly sensitive H2S 
sensor, in the present work, we have fabricated a bismuth oxide nanorod 
for detection of trace levels H2S gas. Bismuth oxide is an important metal 
oxide semiconductor which has been receiving considerable attention 
because it exhibits excellent optical and electrical properties such as 
wide bandgap, high refractive index, high dielectric permittivity and 
good photoconductivity [20]. Due to these properties, it has found many 
applications including gas sensors. Bismuth based various nano-
structures and nanocomposites are often studied for gas sensing 
[21–26]. The bismuth oxide sensing material has been synthesized 
biogenically as high aspect ratio, high surface area nanorods that assists 
to achieve a high sensitivity. The as fabricated semi quantitative color-
imetric H2S sensor can detect trace amounts of H2S in air as low as 310 
ppb. In addition, the sensor has been successfully tested for detecting 
spoilage in packaged raw animal products, such as meat, poultry and 
fish. 

2. Materials and methods 

2.1. Materials 

Ficus benghalensis’s fresh leaves were collected from Amity University 
campus, India. Glacial acetic acid, sodium hydroxide and bismuth ni-
trate pentahydrate were procured commercially from Merck. 

2.2. Synthesis 

Fresh leaves of Ficus benghalensis (25 gm) were chopped and 
dispersed in 150 ml deionized water (DI), followed by stirring (450 rpm) 
at 100 ◦C for 2 h. Thereafter, the solution was filtered, and an extract 
was obtained (solution A). Solution B was prepared by mixing bismuth 
nitrate pentahydrate (0.95 M) with 5 ml glacial acetic acid and was 
stirred at 60 ◦C to obtain clear solution. This solution was then mixed 
with 4 ml of solution A and further diluted with 25 ml DI water. The 
mixture was then added with 30 ml 0.24 M sodium hydroxide solution 
drop wise and continued the reaction for 1 hr under stirring condition at 
60 ℃. The resultant solution turned into pale yellow precipitate of 
Bi2O3. The precipitate was separated by centrifugation and dried at 
80 ◦C to obtain bismuth oxide nanorods [27]. The leaf extract of Ficus 
benghalensis has high amount of flavonoid which acts as a reducing agent 
to synthesize nanorods. The leaf extract also provide stability to the 
nanorods by encapsulating with the protein present in the leaf extract. 
The reproducibility can get affected if plant species will change. It will 
not change if closely related species like Ficus panda is used for leaf 
extract preparation. Hence, the reproducibility of nanorods will not be 
influenced if Ficus benghalensis of any origin take in the synthesis with 
analogous parameters. 

2.3. Characterization tools 

Scanning electron microscopy (SEM) and Energy dispersive X-ray 
spectroscopy (EDX) was done on powdered form of sensor material to 
study the surface morphology and elemental composition of the syn-
thesized nanomaterial. X-Ray diffraction (XRD) with CuKα, λ = 1.54 Ǻ 
was used to study the crystalline structure of synthesized sensing ma-
terial. Raman spectroscopy using Horiba Jobin Yvan Labram HR with 
532 nm and 3 mW laser was used to determine the composition of sensor 
material. UV-Visible spectroscopy was performed between 400 and 800 
nm on a pellet of sensor material to study the effect of gas on the optical 
properties of the H2S exposed material. Surface area of sensor material 
was studied using Brunauer-Emmett-Teller (BET) on Quanta chrome 
Model Autosorb iQ3. 

3. Experimental 

3.1. Fabrication of sensor 

Sensor element was prepared in three forms, a) powder form, b) 
pellet form, c) coated on flexible substrate. A ceramic plate of (2 cm × 1 
cm) with a hemispherical cavity (diameter 0.2 cm and surface area of 
0.031 cm2) was used as sensor element. Powder of nanorods of bismuth 
oxide were press filled in the cavity to make the sensor element as shown 
in Fig. 1(a). Sensor material (Bi2O3 nanorods) was pressed by 1.5 ton 
weight using KBR pellet machine to form pellet of 1 cm diameter and 
thickness of 0.5 mm. As prepared pellet was used to study the light 
absorbance of material using UV-Vis spectroscopy, as shown in Fig. 1(b). 
For flexible sensor, sensor material was coated on flexible substrates like 
paper or fabric, Fig. 1(c). 

