
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Low-Latency and Reconfigurable
VLSI-Architectures for Computing Eigenvalues

and Eigenvectors Using CORDIC-Based
Parallel Jacobi Method

Rahul Sharma, Graduate Student Member, IEEE, Rahul Shrestha , Senior Member, IEEE,

and Satinder K. Sharma , Senior Member, IEEE

Abstract— This article proposes a low-latency parallel Jacobi-
method-based algorithm for computing eigenvalues and eigen-
vectors of n × n-sized real-symmetric matrix. It is a coordinate
rotations digital-computer (CORDIC)-based iterative algorithm
that comprises multiple rotations and hence the key contribution
of our work is to reduce the time cost of each rotation.
Thus, alleviating the total latency for computing eigenvalues and
eigenvectors using the parallel Jacobi method. Based on this
proposed algorithm and additional architectural optimizations,
a new low-latency and highly accurate VLSI-architecture has
been presented in this manuscript for computing eigenvalues and
eigenvectors of real-symmetric matrix. Subsequently, this work
proposes a reconfigurable algorithm and its VLSI-architecture
for computing eigenvalues and eigenvectors of complex Hermitian
(CH), complex skew-Hermitian (CSH), and real skew-symmetric
(RSS) matrices. Performance analysis of the proposed architec-
tures has demonstrated minimal error-percentage of 0.0106%
which is adequate for the wide range of real-time applications.
The proposed architectures are hardware implemented on Zynq
Ultrascale+ field-programmable gate array (FPGA)-board that
consumed short latency of 9.377 µs while operating at maximum
clock frequency of 172.75 MHz. Comparison of our implemen-
tation results with the reported works showed that the proposed
architecture incurs 43.75% lower latency and 89.4% better
accuracy than the state-of-the-art implementation.

Index Terms— Coordinate rotations digital-computer
(CORDIC), digital VLSI architectures, eigenvalues, eigenvectors,
field-programmable gate array (FPGA), matrix theory, VLSI.

I. INTRODUCTION

FUNDAMENTALLY, eigenvalues and eigenvectors are
imperative information of matrix having significant role

in various fields of science and engineering. In the year of
1948, Shannon [1] calculated theoretical limit of peak infor-
mation that can be transmitted through the communication
channel by computing its eigenvalues as well as eigenvectors
and water-filling the eigenvalues. Such calculations are also
extensively applied in the contemporary fields of computer

Manuscript received November 18, 2021; revised March 9, 2022 and
April 5, 2022; accepted April 24, 2022. (Corresponding author:
Rahul Shrestha.)

The authors are with the School of Computing and Electrical Engineering,
IIT Mandi, Mandi 175075, India (e-mail: s18018@students.iitmandi.ac.in;
rahul_shrestha@iitmandi.ac.in; satinder@iitmandi.ac.in).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2022.3170526.

Digital Object Identifier 10.1109/TVLSI.2022.3170526

vision, machine learning, image coding, object recognition,
and image classification where eigenvalues and eigenvectors
of a covariance matrix determine the principal directions of
variation among the collection of images [2]–[4]. From an
implementation aspect, cameras are the most suitable sensors
for aforementioned image-processing applications that provide
tremendous information related to the environment at high
frame rates and hence lower latency is the prime requirement
for its design. Subsequently, higher precision computation of
such information is another key feature that enables to display
images and videos with extremely high resolution.

Direction on arrival (DOA) estimation algorithms are widely
used in array signal-processing applications [5]. However, its
real-time hardware implementation is a challenging task due
to heavy computational load incurred by eigenvalue decom-
position of real-valued covariance matrix [6]–[8]. It results
in large-area design that requires longer delay or latency to
generate the output. Thus, low-latency hardware architecture
with moderate area consumption for these algorithms is an
utmost necessity for its real-time applications. In nutshell,
determination of eigenvalues and eigenvectors is computation-
ally complex and time-consuming process that is imperative
to wide variety of applications. Our research goal is to
design a hardware architecture that computes eigenvalues and
eigenvectors of matrix with higher precision, lower latency,
and moderate area requirement. Literature shows that QR [9]
and Jacobi [10] methods are extensively used for generating
eigenvalues and eigenvectors. Former has been designed for
the general matrices, while the later (i.e., Jacobi method) is
limited to only real-symmetric matrix. Nevertheless, Jacobi
method delivers better performance with higher precision
than QR method for computing eigenvalues and eigenvectors
of real-symmetric matrix [10]. Due to inherent parallelism,
contemporary hardware implementations are compliant to the
Jacobi method which makes them highly appropriate for dis-
tributed resource systems [11]. Its parallel version (i.e., parallel
Jacobi method) has a time complexity of O{n×(log2 n)} where
n denotes the size of matrix whose eigenvalues and eigenvector
are to be determined [12]. Such parallel Jacobi method is an
iterative process in which every rotation consumes a constant
amount of time, and the number of such rotations is fixed for
a given value of n which primarily affects its time complexity.
Thereby, optimizing such rotation time is an efficient way to
alleviate an overall converge time cost of the parallel Jacobi
method.

1063-8210 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Indian Institute Of Technology (IIT) Mandi. Downloaded on May 27,2022 at 11:31:51 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2224-0892
https://orcid.org/0000-0001-9313-5550

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

In line with this notion, various reported works seek to
reduce the time cost of the parallel Jacobi method [14]–[18].
These contributions apply a fundamental principle of divid-
ing the matrix into sub-blocks with the aid of multiproces-
sor arrays and then performing plane rotation using the
coordinate rotations digital-computer (CORDIC) algorithm.
It simplifies trigonometric operations by converting them to
hardware-friendly shift operations [19], and such trigonomet-
ric functions are extensively involved in the computations
of parallel Jacobi method. As a result, CORDIC algorithm
conserves the resource utilization while implementing the
parallel Jacobi method in well-known hardware platforms
like field-programmable gate array (FPGA) and application
specific integrated circuit (ASIC). Therefore, the time cost of
every rotation in parallel Jacobi method is primarily deter-
mined by the total computation time (latency) of CORDIC
algorithm that is equivalent to the total number of CORDIC
periods and hence it is desirable to alleviate such time [19],
[21]. In the reported work by Brent and Luk [12], decomposi-
tions of singular-value and eigenvalue using the multiprocessor
arrays have been presented that can be implemented with par-
allel architecture. However, it requires three CORDIC periods
in each rotation to compute the eigenvalues and two CORDIC
periods in every rotation to determine the eigenvectors. Later
in [15], based on the hardware architecture from [14], Tao
and Wei suggest the use of a sign-set instead of computing
the rotation angle to alleviate the time cost of Jacobi method
where only one CORDIC period per rotation is required to
compute the eigenvectors. However, the off-diagonal proces-
sors in this technique consume two CORDIC periods to
complete double rotation for eigenvalue calculation because
the matrix elements of off-diagonal processors rotate with
the angles received in both horizontal and vertical direc-
tions. Recently, Shi et al. [18] reported the one-off rotation-
acceleration approach based on sign set computation to avoid
the calculations of difference and summation for horizontal
and vertical angles. This approach mitigates the time required
to determine the rotation angles in advance. Thus, its time cost
for each rotation is only two CORDIC periods for computing
the eigenvalues that is better than the time required by [15]
and [14]. On the other hand, our article proposes low-latency
algorithm for the parallel Jacobi method that further acceler-
ates the computations of eigenvalue and eigenvector. Here, the
key contribution lies in the design of hardware architecture for
CORDIC module based on the proposed low-latency algorithm
that requires only one such CORDIC-module to compute the
rotation matrix value. Subsequently, four more clock cycles are
needed by the multiply-and-accumulate (MAC) units in our
design to process this rotation-matrix value to perform double
rotation. Therefore, the proposed work in this article requires
one CORDIC period plus four clock cycles in each rotation
of parallel Jacobi method for the computations of eigenvalues
and eigenvectors. Furthermore, the reported systolic-array-
based architectures in [14]–[18] for parallel Jacobi method
have been designed to process only real-symmetric matrix.
However, they are not proposed for processing CH and
complex skew-Hermitian (CSH) matrices. López-Parrado and
Velasco-Medina [20] reported a systolic-array-based architec-
ture to calculate the eigenvalues of only CH matrix using
complex arithmetic. In addition to low-latency algorithm as
well as hardware architecture for computing eigenvalues and
eigenvectors, this article also proposes a reconfigurable VLSI
architecture for calculating these entities for CH, CSH, and

