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Abstract— The study investigates the performance of
Schottky barrier diodes (SBDs) fabricated on high-quality
Sn-doped β-gallium oxide (Ga2O3) film on sapphire
(0006) substrate. Temperature-dependent performances
are probed, in terms of forward and reverse bias charac-
teristics. When temperature increases from 25 ◦C to 200 ◦C,
the barrier height increases, and the ideality factor
advances to unity. The current conduction happens dif-
ferently at low and high temperatures because of the
inhomogeneity in Schottky barrier height. Different meth-
ods are used to analyze temperature variations in the
barrier heights. A high breakdown voltage of >200 V at
25 ◦C and a decent JON/JOFF ratio for the all-temperature
range are measured. The leakage current of the device does
not significantly change with the temperature. These char-
acteristics make the investigated Schottky diode structures
on sapphire promising for future high-power electron-
ics applications at elevated temperatures. Thus, cost-
effective integration of Ga2O3 with non-native substrates
is emphasized to enable rapid commercialization success.

Index Terms— Gallium oxide (Ga2O3), low-pressure
chemical vapor deposition (LPCVD), sapphire, Schottky
barrier diode (SBD), Sn doping.

I. INTRODUCTION

RECENTLY, β-gallium oxide (Ga2O3) has been con-
sidered as a promising wide-bandgap semiconductor

material for the next-generation power electronics, owing to
its superior material properties, such as ultrawide-bandgap
of 4.5–4.9 eV [1] compared with GaN (3.4 eV) and SiC
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(3.2 eV), which enables a high theoretical breakdown field
(Ec) of 8 MV/cm [2], [3], [4]. Consequently, β-Ga2O3 has
a high Baliga’s figure of merit (BFOM; defined as εµE3

c ) of
3444 [5], [6], which is more than three times higher than that
of GaN and SiC [7], endorsing its proficiency, particularly for
power electronics.

In the last few years, most researchers have used Ga2O3 as a
substrate to fabricate Ga2O3 Schottky barrier diodes (SBDs).
However, due to the small wafer size and high cost of the
Ga2O3 substrate, the sapphire substrate could be a potential
candidate for the deposition of Ga2O3 film. Moreover, the poor
thermal conductivity of Ga2O3 hinders its commercial use in
a high-temperature regime leading to undesirable results [8],
[9]. Indeed, the incorporation of a sapphire substrate in Ga2O3-
based power devices offers significant advantages, particularly
in terms of enhancing heat dissipation efficiency. The higher
thermal conductivity of sapphire enables it to effectively
dissipate the heat generated during device operation at elevated
temperatures. Consequently, this improved heat dissipation
capability contributes to the overall reliability and performance
of Ga2O3-based power devices under high-temperature condi-
tions.

The ultrawide-bandgap of Ga2O3 allows for smaller device
dimensions, leading to reduced power consumption losses.
Impressive studies on Ga2O3 SBDs, MOSFETs, and MES-
FETs have demonstrated high breakdown voltages and low
ON-state resistances [2], [3], [10], [11], [13]. Limited studies
have been conducted on Ga2O3 on sapphire substrates, with
a focus on optoelectronic applications [14], [15], [16], [17],
[18], [19], [20]. However, Hu et al. [21] have fabricated Ga2O3
nanomembrane on sapphire substrates for high-power applica-
tions, although the nanomembrane could be less promising for
commercial applications considering scalability and reliability
issues. Wang et al. [7] reported β-Ga2O3/TiN SBDs on hetero-
geneous integrated Ga2O3–Al2O3–Si substrate, studying their
temperature-dependent electrical performance.