3.2. Gas sensing method in air 

Sensor element was kept inside gas sensing chamber, as shown in Fig. 
S1 of supplementary material. Glass lid present on the top of the sensing 
chamber was used to observe the transformation in the colour of sensor 
with the change in environment. The sample placed in the evacuated 
chamber was exposed with known concentration of H2S gas (26 ℃) and 
images of the sensor were captured for multiple cycles. The recovery of 
the sensor was done by heating the sensor element at 300 ℃ in air. 

3.3. Gas sensing method in raw animal food packaging 

Fresh chicken, pork and fish samples were purchased from local 
market and transported to the lab in clean and cold environment (4 ℃). 
Pork was cut into 10 pieces of 10 gm each, and kept in closed vessel 
having sensor element at room temperature (27–30 ℃) for 6 days. The 
vessel humidity was measured as 30% RH. Similarly, fish and chicken 
were cut into pieces of 10 gm each. Fish pieces were kept in similar 
vessel with sensor at 4 ℃ for 6 days. On the other hand, pieces of 
chicken were saved at both 26 ℃ and 4 ℃ temperatures for 6 days. To 
observe the change in sensor colour images of all the samples were 
captured each day after every 24 h. 

3.4. Data analysis and quantification 

Sensor data was collected for multiple consecutive cycles of H2S gas 
exposure by using UV-Vis spectroscopy and by recording the change in 
red green and blue (RGB) colours values of sensor element. Absorbance 
of sensor material was studied before and after exposure of H2S gas, 
using Shimadzu UV-2600 plus. In order to measure RGB values change, 
photographs of sensor sample were taken before and after controlled 
exposure of H2S gas using mobile camera (Samsung galaxy M21) from a 
distance of 15 cm in same conditions each time. The captured images 
were cropped into 1 × 1 cm2 areas. For quantitative evaluation of colour 
change in sensor, the mean RGB values of the cropped images were 
extracted using Image J, (shown in Fig.S2 in supplementary file) which 
is an image processing program. Using difference in RGB values of 

Fig. 1. Bi2O3 nanorods (a) in powder form on ceramic plate (b) compressed 
pellet (c) coated on fabric. 
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before and after exposure of H2S gas, ΔR, ΔG, ΔB values were calcu-
lated. In Commission Internationale de l′Eclairage Lab (CIE L* a* b*) 
system, RGB values can be converted into L* a* and b* , representing 
lightness, red/green, and yellow/blue, respectively[28,29]. After con-
version of values, change in the colour of sample (ΔE) was calculated 
using formula, 

ΔE = {(ΔL*)2 + (Δa*)2 + (b*)2}1/2 [30]. 
Change in colour (ΔE) greater than 3.3 is reported to be clinically 

accepted as it is identifiable with naked human eyes [15]. 

4. Results and discussion 

4.1. Characterisations of sensing material 

Fig. 2(a) shows the SEM micrograph of pristine bismuth oxide 
nanorods [32]. The micrographs depicted a range of lengths of the 
nanorods ranging from 2 to 100 µm with 388 nm as the average diam-
eter. Elemental analysis of nanorods by EDX shows (Fig. 2b) the pres-
ence of bismuth and oxygen which indicate the presence of an oxide of 
bismuth in nanorods. A photograph of nanoroads power in Fig. 2(c) 
shows its white colour similar to Bi2O3. 

X-ray diffraction studies in Fig. 2(d) shows the various peaks of 
bismuth compound. When compared using JSPDS card, these peaks 
belong to Bi2O3 [31,32] This compound has monoclinic crystal structure 
and pseudo-octahedral geometry. Miller indices of all the peaks are 
provided in the figure. Raman spectrum of Bi2O3 in Fig. 2(e) nanorods 
demonstrates peaks at 157, 109, 205, 325, 427, 512, 589 cm− 1. This is 
similar to the Raman spectrum of Bi2O3 in earlier studies [33–35]. 

4.2. H2S gas sensing in air 

Change in morphology of sensor material after exposure to 
50 ppm H2S gas was studied by SEM. Micrograph in Fig. 3(a) shows rod- 
like structure similar to unexposed material. However, some additional 
tiny fibrous structures are visible along the walls of the nanorods. 
Elemental analysis using EDX shows the presence of 1.6% atomic 

sulphur (Fig. 3(b)) in the material. Low amount of sulphur in materials 
demonstrates the conversion of small amount of Bi2O3 into Bi2S3 on 
exposure of H2S gas. On exposure with 50 ppm H2S gas at 26 ℃, the 
sensing material changed its colour distinctly from white to brown 
within 60 s, as shown in (Fig. 3c). 