real skew-symmetric (RSS) matrices, using parallel Jacobi
method based on real arithmetic. Notion of designing such
reconfigurable VLSI architecture is to conceive single archi-
tecture that is capable of supporting multiple applications.
Such contribution makes our design suitable for the wide
range of applications that alleviates area and power require-
ments, compared to individual designs for computing eigen-
values and eigenvectors of CH, CSH, and RSS matrices.
For example, eigenvalue computations of complex Hermitian
and real-symmetric matrices are used in massive multiple-in
multiple-out (MIMO) and single-input single-output (SISO)
systems, respectively [24]. Thereby, the proposed reconfig-
urable VLSI-architecture is applicable for both these systems
in a single transceiver for better power and area conservations.
Highlights of our contributions are as follows.

1) We propose a low-latency algorithm for computing
eigenvalues and eigenvectors of n × n sized
real-symmetric matrix by selectively applying the
CORDIC algorithm.

2) Overall VLSI architecture and micro-architectures of
its submodules for computing eigenvalues as well as
eigenvectors of real-symmetric matrix that consumes
lower latency have been presented here.

3) Additionally, this work presents a parallel Jacobi
method-based low-latency and reconfigurable algorithm
for calculating eigenvalues and eigenvectors of CH,
CSH, and RSS matrices. Its corresponding reconfig-
urable VLSI-architecture has also been suggested in this
article.

4) Subsequently, comprehensive analyses of error compar-
ison and hardware complexity of the proposed VLSI
architectures are carried out.

5) Suggested stand-alone and reconfigurable architectures
for real-symmetric and CH/CSH/RSS matrices, respec-
tively, are hardware implemented on FPGA platform and
functionally validated, using the real-world hardware
test-setup. Eventually, their implementation results are
compared with the state-of-the-art works.

II. PRELIMINARIES

A real-symmetric matrix A ∈ Rn×n of n × n order can be
transformed to a diagonal matrix using the sequence of Givens
rotation as [22]

Ak+1
�= [ak+1

i, j

] = Rk
p,q,θ (k) · Ak · {Rk

p,q,θ (k)

}τ
(1)

where k = {1, 2, 3, . . .} rotations, τ denotes the matrix
transpose, and ai, j represents element of i th row and j th
column in A matrix. Note that A1 = A is the original
real-symmetric matrix and Rk

p,q,θ (k)

�= [r (k)
i, j] is the Givens

rotation of order n. The Rk
p,q,θ (k) matrix that represents each

rotation is expressed as

qth

Rk
p,q,θ (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · r (k)
p,p · · · r (k)

p,q · · · 0
...

...
. . .

...
...

0 · · · r (k)
q,p · · · r (k)

q,q · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

pth

.

(2)

Authorized licensed use limited to: Indian Institute Of Technology (IIT) Mandi. Downloaded on May 27,2022 at 11:31:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHARMA et al.: LOW-LATENCY AND RECONFIGURABLE VLSI-ARCHITECTURES 3

For a given p and q values of kth rotation, the non-zero
elements (r (k)

i, j) of Rk matrix in (2) are represented as

r (k)
i,i = 1 ∀ i �= p & q

r (k)
p,p = r (k)

q,q = cos
(
θ(k)

p,q

)
r (k)

p,q = −r (k)
q,p = sin

(
θ(k)

p,q

)
, p < q (3)

and rest of the elements are r (k)
i, j = 0. Based on the classical

Jacobi method, p and q values are obtained by equating∣∣ak
p,q

∣∣ = max
i �= j

∣∣ak
i, j

∣∣. (4)

Further, the angle θ(k)
p,q is computed as

θ(k)
p,q = 1

2
tan−1

(
2 × ak

p,q

ak
p,p − ak

q,q

)
, θ ∈

[
−π

4
,

π

4

]
(5)

to satisfy ak+1
p,q = 0 and consequently, ak

p,q is observed to be
zero in Ak+1 matrix from (1). Such process is iteratively
performed until all the off-diagonal elements of A matrix are
zero. This is mathematically expressed as limk→∞ Ak+1 = �
where � ∈ Rn×n is a diagonal matrix in which eigenvalues
λ1, λ2, . . . , λn of A matrix are the diagonal elements of
� matrix (i.e. � = diag{λ1, λ2, . . . , λn}). Furthermore, the
classical Jacobi method computes maximum value of |ak

i, j | in
every rotation to satisfy (5) that is computationally complex
process. Such method can be modified to exclude more than
one off-diagonal portion in every rotation by selecting p and
q values of some fixed orders. This makes Jacobi method
suitable for the parallel computations [13].