The next section describes the experimental details of device
processing steps. Section III with results and discussions
presents the material and electrical characteristics of the Ga2O3
SBD where the overall performance of SBD has been probed
and evaluated in terms of high-power response in the tem-
perature range of 25 ◦C–200 ◦C. The last section refers the
conclusion of this work.
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II. EXPERIMENTAL DETAIL

The Sn-doped β-Ga2O3 film was grown on c-plane sapphire
substrate using the low-pressure chemical vapor deposition
(LPCVD) technique. Before deposition, the sapphire wafer
underwent cleaning with acetone and isopropyl alcohol for
5 min. Inside a quartz boat, 100 mg of Ga metal and 20 mg
of Sn metal were positioned, while the substrate was placed
on a separate quartz boat and loaded into the tube furnace.
The substrate temperature was maintained at 1050 ◦C, and
the base pressure and processing pressure of the furnace were
5 × 10−2 and 1 mbar, respectively. The thin-film deposition
was carried out for 1 h. Material characteristics of the thin film
have been carried out using X-ray diffraction (XRD), field-
emission scanning electron microscope (FESEM), and atomic
force microscopy (AFM). Doping concentration and mobility
of samples have been determined using the Hall technique.

To fabricate lateral SBDs, Pt (60 nm) and Ti/Au (20/60 nm)
layers were sputtered on the top of the Ga2O3 film to form
the Schottky and ohmic contacts, respectively. The schematic
of the fabricated device structure is illustrated in Fig. 1, with
a distance of 418.30 µm between Pt and Ti/Au contacts.
Electrical characteristics of the Pt/Ga2O3 SBD structures were
investigated over a temperature range of 25 ◦C–200 ◦C, with
measurements taken at interval of 25 ◦C using a Keithley
4200 semiconductor measuring unit. The temperature depen-
dence study was performed using the LINKAM LTS420E
heating stage.

III. RESULTS AND DISCUSSION

In Fig. 2(a), XRD pattern of the sample confirms that
a high crystalline quality Ga2O3 film with β phase was
deposited on sapphire substrate. The dominant planes are
(−201) of β-Ga2O3 and (0006) of sapphire. The (−402) and
(−603) planes are fundamentally higher order diffraction of
the (−201) plane. The peak at 21◦ is from the (0003) plane
of the sapphire substrates. A peak around 37◦ has also been
observed, which might be the (401) plane of Ga2O3 as given in
JCPDS 01-076-0673, observed for all the samples. The full-
width half-maxima (FWHM) of 0.0841◦ has been obtained
using Voigt fitting of the (−201) plane, as shown in Fig. 2(b).
The average crystallite size (D) is determined using the
Scherrer formula. The measured value of D was ∼95.78 nm.
The small FWHM and large crystallite size signify the high
crystalline quality of the film. Thereby, XRD results reveal the
single-phase crystalline nature of the Ga2O3 film deposited
on sapphire. A film thickness of 985 nm for the Sn-doped
Ga2O3/Al2O3 sample is confirmed by cross-sectional FESEM,
as shown in Fig. 2(c). A thicker layer can improve the overall
surface flatness and reduce roughness. The interface roughness
is an important factor in determining the performance of
devices, especially in SBDs. The AFM technique was used
to determine the topology of the film surface. A root-mean-
square (rms) roughness of ∼2 nm was measured, as shown in
Fig. 2(d). Typical step-flow dominating surface morphology
has been observed. The Sn-doped Ga2O3 film has net-doping
concentration and mobility of 3 × 1017 cm−3 and 4 cm2/V·s,
respectively, measured at room temperature using the standard
Hall method.

Fig. 1. Schematic (not in scale) of lateral Pt SBDs on Ga2O3 layer with
the approximate dimensions of each layer.

Fig. 2. (a) XRD pattern of the Ga2O3/Al2O3 sample. (b) XRD pattern
to measure FWHM and crystallite size using (−201) plane of β-Ga2O3.
(c) Cross-sectional FESEM image. (d) AFM image of the Ga2O3 surface.

Fig. 3(a) depicts temperature-dependent current density ver-
sus voltage (J–V ) characteristics of Pt/Ga2O3 SBDs in both
linear and semilogarithmic scale. At low forward bias, the
J–V behavior is linear, as shown in Fig. 3(a). However, higher
forward bias reveals deviation, likely due to significant effect
of series resistance [22]. Typically, thermionic emission is the
dominant current conduction mechanism at high temperatures
[7]. Hence, the current density increases, as the temperature
increases from 25 ◦C to 200 ◦C at the same forward bias
[Fig. 3(a)]. The reverse bias nonsaturation behavior could stem
from image force barrier lowering [23] and Schottky barrier
height inhomogeneity [22], [24], [25]. The J–V characteristics
based on the thermionic emission theory considering series
resistance can be described by the following relation [26], [27]:

J = J0

[
exp

(
q(V − J ARS)

ηkT

)
− 1

]
(1)

J0 = A∗T 2 exp
(

−qφB

kT

)
(2)

where J0 is the saturation current density, η is the ideality
factor, q is the free electron charge, k is Boltzmann’s constant,
A is the diode area, A∗ is the Richardson constant, φB is
the barrier height, RS is the series resistance, and T is the
temperature at which the device is operating. Here, image
force barrier lowering could be neglected, because it is a
weak function of applied voltage [25]. It is also observed
that J0 increases with an increase in temperature, and the
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Fig. 3. (a) Linear and semilogarithmic scale J–V characteristics of
Pt/Ga2O3 SBD in the temperature range of 25 ◦C–200 ◦C. (b) Temper-
ature dependence of barrier height and ideality factor extracted from
J–V characteristics of SBD. In the figure, yellow green, orange, and
red colors indicate the mild-, moderate-, and high-temperature regions,
respectively.

value of J0 varies from 2.58 × 10−7 A/cm2 (at 25 ◦C)
to 2.01 × 10−5 A/cm2 (at 200 ◦C). In the investigation of
SBDs, the ideality factor is a crucial parameter measured
using J–V characteristics. A desirable η value of 1.90 at
25 ◦C is obtained for SBD. Barrier height of the diode
can be determined using (2). As temperature varies from
25 ◦C to 200 ◦C, φB increases from 0.92 to 1.31 eV, while
η decreases from 1.90 to 1.07, as shown in Fig. 3(b). This
temperature-dependent trend indicates a strong influence of
temperature on φB and η. This behavior could be attributed
to the unevenness of Schottky surface in SBDs [28]. The
presence of barrier height inhomogeneity could result from
the nonepitaxial deposition of Schottky contacts on the semi-
conductor surface, leading to a rough metal–semiconductor
(MS) interface [29]. Another possible reason might be due to
the difference in thermal expansion coefficients between the
materials involved [30]. The other reasons for barrier inho-
mogeneity in the Schottky diodes could be vacancy-related
defects, surface and bulk defects, and variation in the electric
field at the MS interface due to dislocations [24], [31], [32].
Surface and bulk defects in Ga2O3 Schottky diodes introduce
energy levels and affect charge carrier trapping and emission
in a temperature-dependent manner. These defects can lead to
temperature-sensitive inhomogeneities in the Schottky barrier
height [33]. Dislocations in the Ga2O3 material can cause
localized variations in the electric field at the MS interface.
These dislocations can create regions with altered electrical
properties, including changes in carrier concentration and
mobility, which affect the electric field. These variations are
temperature-sensitive and can result in inhomogeneities in
device performance [34].

Theoretically, the MS interface should be flat and uniform
according to thermionic emission theory. However, there is
the existence of locally nonuniform regions having lower
and higher barrier height patches on very small scales in an
inhomogeneous Schottky barrier surface. This leads to uneven
current conduction at the MS interface across different tem-
peratures. At lower temperatures, conduction occurs through
charge carriers crossing lower barrier height patches, while at
higher temperatures, conduction involves charge carriers cross-
ing relatively higher barrier patches. Consequently, current
increases with rising temperatures. At 200 ◦C, η approaches
unity, indicating a thermionic emission behavior. The φB value

Fig. 4. (a) Plot of ideality factor versus 1000/T. (b) Plot of ηkT/q versus
kT/q. (c) ln(J0) versus q/kT plot. (d) φB versus η plot to verify the barrier
height inhomogeneity in the lateral Pt/Ga2O3 SBD.

(1.31 eV) at this temperature aligns closely with the theoretical
barrier height of Pt/Ga2O3 diodes.

The variation in ideality factor with temperature was found
to change in linearity with temperature, as shown in Fig. 4(a)

η(T ) = nk +
Tk

T
(3)

where nk and Tk are constant having the values of 0.27 and
674.59 K, respectively. The high value of ideality factor at
lower temperatures may be attributed to the existence of image
force lowering, barrier inhomogeneity at the MS interface, and
interface states [22], [24], [25], [29], [35].