X-ray diffraction study of H2S exposed sample in (Fig. 3(d)) shows 
the presence of few extra peaks in addition to Bi2O3 peaks. These peaks 
are due to Bi2S3 peaks as the positions and relative intensities of all the 
peaks are in good conformity with the orthorhombic crystal structure of 
Bi2S3 indexed in JCPDS card number 17–0320 as (220), (310) (211), 
(221) [36]. However, as seen in the Fig. 3(d), most of the material is 
Bi2O3. Raman spectrum of nanorods in Fig. 3(e), after exposure to H2S 
gas displays peaks at 140, 200, 325 and 478 cm− 1. The peaks at 200 and 
325 cm− 1 indicates the presence of oxide and other two peaks 140 and 
478 cm− 1 shows the formation of Bi2S3 [37,38] due to exposure of H2S 
gas. 

4.3. Recovery optimization 

Recovery efficacy was studied by keeping the sensor at 26 ℃ in a H2S 
gas free environment for 24 h. However, no recovery was observed 
visibly, as the brown colour of the sensing material remained un-
changed. Thereafter, the sensor material was heated at higher temper-
atures from 200 ◦C to 300 ◦C in air. Images were recorded and shown in  
Fig. 4(a), at different temperatures of annealing with an interval of 20 ◦C 
with respect to time of 60 s interval. Visual observation shows that the 
sample was not recovered between 200 and 240 ◦C even after heating up 
to 3 min. In fact, colour of exposed material was not changed to white at 
200 ◦C even after heating for 1 hr. A visible recovery was observed after 
heating at 300 ◦C for 3 min, when the colour of sensor changed to 
original white from brown. Change in absorbance of pellet pre-exposure, 
post-exposure and after recovery at 500 nm wavelength were recorded. 
Absorbance spectra of sensor material supports the experimental 
observation of complete recovery at 300 ◦C, as shown in Fig. 4(b). 
Absorbance before and after heating H2S gas exposed sample almost 
coincides. 

Fig. 2. (a) SEM images of pristine Bi2O3 nanorods (Image taken from [32] with permission of Taylor and Francis (b) EDX of nanorods shown in (a), (c) photograph 
showing bismuth oxide nanorods in powder form (d) XRD pattern and (e) Raman spectrum of Bi2O3 nanorods. 
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Structure and elemental composition of recovered sensor material 
was studied and presented in Fig. 5. SEM micrograph in the 5(a) shows 
that the original nanorod structure of the sensor material is recovered 
with very few fibrous structures along its wall. Elemental analysis of the 
recovered material by EDX spectrum shows only the presence of bismuth 
and oxygen (Fig. 5(b)) in the material. Colour changed back to white as 
observed from naked eyes, shown in Fig. 5(c). This shows that the ma-
terials fully converted again to Bi2O3. X-ray diffraction study of recov-
ered sample in (Fig. 5(d)) also showed the peaks due to Bi2O3 only. 
Raman spectrum of recovered nanorods in Fig. 5(e) displays peaks at 
160, 200, 325, 512 and 589 cm− 1, similar to pristine Bi2O3 nanorods 

suggests that on heating exposed sensor material at 300 ◦C converts back 
to initial state. 

4.4. Reversibility and repeatability 

Fig. 6(a) shows repeatability of sensor, detection of H2S gas in im-
ages. Sensor reversibility and repeatability was studied for 20 contin-
uous cycles using UV-Visible spectroscopy after exposing a sensor pellet 
to 5 ppm of H2S gas at 26 ℃ and subsequent recovery by heating for 
3 min at 300 ℃. Out of 20 cycles, results of ten are shown in Fig. 6(b), 
further details of the study are provided in supplementary file (Fig.S3). 

Fig. 3. (a) SEM micrograph showing Bi2O3 nanorods after exposure to 50 ppm H2S gas (b) EDX analysis of nanorods in (a), (c) Change in colour, (d) XRD pattern and 
(e) Raman spectra of the of exposed Bi2O3 of Bi2O3 pallets after treatment with H2S. 