If A ∈ R4×4 represents a real-symmetric matrix of the order
4 × 4 then the expression for first orthogonal rotation R1 is

R1 =

⎡
⎢⎢⎢⎢⎣

r (1)
1,1 r (1)

1,2 0 0

−r (1)
1,2 r (1)

2,2 0 0

0 0 r (1)
3,3 r (1)

3,4

0 0 −r (1)
3,4 r (1)

4,4

⎤
⎥⎥⎥⎥⎦ (6)

where its (p, q) elements are placed according to (3). Here,
θ

(1)
1,2 and θ

(1)
3,4 angles are independently selected based on (5)

such that the upper off-diagonal elements a2
1,2 and a2

3,4 of the
A2 = R1 · A1 · Rτ

1 are excluded. Similarly, the subsequent
rotations result new matrices like R2 and R3. With the aid
of these matrices, pairs of elements a3

1,3, a3
2,4 and a4

1,4, a4
2,3

of A3 and A4 matrices, respectively, are reduced to zero.
In this way, each of the n(n − 1)/2 off-diagonal elements
(above the main diagonal) are discarded after (n−1) rotations
where n/2 such elements are removed in each orthogonal
rotation. Here, every (n − 1) orthogonal rotation is referred as
sweep [13]. Subsequently, the second sweep comprises afore-
mentioned process for R4, R5, and R6 orthogonal matrices
having the same constructions as R1–R3 matrices, respectively,
for A ∈ R4×4 where n = 4. Such computations are iteratively
performed until A matrix transforms into a diagonal matrix.
In general, for an even-ordered real-symmetric A matrix, the
components of each (n−1) orthogonal rotations of Rk matrices
for k = 1, 2, 3, . . . , (n − 1) are given by [13]

r (k)
p,p = r (k)

q,q = cos
(
θ(k)

p,q

)
r (k)

p,q = −r (k)
q,p =
{

− sin
(
θ(k)

p,q

)
, p > q

sin
(
θ(k)

p,q

)
, p < q

(7)

TABLE I

LIST OF (p, q) PAIRS OF ELEMENTS FOR Rk MATRIX (OF 16 × 16 ORDER)
IN k = 1, 2, 3, . . . , 15 DIFFERENT ROTATIONS

where p and q are the sequences defined as follows.
1) For

k = 1, 2, 3, . . . , n/2 − 1

q = n/2 − k + 1, n/2 − k + 2, . . . , n − k

p =
⎧⎨
⎩

(n − 2k + 1) − q, n/2 − k + 1 ≤ q ≤ n − 2k
2(n − k) − q, n − 2k < q ≤ n − k − 1
n, n − k − 1 < q.

(8)

2) For

k = n/2, n/2 + 1, . . . , n − 1

q = n − k, n − k + 1, . . . , (3/2)n − k − 1

p =

⎧⎪⎪⎨
⎪⎪⎩

n, q < n − k + 1
2(n − k) − q, n − k + 1 < q

≤ 2(n − k) − 1
(3n − 2k − 1) − q, 2(n − k) − 1 < q.

(9)

On the other side, rest of the elements in Rk matrix are zero
and θ k

p,q angles for every kth rotation are calculated such that

the ak
p,q elements are reduced to zero for all (p, q) pairs. For

example, if n = 16 then all k (p, q) pairs of elements are
determined based on (9), as shown in Table I. If A matrix
becomes diagonal matrix after s sweeps or r = s(n − 1)
rotations then the diagonal entries of Ar+1 = W · A · W τ

matrix are the eigenvalues and corresponding eigenvectors
are the columns of W τ = V τ

1 , V τ
2 , . . . , V τ

s where V τ
j =

(Rτ
1) j , (Rτ

2) j , . . . , (Rτ
n−1) j for j th sweep.

III. PROPOSED ALGORITHM AND VLSI ARCHITECTURES

A. Proposed Low-Latency Algorithm
The proposed low-latency algorithm based on parallel

Jacobi method has been presented in Algorithm 1 that
processes n×n elements of a real-symmetric A ∈ Rn×n matrix.
It is only valid for even natural value of n; nevertheless, if n
is an odd natural number then an additional row and a column
of zero elements can be inserted in A matrix to convert n into
an even natural number. After the initialization process, all the
elements {(rk

pp)i , (rk
qq)i , (rk

pq)i , (rk
qp)i } ∀ i = {1, 2, . . . , n/2} of

Rk matrix are calculated using the proposed CORDIC-based
algorithm, as illustrated in lines 11−22 of Algorithm 1. Here,
each line calls ELEMENTS function whose processing is

Authorized licensed use limited to: Indian Institute Of Technology (IIT) Mandi. Downloaded on May 27,2022 at 11:31:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Algorithm 1 Proposed Low-Latency Algorithm for Eigenval-
ues and Eigenvector Computations

shown in lines 31−47 of Algorithm 1. For the informa-
tion, processing of ELEMENTS function in a conventional
Jacobi method [13] can be described in the following manner.
At first, the inputs are applied to compute 2 × θ(k)

p,q value
in vector mode and then right-shifted by one-bit to obtain
θ(k)

p,q value, as discussed earlier in (5). Further, this θ(k)
p,q value

is processed in the rotation mode to generate sin(θ (k)
p,q) and

cos(θ (k)
p,q) that consume two CORDIC-periods (2 × Tc) [19],

[21]. Unlike such conventional method, ELEMENTS function
of the proposed Algorithm 1 (illustrated in lines 31−47) uses
CORDIC algorithm only in the rotation mode to determine
elements of Rk matrix that shortens the computation time.
Therefore, equations governing such CORDIC algorithm with
N-bit accuracy for the rotation mode are

X (i+1)
r = Xi

r − Y i
r × di × tan(φi)

Y (i+1)
r = Y i

r + Xi
r × di × tan(φi)

θ (i+1)
r = θ i

r − di × tan(φi) (10)

where di ∈ {1,−1} is the sign of CORDIC-rotation angle
and φi is smaller rotation angle whose elements are φi =
tan−1(2−i) ∀ i = {0, 1, 2, . . . , N − 1}. This di value can be
assigned based on the sign of θi in every smaller rotation such
that the variable is sign di in each CORDIC operation. Note
that the sign set of 2 × θ i

p,q is represented as d2×θi . It can

also be determined based on the sign of tan(2 × θ(i)
p,q) in each

CORDIC iterative process, instead of calculating the 2 × θp,q

angle using the CORDIC in vector mode. Hence, the sign of
d2×θi can be computed as

d2×θi = tan
(
2 × θ(i)

p,q

) =
(

2 × a(i)
p,q

a(i)
p,p − a(i)

q,q

)
(11)

∀ i = {0, 1, 2, . . . , N − 1}. In parallel Jacobi method, there

exist a condition when |θ(k)
p,q | ≤ π/4 and thereby, θ i

p,q is
given by

θ(i+1)
p,q ≈

N−1∑
i=0

dθi · tan(φi/2) (12)

∀ i = {0, 1, 2, . . . , N − 1}. Thus, the sign set of θp,q is
equivalent to 2 × θp,q (i.e., dθi = d2×θi ∈ {1,−1}) and
φi = φi/2 in (12). Therefore, i th elements of the sign
set dθi is processed by i th operation of CORDIC process.
Thus, calculation of sign set and rotation can be performed
in parallel, consuming one CORDIC-period Tc, as illustrated
in lines 31−47 of Algorithm 1. Now, the new scale-factor
C =∏ cos (φi) for N-bit accuracy is precalculated as∏

cos (φi) =
∏

cos (φi/2). (13)

In general, for an input A matrix of order n, n/2 number of
such ELEMENTS functions are required to calculate all the
rows of Rk matrix. Following that, each ELEMENTS function
iterates N times where N is the bit-quantization of A matrix
elements.