Furthermore, the temperature-dependent ideality factor was
further investigated to explain the primary transport mech-
anisms by plotting ηkT /q versus kT /q . The plot of ηkT /q
versus kT /q is shown in Fig. 4(b), which illustrates the the-
oretical along with the experimental results in the plot. It is
clear that there is a relationship between the theoretical and
experimental curves of the SBD. In this plot, the straight line
fit to the experimental values should be parallel to the line of
theoretical values [36]. However, as shown in Fig. 4(b), the
straight line fit to the experimental data is not parallel to the
theoretical data line. Thus, the fabricated SBD does not follow
the ideal Schottky diode behavior.

In order to further investigate the barrier height inhomo-
geneity, a robust and extensively validated technique has been
used—the Richardson plot of saturation current density [36].
Equation (2) of reverse saturation current density can be
expressed as follows:

ln
(

J0

T 2

)
= ln

(
A∗

)
−

qφB

kT
. (4)

The Richardson plot of ln(J0) versus q/kT has two different
linear regions with different slopes and intercepts, as shown
in Fig. 4(c). This type of behavior of the Richardson plot
is attributed to the inhomogeneous Schottky barrier heights
[37]. In the first region, at high temperatures, the values of
Richardson constant (A∗) and activation energy (Ea = φB)
were extracted from the intercept and slope of the straight line
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Fig. 5. Variation of J0, (J/J0), and RON with the temperature increases
from 25 ◦C to 200 ◦C. In the figure, yellow green, orange, and red
colors indicate the mild-, moderate-, and high-temperature regions,
respectively.

as 4.8 × 10−2 A/cm2K2 and 0.821 eV, respectively, Whereas,
in the second region, at low temperatures, the values of A∗ and
Ea were found to be 4.56 × 10−10 A/cm2K2 and 0.153 eV,
respectively. The A∗ notably differs from Ga2O3 theoretical
value (41.1 A/cm2K2), implying a shift from thermionic emis-
sion theory, possibly toward thermionic field emission. The
ln(J0) versus q/kT plot underscores distinct barrier heights
and Richardson constants, pinpointing inhomogeneous barrier
heights at the Schottky interface. This gives rise to elevated
ideality factors at lower temperatures [24], [36]. Furthermore,
this investigation is supporting the previous observation on
barrier height inhomogeneity.

To corroborate the effectiveness of the previously employed
methodologies for evaluating barrier height inhomogene-
ity within Schottky diodes, an additional investigation was
conducted. This technique enhances our technical under-
standing and rigorously validates our assessment of the
diode’s barrier height variations. Fig. 4(d) shows the plot of
temperature-dependent barrier height versus ideality factor.
It reveals two distinct barrier heights and a linear correlation
between barrier height and ideality factor. Extrapolation at
η = 1 yields 1.34 eV in one region and 1.45 eV in another,
highlighting barrier height inconsistency at the MS junction.
High values ideality factor at low temperatures are attributed
to this barrier height inhomogeneity, consistent with findings
by Schmitsdorf et al. [38], who linked it to lateral inhomo-
geneities in the barrier heights. Thus, the high ideality factor
at low temperatures primarily results from this barrier height
inhomogeneity.

The variations in J0, (J/J0), and RON with the temperature
are shown in Fig. 5. The specific ON-state resistance (RON)
decreases from 1.585 �·cm2 (at 25 ◦C) to 0.621 �·cm2 (at
200 ◦C) for the Pt/Ga2O3, which has been measured from
the slope of the fitting line to the temperature-dependent
J–V characteristics. Poor mobility may be the reason for
this relatively high RON. The current density ON/OFF ratio
(JON/JOFF) decreases, as the temperature increases from

Fig. 6. Semilogarithmic and linear scale reverse I–V characteristics in
the temperature range of 25 ◦C–200 ◦C.

T = 25 ◦C to 200 ◦C. However, the lateral SBD has a decent
JON/JOFF ratio even at a high temperature of 200 ◦C.