Fig. 4. (a) Recovery optimization from 200 to 300 ℃ (b) UV-Vis absorbance spectra after recovery.  
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Coefficient of variation (COV) was calculated for initial, exposed and 
recovered samples in consecutive 20 cycles of H2S gas. It was measured 
to be ~0.071 for response of sensor in 5 ppm H2S gas. Mean value of 
initial (0.181) and recovered (0.184) absorbance is very close (as shown 
by green and blue dashed line in Fig. 6b), which supports complete re-
covery after multiple exposures. 

Minor variations in the absorbance data after exposure and recovery 
are also observed. Fluctuations in sensing response during exposure may 
be due to the non-uniform adsorption of gas molecules on sensor surface. 
Absorbance of recovered sample is more than the initial in few cycles 

which may be due to the clearing of other atmospheric contaminations 
present on surface of sensor material during heating. Coefficient of 
variation (COV) was calculated for initial, exposed and recovered sam-
ples in consecutive 20 cycles of H2S gas, as shown in Fig. 6(c). 

4.5. Sensitivity 

Bi2O3 nanorods were exposed to different concentration of H2S gas 
from 1 to 50 ppm for 10 s at room temperature (26 ℃). Optical images 
were captured, and absorbance was recorded in the visible range of 

Fig. 5. (a) SEM micrograph of recovered Bi2O3 nanorods from after heating 5 ppm H2S gas exposed Bi2O3 at 300 ◦C (b) EDX analysis of nanorods (c) Change in 
colour of Bi2O3 pallets during exposure and recovery (d) XRD pattern and (e) Raman spectra of recovered Bi2O3. 

Fig. 6. (a) Optical images of two cycles (b) Absorption data in bar chart for 10 consecutive cycles and (c) Coefficient of variation, of initial, exposed and recovered 
Bi2O3 sample. 
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wavelength from 400 to 800 nm. Fig. 7(a), shows the response of sensor 
material after exposing to H2S gas in 1, 3, 5, 10, 20 and 50 ppm con-
centrations. Change in colour (ΔE) in Fig. 7(b) shows an increase in 
response of sensor towards increasing amount of gas. This experiment 
was repeated five times and average values are presented. Absorbance of 
exposed sensor material are shown in Fig. 7(c). It was observed that at 
500 nm wavelength, absorbance increased uniformly with increase in 
the concentration of H2S gas. Since the absorbance at 1 ppm is still 
higher than the pristine Bi2O3 so it can ascertain that material is capable 
of detecting low concentration of H2S gas (lower than 1 ppm). 

Absorbance values of sensor sample before and after exposure, at 
500 nm was plotted in Fig. 8(a) against increasing concentrations of H2S 
gas. Fig. 8(a) shows that the response of sensor towards increasing 
concentration of H2S gas fits in polynomial curve. Limit of detection 
(LOD) was calculated to be ~310 ppb using 3-sigma method [39]. 

In order to find out the sensor response for higher gas concentration, 
sensor pellet was exposed to 70 ppm of H2S gas for 1 min and kept on 
heating for recovery. However, exposed sample was not recovered even 
after heating for 3 min and 5 min. Absorbance plot for incomplete re-
covery is given in Fig.S4 in supplementary file. Full recovery was only 
observed after increasing heating time to 10 min, as shown in Fig. 8(b). 
When concentration of H2S gas exposure to the pellet was increased to 
90 ppm and recovery of sensor pellet was happened only after heating 
for 12 min at 300 ℃ (Fig. 8(c)). As the Bi2O3 nanorods were exposed to 
higher concentration of 100 ppm H2S gas for 60 s, recovery was not 
observed after heating at 300 ℃ for more than 15 min Fig. 8(d) shows 
UV-Vis spectrograph of initial, exposed sensor (100 ppm) and unre-
covered sensor material XRD plot of saturated Bi2O3 nanorods with 
100 ppm H2S exposure, (Fig. 8(e)) shows intense peaks {(310), (211), 
(221)} of Bi2S3, with an inset image of saturated sensor material powder. 