After the aforementioned computation of Rk matrix, imple-
mentation friendly double-rotation has been performed using
the elements of Rk matrix to determine the eigenvalues (�),
and subsequently the eigenvector (W), referring lines 23−29
of Algorithm 1. Here, the conventional computation of double
rotation from (1) [13] has been segregated into two operations
(i.e., lines 23 and 24 in Algorithm 1) for its hardware-friendly
implementation. First, all elements of the Rk matrix are mul-
tiplied with Ak matrix to realize (1). For such multiplication,
only upper-diagonal matrix of Ak needs to be multiplied
with Rk matrix in each rotation that consequently generates
B = Rk × Ak matrix, as presented in line-23 of Algorithm 1.
Subsequently, the product of transpose of Rk and B matrices
is computed, that corresponds to real-symmetric Ak+1 matrix
from line-24 in Algorithm 1. On the other hand, Vk matrix is
initialized with unit matrix In of the order n × n, as shown
in line-6 of Algorithm 1. For the eigenvector computation, Vk
matrix is multiplied with the transpose of Rk matrix to realize
Vk+1 matrix from line-25 in Algorithm 1. Aforementioned
process iteratively runs till Ak+1 matrix transforms into diago-
nal � matrix where all diagonal entries are the eigenvalues of
original real-symmetric A matrix, as presented by line-28 in
Algorithm 1. Furthermore, corresponding eigenvectors are the
columns of matrix W = {wλ1 , wλ2 , . . . , wλn }, referring line-29
of Algorithm 1. Such segregation-based proposed hardware-
friendly double-rotation process enables our VLSI architecture
(for computing eigenvalues and eigenvectors) to resource share
the MAC operations, as it will be presented in Section III-D.

Authorized licensed use limited to: Indian Institute Of Technology (IIT) Mandi. Downloaded on May 27,2022 at 11:31:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHARMA et al.: LOW-LATENCY AND RECONFIGURABLE VLSI-ARCHITECTURES 5

Fig. 1. Proposed system-level design for computing eigenvalues and
eigenvectors of the real-symmetric A ∈ R16×16 matrix.

Consequently, it enhances the hardware efficiency of suggested
design by sharing the costly unit like multiplier.

B. System-Level Design for Computing Eigenvalues and
Eigenvectors of Real-Symmetric Matrix

Proposed system-level design for computing eigenvalues
and eigenvectors of the real-symmetric A ∈ R16×16 matrix
based on suggested Algorithm 1 is shown in Fig. 1. Primarily,
all the upper triangular elements of A16×16 matrix (each
represented as ai, j format with a bit width of 32-bit) are fed
as inputs to this design. As discussed in Algorithm 1, parallel
Jacobi method is an iterative process that begins with two
simultaneous initializations: A1 = A16×16 and V1 = I 16×16

in eigenvalue and eigenvector computation block (EECB),
as shown in Fig. 1. At first, all the input ai, j elements of
A matrix are buffered (using the registers) in EECB. Subse-
quently, elements corresponding to the kth rotation (denoted as
ak

i, j) are fed to Rk-matrix computation block (RCB) based on
Table I where every row contains eight (p, q) pairs. Here, each
of these pairs maps three elements: ak

p,p, ak
q,q , and ak

p,q from
the registers in EECB. Thus, it transfers 24 elements (bundled
into three groups with eight elements in each one) to RCB,
as shown in Fig. 1. These elements are processed by RCB
to generate Rk ∈ R16×16 matrix. Consecutively, 16 rows (two
elements from each row) of Rk matrix are routed to EECB
to perform double rotation Ak+1

�= [ak+1
i, j] = Rk · Ak · Rτ

k

and Vk+1 = [vk+1
i, j] = Vk · Rτ

k transformations. In EECB,
computed elements of Ak+1 matrix are buffered in the same
register of input ai, j elements and are further fed to RCB,
as shown in Fig. 1. Such processes in EECB iterate until
Ak+1 matrix converts into diagonal matrix (�). Thereafter,
the diagonal elements (i.e., λ1, λ2, . . . , λ16) of � matrix
are the eigenvalues of real-symmetric A matrix. Eventually,
eigenvectors are the columns of Vk+1 matrix that is generated
by EECB as W = Vk+1 = {wλ1 , wλ2 , . . . , wλ16}, referring
line-29 in Algorithm 1. On the other hand, the suggested
system-level architecture described above is also capable of
handling real-symmetric matrices with the orders that are less
than 16 × 16. For example, to calculate eigenvalues and
eigenvectors of a matrix of size 12 × 12, this matrix must
be first transformed into a 16 × 16 real-symmetric matrix by
adding zero entries in its last four rows and columns. However,

the current architecture shown in Fig. 1 defers to support any
real-symmetric matrix with an order higher than 16 × 16.
Nevertheless, this design can be upgraded for higher order
matrix that still delivers lower latency and enhanced hardware
efficiency, at the cost of time to design.

In the general case of an input A matrix of order n,
the proposed EECB-architecture receives n(n + 1)/2 upper-
triangular elements of A matrix. Referring Table I, n/2 number
of (p, q) pairs are precomputed using (8) and (9). Each of
these pairs corresponds to three elements: ak

p,p, ak
q,q , and ak

p,q .
They are fed to RCB in three groups of n/2 elements each
for generating the Rk matrix. Consecutively, n rows (two
entries from each row) of the Rk matrix are routed to EECB
for double rotation Ak+1

�= [ak+1
i, j] = Rk · Ak · Rτ

k and
Vk+1 = [vk+1

i, j] = Vk · Rτ
k transformations. This process is

iteratively performed until Ak+1 matrix is converted into a
diagonal � matrix where all its diagonal elements are the
eigenvalues of input real-symmetric A matrix. Additionally,
columns of W matrix have the corresponding eigenvectors that
are represented as W = {wλ1, wλ2 , . . . , wλn }.
C. VLSI Architecture of RCB