Fig. 6 shows the reverse current–voltage (I –V ) character-
istics of the lateral Ga2O3 SBD across the temperature range
of 25 ◦C–200 ◦C. Notably, no breakdown of the device is
observed up to 200 V. Given the instrument’s operational
limits, we cannot surpass this voltage, implying that the device
breakdown voltage exceeds the recorded value. The current
values at −200 V are ∼2.8 × 10−3 to ∼4.8 × 10−3 A for the
T = 25 ◦C–200 ◦C, respectively. It is observed that there is
no significant difference in the current value at a high reverse
voltage (200 V) across various temperatures. The temperature
effect is more prominent at low reverse voltages where thermal
energy plays a significant role, while at high reverse voltages,
field emission becomes the dominant mechanism, reducing the
impact of temperature on leakage current [39]. This suggests
that higher temperature does not notably affect leakage current
of the lateral device.

Table I presents a comprehensive comparison between the
previously reported lateral and vertical β-Ga2O3 device struc-
tures fabricated on sapphire substrates and the current research
findings. While there are limited published reports available
regarding β-Ga2O3 SBDs fabricated on sapphire substrates,
it is noteworthy that the growth of the epilayer has been
performed using various methods, resulting in distinct epi-
layer structures. These discrepancies in growth techniques
and epilayer structures necessitate a careful examination and
comparison in order to ascertain the impact of these variations
on the overall device performance and characteristics.

Among the assortment of cited works detailed in Table I,
our study presents a unique opportunity to conduct a highly
precise and comprehensive comparison with the research con-
ducted by Sood et al. [40]. This is primarily attributed to the
remarkable similarity observed in terms of both epilayer and
device structures. However, it is important to acknowledge
that divergences exist in the growth method and doping
material employed. Sood et al. [40] have reported Si-doped
β-Ga2O3 lateral SBDs in the year of 2023. In their study,
they deposited Si-doped β-Ga2O3 thin film onto a sapphire
substrate using a metal–organic chemical vapor deposition
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TABLE I
VARIOUS REPORTED β-GA2O3 DEVICE STRUCTURES ON SAPPHIRE SUBSTRATES AS COMPARED WITH THIS WORK

(MOCVD) technique. Their experimental results revealed a
VBR of 370 V, an RON of 0.81 �·cm2, an η of 1.97, and a φB

of 0.54 eV for the lateral SBDs.
Present work demonstrates superior device performance

characteristics, specifically a lower RON and η, indicating
improved conductivity and more efficient charge transport.
In addition, our research reveals a higher barrier height,
indicating enhanced energy barrier for carrier injection and
reduced leakage current. Moreover, our estimations indicate
that the VBR is much greater than 200 V because of low
leakage current. Furthermore, our devices exhibit stable dc
responses even under high-temperature conditions.

Thus, this study focuses on the growth of Sn-doped β-
Ga2O3 thin films on sapphire substrates using the LPCVD
technique. The fabricated SBDs exhibited commendable per-
formance, particularly in high-temperature and high-power
applications. Moreover, the enhancement of device perfor-
mance for high-power applications can be achieved through
the utilization of diverse device structures. However, it should
be noted that these alternate structures require meticulous
consideration and evaluation to ensure their compatibility and
effectiveness in meeting the desired power requirements.

IV. CONCLUSION

In this study, Sn-doped β-Ga2O3 SBDs were fabricated on
sapphire using LPCVD. Pt/Ga2O3 devices were characterized
from 25 ◦C to 200 ◦C. The SBD exhibited excellent static
and dynamic characteristics, including low saturation current
density, low ideality factor, high barrier height, and good
JON/JOFF ratio. As temperature increased, the barrier height
rose, and ideality factor decreased. The ideality factor reaching
close to unity at 200 ◦C and barrier height approaching the
theoretical value. The current conduction mechanism changed
with temperature due to the inhomogeneous barrier heights.
This inhomogeneity in barrier height led to significantly high
ideality factors at low temperatures, as evident from the
results of various plots. SBD had >200 breakdown voltage,
consistent leakage current across temperatures. The stable
performance at high temperatures may be attributed to the
higher thermal conductivity of the sapphire substrate compared

with Ga2O3. Thus, this fabricated Sn-doped β-Ga2O3 SBD
on sapphire demonstrates great potential for high-power and
high-temperature applications.
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