4.6. Selectivity in air 

Sensor pellet was exposed to 50 ppm of interfering gases i.e., NH3, 
NO2, CO2, SO2, C2H6S, C2H6S2 and H2S at 26 ℃. Further, a high hu-
midity environment was created inside sealed chamber to attain 80% 
RH and pellet of sensor material was kept inside the chamber for 1 h. 
After each treatment no change in colour of pallet was observed though 
naked eye except H2S. For more understanding, the absorbance spectra 

from 400 nm to 800 nm using UV–visible spectroscopy for each treat-
ment was recorded and studied in comparison to pristine pellet shown in  
Fig. 9(a). Fig. 9(b) shows comparison of absorbance values at 500 nm of 
pristine sensor pellet with, exposed to gases and humidity). An increase 
of 2.5%, 1.9% and 1.2% in absorbance was observed during exposure to 
NH3, NO2 and SO2 gases respectively, whereas, CO2 gas exposure does 
not result in any change. High humidity (80% RH) also increased the 
absorbance by 12.9% from pristine sensor pellet. On the other hand, 
exposure of H2S gas resulted in the increase of absorbance by 332%. This 
shows that the material is highly selective towards H2S gas in air. 

A sensor pellet was kept at different relative humidity, i.e., 30% RH, 
50% RH and 80% RH for 1 h. No change in colour of sensor material was 
observed in high humidity environment (shown in Fig.S5). Absorbance 
of the samples after each exposure was recorded using UV-Visible 
spectroscopy (400–800 nm wavelength) and presented in Fig. 9(c). As 
shown in Fig. 9(d), the absorbance at 500 nm, was increased by 2.5% 
and 12.9%for 50% RH and 80% respectively as compared to the 30% 
RH. 

4.7. Sensor application in raw animal packaging 

Fig. 10(a & e) shows images of sensor (stripe, pellet and powder) 
responding to spoilage of chicken and pork respectively in 5 days. Mean 
of RGB values and optical darkness ratio (ODR) of stripe, pellet and 
powder were taken to plot RGB v/s time of spoilage in Fig. 10(b, c, f & g), 
it shows the changes in RGB values and ODR of sensors placed next to 
chicken and pork with each day at 26 ℃. Detailed values of RGB and 
ODR with respect to time is given in supplementary file (Fig.S6). 

As seen in figure, chicken sample showed RGB and ODR response in 
less than 24 h. On the other hand, slight changes in pork sample were 
observed only after 48 h visible significant change was observed after 
60 h. 

Sensor colour in chicken sample changed to dark brown in 48 h and 
reached a saturation after 72 h. Sensor material having chicken sample 
reached saturation may be due to combination of various vapours along 
with H2S gas. So, it was not able to recover on heating at 300 ℃, shown 
in Fig. 10(d). Pellet and powder (since stripe is of fabric, could not heat 
for recovery) of sensor material from pork sample was taken out after 
96 h of experiment and heated at 300 ℃ for 3 min. Images of exposed 

Fig. 7. Sensitivity of sensor in (a) optical images, (b) change in colour of Bi2O ΔE (3 v/s H2S gas concentration, ΔE > 3.3 is eye-readable standard (c) UV-Vis 
absorbance of sensor with increasing concentration. 
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sensor and recovered sensor pellet and powder are shown in Fig. 10(h). 
Sensor was also tested at lower degree temperature (4 ℃) for chicken 
and fish. Visible change in colour of sensor was observed after 2 days in 
fish and 4 days in chicken sample, as shown in Fig. 11(a &b). 

4.8. Selectivity of sensors with volatile organic compounds (VOCs) 

It is reported that on meat spoilage approximately 48–50 other VOCs 
liberates along with H2S gas [11], although H2S is one of the basic gases 
to detect spoilage in food [40]. In order to check selectivity towards H2S 
gas, sensor was exposed to 15 VOCs (Fig. 12(a)) and colour change was 

Fig. 8. (a) Absorbance at 500 nm with increasing H2S gas concentration, absorbance spectra for sample after gas exposure of (b) 70 ppm and recovery after heating 
at 300 C for 10 min (c) 90 ppm and recovery after heating 300 for 12 min (d)100 ppm and no recovery after heating at 300 C for 15 min(e) XRD pattern of H2S gas 
saturated Bi2O3 nanorods by formation of Bi2S3 with inset image of saturated Bi2O3 nanorods powder. 