This module processes 24 elements of A matrix bundled
into ak

p,p, ak
q,q , and ak

p,q which are generated from EECB
for the kth rotation corresponding to various (p, q) pairs,
as listed in Table I. The proposed RCB architecture is shown
in Fig. 2(a) where eight (p, q)-pairs processing blocks (PQBs)
are fed with 24 input elements which are segregated in such a
way that each PQB processes three elements (of 32 bit each)
from ak

p,p, ak
q,q , and ak

p,q bundles. Each PQB design primar-
ily incorporates iterative CORDIC computation for realizing
the elements of Rk matrix based on (7) and Algorithm 1.
Subsequently, these elements from PQBs are passed into a
multiplexing network that generates 16 rows of Rk matrix,
as shown in Fig. 2(a). Here, every row comprises of only two
elements of Rk-matrix (instead of 16 elements) and rest are
nullified, as discussed earlier in Section II. Subsequently, the
generalized VLSI-architecture of RCB requires n/2 number of
PQBs while processing the input matrix of order n. Each PQB
generates output lines, thus rk

pp, rk
pq , and rk

qq . These output
lines are transferred to a multiplexing network to arrange the
rows of the Rk matrix for the kth rotation. Furthermore, 2 ×n
number of {(n − 1):1}-sized multiplexers are needed in the
general RCB multiplexing-network block to map the rows
of Rk matrix. On the other hand, VLSI architecture of PQB
from Fig. 2(b) remains unchanged for different values of input
matrix order (i.e., n). However, the size of all computation
units in a PQB-i will upscale with the increase in bit widths of
(ak

p,p)i , (ak
q,q)i , and (ak

p,q)i .
The proposed micro-architecture of single PQB−first PQB

in Fig. 2(a)−has been presented in Fig. 2(b). It processes three
32-bit elements: (app)1, (aqq)1, and (apq)1 which are tapped

from ak
p,p, ak

q,q , and ak
p,q bundles, respectively, to generate

elements of the Rk-matrix, referring (7). To begin with, input
element (apq)1 is left-shifted by one-bit position and other
two elements (app)1 and (aqq)1 are subtracted, based on (5).
Furthermore, Y = |2 · (apq)1| and X = |(app)1 − (aqq)1| are
obtained from absolute computation units (ACUs) and are fed
to sign estimator (SEM) of the CORDIC block, as presented
in line-32 of Algorithm 1 and shown in Fig. 2(b). Here, SEM
generates the sign set dθi ∀ i = {0, 1, 2, . . . , N − 1} where

Authorized licensed use limited to: Indian Institute Of Technology (IIT) Mandi. Downloaded on May 27,2022 at 11:31:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 2. (a) Proposed VLSI architecture of RCB for computing the elements
of Rk matrix. (b) Micro-architecture for one of the CORDIC-based PQBs
used in RCB.

N represents the maximum number of CORDIC iterations.
These dθi signs are sequentially passed to CORDIC rotation-
mode block (CorRB) along with the precalculated scale factor
(i.e., C), as discussed earlier in Section III-A and shown
in Fig. 2(b). Subsequently, CorRB generates sin(θ (k)

pq) and
cos(θ (k)

pq), referring (5). For |θ(k)
pq |≤π/4, cos(θ (k)

pq) is always

a positive value and sin(θ (k)
pq) has the same sign as 2 ·

(apq)1/{(app)1 −(aqq)1}. The later condition has been realized
using MUX1 multiplexer whose select line is generated by
XORing the most significant bits (MSBs) of x and y values,
as shown in Fig. 2(b). On the other hand, if (apq)1 = (app)1 =
(aqq)1 = 0 then it is an undefined form and such case must
be skipped while estimating the sign set dθi . To mitigate this,

a fixed value of | sin(θ (k)
pq)| = 0 and | cos(θ (k)

pq)| = 1 has been
assigned in our design. This is realized using MUX3−MUX5
multiplexers and their select lines are obtained by bitwise
ORing and ANDing x and y values in our PQB-architecture
from Fig. 2(b). Thus, rest seven PQBs of RCB work in similar
manner, as discussed above. Eventually, all the outputs of eight
PQBs are arranged into 16-rows of Rk matrix with the aid of
16:1 multiplexers for the kth rotation, as illustrated in Fig. 2(a),
and further applied to EECB.

D. VLSI Architecture of EECB

As shown in Fig. 1, all the upper-triangular ai, j ele-
ments (i.e., a1,1–a16,16) of real-symmetric A16×16 matrix are
iteratively processed by EECB to generate its eigenvalues
and eigenvectors based on the double rotation and Vk+1 =
[vk+1

(i, j)] = Vk · Rτ
k transformation, respectively. The double

rotation is performed in two parts: first part computes B =
[bi, j] = Rk ·Ak matrix and second part calculates Ak+1 = B·Rτ

k

Fig. 3. Proposed VLSI architecture of EECB for real-symmetric A16×16

matrix.

matrix, using the previously computed elements of B =
[bi, j] matrix, as illustrated by lines 23−24 in Algorithm 1.
Thereafter, EECB computes Vk+1 matrix based on Vk+1 =
[vk+1

(i, j)] = Vk · Rτ
k transformation that eventually generates

eigenvectors of the real-symmetric A16×16 matrix, referring
line-25 of Algorithm 1. On the other side, 16 rows of Rk
matrix from RCB are fed to EECB in every kth rotation,
as shown in Fig. 1. The proposed VLSI architecture of EECB
is shown in Fig. 3 that comprises of two kinds of MAC units:
1) MAC unit for upper-triangular element (i.e., U-MAC) and
2) MAC unit for lower off-diagonal element (i.e., LO-MAC).
Here, the double rotation and Vk+1 matrix transformation
for real-symmetric A16×16 matrix are performed with the
aid of 136 U-MACs and 120 LO-MACs. An overview of
interconnections among these U-MACs and LO-MACs along
with the steering logic is presented in Fig. 3. It shows that the
input upper-triangular ai, j elements are first fed to respective
MAC units. In addition, each U-MAC is fed with the outputs of
three 15:1 multiplexers: MUX-X , MUX-Y , MUX-Z ; and two
rows (i.e., row-1/2/3/. . ./16) of Rk matrix from RCB, referring
Figs. 1 and 3. Furthermore, Fig. 3 shows that the outputs of
two 15:1 multiplexers (MUX-Y and MUX-Z) and two rows
of Rk matrix are fed to LO-MAC. To perform double rotations
in every kth rotation, inputs to MUX-X are upper-triangular
elements ai, j which are the outputs of other U-MACs from
previous (k − 1)th rotation. Similarly, inputs of MUX-Y are
bi, j elements and they are the outputs of other U-MACs and
LO-MACs in the same kth rotation, as shown in Fig. 3. After
the calculation of the double rotation in the MAC units, EECB
computes Vk+1 matrix based on Vk+1 = [vk+1

(i, j)] = Vk · Rτ
k

transformation for the real-symmetric A16×16 matrix. Prior
to the transformation begins in EECB, one of the registers
(i.e., REG-4) in all the MAC units are initialized with 0/1 to

Authorized licensed use limited to: Indian Institute Of Technology (IIT) Mandi. Downloaded on May 27,2022 at 11:31:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHARMA et al.: LOW-LATENCY AND RECONFIGURABLE VLSI-ARCHITECTURES 7

Fig. 4. Suggested micro-architectures of two MAC units of EECB:
(a) U-MAC and (b) LO-MAC.

load Vk=1 = I16×16, as presented in line-2 of Algorithm 1.
Furthermore, each MAC unit is connected with an output of
15:1 multiplexer (i.e., MUX-Z) at the input side, as shown
in Fig. 3. It also shows that the outputs of all MAC units
are v(i, j) elements of (k − 1)th rotation and they are the
inputs of MUX-Zs for each kth rotation. In the first two
clock cycles, outputs of each U-MAC and LO-MAC are the
elements of B matrix. In the next two clock-cycles, U-MAC
outputs are upper off-diagonal elements of Ak+1 matrix. In the
subsequent two clock-cycles all MAC-outputs are the elements
of Vk+1 = [v(i, j)] matrix of every kth rotation.

Subsequently, output elements of Ak+1 matrix of all MAC
units are also fed back to the RCB in every kth rotation,
as shown in Fig. 1. In EECB architecture, such double rotation
is performed iteratively until the Ak+1 matrix transforms
into a diagonal � matrix. Thereafter, the diagonal entries
of Ak+1 = [ak+1

i,i] matrix {λ1, λ2, . . . , λ16} are delivered as
the output eigenvalues of real-symmetric A16×16 matrix with
the aid of comparator, as shown earlier in Fig. 1. Instant the
Ak+1 matrix is transformed into � diagonal matrix, all v(i, j)
outputs of all MACs in EECB generates the eigenvectors
{wλ1 , wλ2 , . . . , wλ16} of real-symmetric A16×16 matrix that
corresponds to its eigenvalues {λ1, λ2, . . . , λ16}, as shown in
Fig. 2. To determine eigenvalues and eigenvector of A matrix
of order n using the proposed EECB architecture, following
units are required: n(n + 1)/2 number of U-MACs and n(n −
1)/2 number of LO-MACs. For 32-bit width, the suggested
architectures of U-MAC and LO-MAC remain the same for
any order size (i.e., n) of A matrix. Additionally, U-MAC
and LO-MAC units are coupled with three {(n − 1):1}-sized
multiplexers (i.e., MUX-X , MUX-Y , and MUX-Z) and two
{(n − 1):1}-sized multiplexers (i.e., MUX-X and MUX-Y),
respectively.

1) Micro-Architectures of U-MAC and LO-MAC Units:
Suggested U-MAC micro-architecture is shown in Fig. 4(a)
that processes Xx , Yy , Zz (outputs of MUX-X , MUX-Y , and
MUX-Z of EECB, respectively), and two rows from RCB
to generate upper triangular elements of Ak+1 = [ak+1

i, j],
B = [bi, j], and Vk+1 = [vk+1

i, j] matrices. It comprises of two
4:1 multiplexers (MUX-1 and MUX-2) where the inputs of
MUX-1 are the outputs from REG-3 register, Xx , MUX-V 1
and MUX-V 2. Similarly, MUX-2 has been fed with the rows
of Rk matrix from RCB, as shown in Fig. 4(a). It shows that the
select line (i.e., Sel) of these multiplexers routes their outputs
to a multiplier, only after RCB finishes the computation of
rows. This product is cumulatively added with the content of
REG-1 register and stored in it. If Sel = 1 then this adder
output is separated using MUX-3 and stored in REG-2 register
which is the element of B = [bi, j] matrix, as illustrated in
Fig. 4(a). Subsequently, the stored data from REG-1 register
is transferred to REG-3 register, when the select line value
Sel = 4. At this moment, the content of REG-3 register is
the final output elements of Ak+1 = [ak+1

i,i] matrix. In the
next four clock-cycles when the Sel = 8, REG-4 register
stores the output upper-triangular element of Vk+1 = [vk+1

i, j]
matrix. In this manner, all the U-MACs of EECB operate in
the aforementioned way for every kth rotation.

On the other hand, Fig. 4(b) presents an LO-MAC micro-
architecture of EECB that processes outputs of MUX-Y (Yy),
MUX-Z (Zz), and two rows of Rk matrix from RCB in every
kth rotation. The LO-MAC outputs are lower off-diagonal ele-
ments of Vk+1 = [vk+1

i, j] and B = [b j,i] matrices, respectively,
as shown in Fig. 4(b). For computing the elements of B =
[b j,i] matrix in LO-MAC architecture, two 4:1 multiplexers
(LOMUX-1 and LOMUX-2) steer the inputs to a multiplier
for the MAC operation. The inputs of LOMUX-1 are con-
jugate a(i, j) element of the Ak+1 matrix, Yy , MUX-L1,
and MUX-L2 outputs. Similarly, the inputs of LOMUX-2
are the rows of Rk matrix, as shown in Fig. 4(b). Outputs
from LOMUX-1 and LOMUX-2 are multiplied, added and
subsequently stored in REG-1 register. Its content is further
transferred to REG-3 register via MUX-4, when the value of
Sel = 1. Eventually, this value in REG-2 register is the output
element of B = [b j,i] matrix, as illustrated in Fig. 4(b). Once
the value of Sel = 8, output of REG-1 register is transferred
to REG-4 register via MUX-3. Finally, this REG-4 content is
the final v(j, i) output-element of Vk+1 matrix in every kth
rotation.

E. Timing Analysis

Detailed analysis of latency consumed by the proposed
VLSI architecture that iteratively computes eigenvalues and
eigenvectors of real-symmetric An×n matrix has been pre-
sented here. Referring Algorithm 1, k = n − 1 rotations are
first performed and thereafter, s = Ns sweeps (i.e., equivalent
to r = Ns ×(n−1) rotations) are performed until An×n matrix
transforms into �n×n diagonal matrix (i.e., Ns sweeps are
required to convert An×n � �n×n). For better understanding,
computation time required for each kth rotation has been
segregated into two parts: T1 and T2. Referring the overall
architecture in Fig. 1, the operations executed during these
durations are as follows.

T1: To calculate the rows of Rk matrix in RCB and are made
available at the inputs of EECB.

T2: To perform one double-rotation in EECB.

Authorized licensed use limited to: Indian Institute Of Technology (IIT) Mandi. Downloaded on May 27,2022 at 11:31:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 5. Timing diagram for quantifying the latency of proposed VLSI
architecture for computing eigenvalues and eigenvectors of real-symmetric
An×n matrix.

Algorithm 2 Proposed Reconfigurable Algorithm to Compute
Eigenvalues and Eigenvectors of CH or CSH Matrices

For the overall computation of latency, timing diagram of the
proposed architecture has been presented in Fig. 5. Here, T1
duration is equivalent to one CORDIC-period Tc at the RCB to
compute Rk matrix. Note that Tc is quantified by the input bit
width N of CorRB architecture in RCB design (i.e., Tc = N
clock cycles), as shown in Fig. 2(b). On the other hand, T2
duration requires four clock cycles for computing one double
rotation. Consequently, Fig. 5 shows that an aggregated time
required for a single kth rotation is given by Norc = Tc +4 and
thus, total-time/latency (L) needed to compute eigenvalues and
eigenvectors of real-symmetric An×n matrix is

L =
Ns∑

s=1

[
n−1∑
k=1

(Norc)k

]
=

Ns∑
s=1

[
n−1∑
k=1

(Tc + 4)k

]
(14)

clock cycles.