Fig. 9. (a) Absorbance of sensor towards gases and humidity in air at 26 ℃ (b) bar chart of absorbance of sample for different gases at 500 nm. (c) (c) Absorbance of 
sensor towards increasing humidity at 26 ℃ in the range of 400–800 nm wavelenght and (d) bar chart of absorbance of sample at different humidities at 500 nm. 
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observed only in presence of H2S gas. 
These results support the application of bismuth oxide nanorods in 

H2S sensor for meat packaging. Sensor was tested for meat samples kept 
at 4 ℃ for 7 days, the results are shown in supplementary file. Which 
shows sensor material is capable to sense H2S gas at lower temperatures 
and applicable in practical application. 

5. Performance comparison 

Table 1 compares various other H2S gas sensor based on bismuth 
derivatives and other colorimetric sensors with our current work. 

It can be observed from Table 1, that all the listed sensors with 
colorimetric transduction method are irreversible. However, resistive 
sensors based on NaBi(MoO4)2 nanoplates and Ag doped BiFeO3 are 
reversible and quick but their higher operating temperature limits their 
usability. Whereas, our as fabricated sensor is pristine material with 
quick recovery. It is highly sensitive to H2S gas and cost effective. 

6. Proposed mechanism 

Tauc plot study was performed from the absorbance spectra in  
Fig. 13(a). and the calculated energy bandgap vs H2S concentration is 

Fig. 10. Changes in meat samples with time at 26 ℃ with corresponding RGB and ODR values (a) Chicken (b) Pork.  

Fig. 11. Colour changes at 4 ◦C for 6 days in (a) Fish sample (b) Chicken sample.  
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shown in Fig13(b). 
As shown in Fig. 13(b), pristine sensor material has a bandgap of 

2.75 eV. This bandgap is decreased with the increase in the concentra-
tion of H2S gas. The fall in bandgap is steep up to 3 ppm gas exposure, 
thereafter, it slows down. This reduction in band gas is related to the 
formation Bi2S3 in the material. When material was exposed to 
> 100 ppm H2S gas, the band gap was reduced to 1.34 eV and sensor 
became unrecoverable. 

Fig. 14 Summarizes the mechanism of H2S gas sensing by Bi2O3 
nanorods. When synthesized Bi2O3 nanorods was exposed to H2S gas, 
colour was changed from white to brown due to the following reaction, 
[52].  

Bi2O3 + 3 H2S Bi2S3 + 3 H2O                                                          (1) 

Here, sulphur replaces oxygen atoms from Bi2O3 and conversion 
accompanied by the significant visible change in colour i.e from white to 
brown. Bismuth sulphide can be recovered bismuth oxide on oxidation. 
As reported by Johnson et al., Bi2S3 converts in to complete Bi2O3 at 
800 ℃. During recovery Bi2S3 reacts with O2 and converts into Bi2O3 
and SO2 [53]. Increased temperature gives energy to atoms to get 
agitated and grab atmospheric oxygen on the surface to oxidise itself.  

Bi2S3+ O2 Bi2O3 + SO2                                                                   (2) 

But Bi2S3 nanorods in the present study converted to Bi2O3 at 300 ℃ 
in three minutes during recovery. Reason of lower temperature oxida-
tion may be due to presence of pores in structure of the sensing material, 
which may be responsible for enhancing oxidation rate at lower tem-
perature. BET analysis of Bi2O3 nanorods shows surface area of 2.97 m2/ 
g, with an average pore radius of 257 nm. 

It was observed that Bi2O3 nanorods exposed to low concentration of 
H2S consists of Bi2S3 with bismuth oxide. Co-existence can be explained 
by the fact that at low concentrations of gas, the exposure is restricted to 
the top surface of the material. It is also supported by bandgap of bis-
muth oxide which reduced gradually with the increase in the H2S gas 
concentration. At 50 ppm, bandgap of the sensor material approaches 
1.9 eV, which is higher to the bandgap of bismuth sulfide nanorods 
(1.67 eV) [55–57]. This shows that Bi2O3 is remaining in the nanorods 
and Bi2S3 is formed at surface. Therefore, recovery is easily achieved at 
300 ℃ in 3 min due to the involvement of surface reaction between 
Bi2S3 and atmospheric oxygen. However, at higher concentration 
(~100 ppm), H2S gas diffuses in the subsequent layers and convert 
Bi2O3 to Bi2S3. Bandgap of saturated Bi2O3 (1.34 eV) is in accordance 
with bandgap of bulk Bi2S3 (1.34 eV) [45]. This makes the recovery 
difficult at 300 ℃. 