IV. RECONFIGURABLE ALGORITHM AND

VLSI ARCHITECTURE

A. Proposed Reconfigurable Algorithm

In addition to eigenvalues and eigenvectors calculations
of the real-symmetric matrix, parallel Jacobi method is also
widely used for computing these entities for CH and CSH

Fig. 6. Proposed reconfigurable architecture for computing eigenvalues
and eigenvectors of CH or CSH matrices, and VLSI architecture of MED
multiplexer network.

matrices [23]. These CH and CSH matrices are first trans-
formed into a real-symmetric matrix which is then processed
using the same algorithm (i.e., Algorithm 1), presented in
Section III-A to obtain their eigenvalues and eigenvectors.
This article presents an efficient method for transforming
such CH and CSH matrices into real-symmetric matrices. Fur-
ther, such transformation has been tailored with Algorithm 1
to conceive a reconfigurable algorithm that is presented in
Algorithm 3. It has been designed to calculate eigenvalues
and eigenvectors of CH or CSH matrices, depending on the
magnitude of control signal φ. Let M = [mr + i · mi] ∈ Cn×n

be input CH or CSH matrix (i.e., φ = 1/0 for CH/CSH
matrix). Here, mr and mi represent real and imaginary parts,
respectively, of all n ×n elements in M matrix. The suggested
algorithm for transforming the input which is a complex
matrix into a real-symmetric matrix SCH/CSH ∈ R2n×2n has
been presented from lines 1−6 in Algorithm 3. Subsequently,
such S2n×2n

CH/CSH matrix is being processed by lines 1−12 of
Algorithm 1 (from Section III-A) for computing eigenvalues
and eigenvectors of CH or CSH matrix, depending on the
φ value. Here, A2n×2n = S2n×2n

CH/CSH matrix converges to a
diagonal � matrix of diag(λ1, λ1, λ2, λ2, . . . , λn , λn) that
preserves twice the number of eigenvalues of n × n CH
or CSH matrix, without alleviating the accuracy. Eventually,
corresponding eigenvectors are the columns of the W = Vk+1
matrix, referring to lines 9 and 10 from Algorithm 3.

B. Suggested Reconfigurable VLSI-Architecture
A system-level design for computing eigenvalues and eigen-

vectors of CH/CSH matrices based on Algorithm 3 is shown in
Fig. 6. It is an aggregation of two major blocks: 1) matrix ele-
ment distributor (MED) and 2) eigenvalues-and-eigenvectors
computation-unit for real-symmetric-matrix (ECR) which is

Authorized licensed use limited to: Indian Institute Of Technology (IIT) Mandi. Downloaded on May 27,2022 at 11:31:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHARMA et al.: LOW-LATENCY AND RECONFIGURABLE VLSI-ARCHITECTURES 9

earlier presented in Fig. 1. Here, MED architecture has been
designed to process CH/CSH matrix of the size 8 × 8 (i.e., M

∈ C8×8) such that it generates 16 × 16 real-symmetric S16×16

matrix. Thus, it becomes suitable input for the subsequent
ECR to process real-symmetric A16×16 matrix, as discussed
earlier in Section III-B. At the input side, all 64 elements
of M = [mr + i · mi] ∈ C8×8 CH or CSH matrix are
first fed to MED where each element has been quantized
with 64-bit such that 32 MSBs represent its real part and
rest 32 least-significant-bits (LSBs) denote the imaginary part,
referring line-1 in Algorithm 3. As shown in Fig. 6, φ control-
signal reconfigures MED to convert input complex-matrix
M8×8 to either real-symmetric S16×16

CH or S16×16
CSH matrices,

referring lines 2−6 in Algorithm 3. Further, S16×16
CH/CSH matrix

is equated to A16×16 matrix whose upper-triangular elements
are fed to ECR, as illustrated in Fig. 6. Here, ECR processes
these matrix-elements based on operation that is presented
in Section III-B to generate eigenvalues and eigenvectors of
CH (i.e., SCH) or CSH (i.e., SCSH) matrix, as illustrated by
lines 9−10 of Algorithm 3. These eigenvalues are generated
in the repeated format as � = diag{λ1, λ1, λ2, λ2, . . . , λ8,
λ8}, without losing the precision. In addition, aforementioned
design can also be reconfigured for the RSS matrix by
assigning a zero matrix mi (i.e., mi = On×n) for the input
M = [mr + i · mi] ∈ Cn×n matrix.

The proposed micro-architecture of MED is also shown in
Fig. 6 which is a multiplexer network that transforms complex
M8×8 matrix into real-symmetric upper-triangular S16×16

CH/CSH

matrix. Considering M8×8 matrix of 64 elements where each
complex element is mi j = mr

i j + i · mi
i j such that mr

i j and mi
i j

are real and imaginary parts, respectively. Suggested MED
architecture transforms these 64 complex elements (each of
64 bit) into 136 upper-triangular real-elements of S16×16 matrix
which is equivalent to upper-triangular real-symmetric A16×16

matrix, as illustrated by line-7 in Algorithm 3. Based on
φ value, such transformation has been performed with two
patterns for CH and CSH matrices. In the proposed MED
architecture, row-1 elements of S16×16

CSH and S16×16
CH matrices

are multiplexed via series of multiplexers in the first layer,
as shown in Fig. 6. It also shows that the inputs of all 2:1
multiplexers are connected with the elements from respective
rows of S16×16

CSH and S16×16
CH matrices upto eight rows. Remaining

elements from last eight rows of both SCH and SCSH matrices
are the replicated versions of their upper-triangular elements.
Therefore, these elements in MED architecture are obtained by
tapping the outputs of selected 2:1 multiplexers, as presented
in Fig. 6. Consecutively, all elements of the upper triangular
A16×16 matrix (i.e., equivalent to S16×16 matrix) from MED are
fed to ECR that computes eigenvalues (�) and eigenvectors
(W) of the M8×8 matrix, referring Fig. 6. Generally, to con-
nect all the rows of SCH and SCSH matrices, the proposed
reconfigurable architecture requires n(3n + 1)/2 number of
2:1-sized multiplexers.