When this saturated sensor material was heated at higher tempera-
ture (<300 ◦C) for longer duration the sensor material recovered which 
may be because of diffusion of atmospheric oxygen inside the sensor 
material and replaces sulfur from Bi2S3 and release SO2. SO2 liberation 
from the inside the material causes the slight damages which is evident 
in SEM study shown in Fig. 3(a). 

7. Conclusion 

A reversible, sensitive and selective H2S gas sensor is fabricated using 
bismuth oxide nanorods using synthesized using green method. Nano-
rods turns from white to brown in presence of H2S gas environment at 
room temperature of 26 ℃. Recovery of exposed materials is performed 
by heating at 300 ℃ for 180 s when exposed to 1–50 ppm of H2S. 
Reversibility of sensor material makes it cost effective. This colorimetric 
sensor was successfully tested for the quality of raw animal products 
packaging like pork chicken and fish with time. It can be used in testing 
quality of other high protein foods like dairy products, eggs and wool 
aging prediction. Emission of H2S gas from sewer drainage can also be 
easily detected using flexible sensor. 

Fig. 12. Colour changes in sensor materials towards heptane, phenol, chloro-
form, 1-butanol, xylene, benzene, acetone, ethanol, propionic acid, acetic acid, 
aniline, ethyl acetate and hexane vapour and CO2 and H2S gas. 

Table 1 
Comparison with other bismuth-based sensors and other materials colorimetric 
sensors for H2S gas.  

Sensor material Transduction 
methods/ gas 
concentration 

Response / 
recovery time/ 
operating temp. 

Ref. 

Alkaline Bi(OH)3 Optical / 30ppb Quick / No 
recovery / 25 ℃ 

[18] 

NaBi (MoO4)2 nanoplates Resistive/ 5 ppm 11 s/ 4 s/ 370 ℃ [41] 
Porous BiVO4 thin films Resistive/ 3 ppm 35 s/ 75 s/ 75 ℃ [42] 
Ag doped BiFeO3 Resistive/ 1 ppm 3 s/ 312 s/ 

350 ℃ 
[43] 

Gellan-gum and Ag NP Colorimetric/ 
0.81 M  

• –/ No 
recovery 

[11] 

BCNCs–Ag NPs/ 
alginate–MoO3 NPs 
hybrid nanocomposite 

Colorimetric/ 
3.27 ppm 

20 min/ No 
recovery 

[44] 

2,4-dinitroben- 
zenesulfonyl group 
modified with 
hydrophilic PEG chain 

Colorimetric/ 
25 ppm 

2 min/ No 
recovery 

[45] 

Orange-I, Ru nanoparticles 
(Ru-NPs) 

Colorimetric/ 
15.6Nm 

5 min/ No 
recovery 

[12] 

Lead (II) acetate [Pb(Ac)2] Colorimetric/ 
1 ppm 

60 s/ No 
recovery 

[15] 

Lead acetate 
functionalised yarn 

Colorimetric / 
1 ppm 

60 s / no 
recovery 

[46] 

Au / AgI nanoparticles Colorimetric/ 500 
ppb 

30 min/ No 
recovery 

[17] 

Copper (II) complex of the 
azo dye 1-(2- 
pyridylazo)− 2-naphtol 

Colorimetric / 
4 ppm 

2 min/ No 
recovery 

[47] 

Copper (II) chloride/ H- 
PAN 

Colorimetric/ 
8 ppm 

20 min/ No 
recovery 

[48] 

Pani on cotton fabric Colorimetric/ 
1 ppm  

• / No recovery [14] 

Silver-Modified Silica 
Sulfonic Acid (Ag-SSA) 

Colorimetric/ 
6.5 ppm 

- /- /- [49] 

Porphyrinbased Porous 
Organic Polymer, 
FePPOPepa 

Colorimetric/ 
0.1 µM 

3 min/- /- [50] 

Dinitro-functionalized zr 
(iv)-based metal-organic 
framework 

Colorimetric/ 
20 µM 

55 min/ – [51] 

Bismuth oxide nanorods Colorimetric / 
410ppb 

20 s/ 3 min at 
300 ℃ 

Present 
study  
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