V. PERFORMANCE ANALYSES, HARDWARE

IMPLEMENTATION, COMPARISONS,
AND COMPLEXITY ANALYSES

A. Performance Analyses
To evaluate the performance of proposed algorithm based

on parallel Jacobi method and its corresponding architecture,

Fig. 7. Error analysis between the eigenvalues computed by proposed
architecture and conventional simulation of real-symmetric 16 × 16 matrix
with respect to different sweep values.

there are three configuration parameters that must be analyzed
for numerical precision: number of sweeps Ns , bit width N ,
and CORDIC-period Tc. To begin with, an experimental error
analysis that determines the Ns value to obtain adequate results
(i.e., magnitudes of eigenvalues) from the proposed architec-
ture has been carried out. Here, error percentage is computed
between the Q2.30 fixed-point eigenvalues (�̂i) from FPGA
implementation of the proposed architecture and floating-point
eigenvalues (�i) obtain from the extensive simulations (i.e.,
using the standard eig function in MATLAB tool). Each error
percentage (E) for single Ns value has been obtained for
multiple 16 × 16 real-symmetric random matrices as

E =
(

1

n

n∑
i=1

∣∣∣∣ �̂i − �i

�i

∣∣∣∣
)

× 100%. (15)

Since the error percentages of eigenvalues and eigenvectors
are equivalent, this work presents error analysis of the former
only, as illustrated in Fig. 7. It shows that the error percentage
of eigenvalues from n = 16 real-symmetric matrices alleviates
with the increasing value of Ns and the error eventually
saturates beyond Ns = 3. Hence, this value of sweep delivers
adequately accurate magnitudes of eigenvalues and eigenvec-
tors from our design. Similar error analyses for other three
input matrices: CH, CSH, and RSS matrices, for the size
of n = 8 have been carried out where Ns = 3 delivered
sufficiently accurate results.

As discussed earlier in lines 23−24 and line-25 of
Algorithm 1 from Section III-A, double rotation for eigen-
values computation and single rotation for eigenvectors
calculation, respectively, are necessary operations. In the pro-
posed architecture, these information are calculated by EECB
(using U-MAC and LO-MAC units), as shown in Figs. 3 and 4,
respectively. Primary operations in these MAC units are mul-
tiplication and addition. In every kth rotation, such multipli-
cation doubles the bit width of its output. Thereby, truncation
and rounding of the LSBs of such multiplication outputs are
necessary to alleviate the proliferation of hardware required
by these multipliers. However, these operations degrade the
accuracy of results which is directly proportional to the N
bit-width value. Hence, it is important to analyze the error
percentages with increasing N values of the input elements for
various matrices supported by the proposed architecture for an
adequate number of sweeps Ns = 3, as presented in Fig. 7.
Hence, this article presents average truncation and rounding
errors of the proposed VLSI architecture for computing the
eigenvalues of real-symmetric, CH, CSH, and RSS matrices
when the bit-width N ranges from 16 to 32 bit, as shown
in Fig. 8. Aforementioned average error = (1/φ)

∑φ
j=1E j for

Authorized licensed use limited to: Indian Institute Of Technology (IIT) Mandi. Downloaded on May 27,2022 at 11:31:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 8. Average truncation and rounding errors for computing eigenvalues
of (a) real-symmetric, (b) CH, (c) CSH, and (d) RSS matrices for varying bit
widths of input matrix elements and φ = 15.

Fig. 9. Analysis of various latencies of the proposed architecture for different
input matrix sizes while computing eigenvalues of real-symmetric matrix.

φ different real-symmetric matrices and E is presented in
(15). Such analyses show that average rounding and truncation
errors diminish sharply when the N value is increased from
16- to 20-bit. These errors remain constant beyond N =
20 bit, as shown in Fig. 8. Therefore, for better accuracy and
fair comparison with the state-of-the-art implementation [18],
N = 32 bit has been considered for the design of the proposed
architecture. It is to be noted that the error results shown in
Fig. 8 are obtained for n = 16 size of real-symmetric matrix
and n = 8 size for other CH, CSH, and RSS matrices.

On the other side, latency (L) of the proposed design is pro-
portional to the order (n ×n) of input matrices, referring (14).
Therefore, analysis of L values (in number of clock cycles)
for different n values of real-symmetric input matrix for Ns =
3 sweeps and N = 32 bit is shown in Fig. 9. It illustrates that
the proposed design consumes L = 1620 clock cycles while
processing the real-symmetric matrix of order n = 16. Since
the MED micro-architecture is purely combinational design,
it does not consume any extra clock cycle. Therefore, the
proposed reconfigurable architecture also requires 1620 clock
cycles to compute eigenvalues and eigenvectors of CH, CSH,
and RSS matrices of the order n = 8.

B. FPGA Implementations and ASIC Designs
In this article, the proposed stand-alone and reconfigurable

VLSI-architectures for computing eigenvalues and eigenvec-
tors of real-symmetric, CH, CSH, and RSS matrices have been
simulated as well as synthesized using Xilinx Vivado-2017.1
design-suite. For the real-symmetric matrix, the suggested

Algorithm-1 has been simulated using MATLAB-2018a sim-
ulation platform on a host system. Subsequently, the proposed
architectures are RTL-coded and their gate-level netlists
are placed-and-routed and hardware-implemented on Virtex-7
evaluation FPGA-board. As a result, Table II lists the resource
utilization of our designs where the input data-bus is 32-bit
fixed-point represented in Q2.30 format. Thus, all input data
must be scaled between −1 and 1 to alleviate quantization
error.

Critical (longest) path of the proposed architecture lies in
the U-MAC unit, highlighted in Fig. 4(a), such that its com-
binational delay is given as ∂UMAC = (∂2:1MUXV2 + ∂4:1MUX1 +
∂× + ∂+) where ∂2:1MUXV2, ∂4:1MUX1, ∂× and ∂+ represent
the delays of 2:1 multiplexer, 4:1 multiplexer, multiplier, and
adder, respectively. Hence, expression for the critical path
delay of our architecture is

∂crit = tcq,REGY + ∂UMAC + tsu,REG1 (16)

where tcq,REGY and tsu,REG1 denote clock-to-Q delay of REG-Y
register and setup-time of REG-1 register, respectively, in the
U-MAC unit from Fig. 4(a). Therefore, static timing analysis
of the proposed design for processing input-matrix of the order
n = 8 indicates that it operates at a maximum clock frequency
fmax = (1/∂crit) of 172.75 MHz. It is to be noted that one-
rotation (Tort) and total-converge (Ttot) times (in second) for
the proposed architectures are expressed as

Tort = (Tc + 4) × 1

fmax
& Ttot = Tort × (n − 1) × Ns (17)

respectively. As discussed earlier, Tc is the total number of
clock cycles consumed by one CorRB architecture and the
number of CORDIC iterations performed by such CorRB
is equivalent to the bit-width N of input matrix elements.
Therefore, Tc value equals 32 clock cycles in our design where
the input has a bit-width N of 32 bit. Here, (n − 1) is the
number of rotations in each sweep and Ns is the total number
of sweeps. An optimum Ns value is 3 for the matrix size
of n = 16, based on the analysis presented in Fig. 9. Using
aforementioned design parameters, the proposed architecture
delivers Tort of 0.208 μs and Ttot of 9.377 μs for computing
eigenvalues and eigenvectors of real-symmetric input matrix.

For the other three matrices: CH, CSH, and RSS, suggested
reconfigurable architecture presented in Fig. 6 has been hard-
ware implemented on same FPGA platform and its imple-
mentation results are presented in Table II. This design also
possesses the same critical path delay, as expressed in (16),
and operates at the maximum clock frequency of 172.75 MHz.
On the other hand, each complex-valued input matrix function
has been represented as a 64-bit value (32 bit each for real and
imaginary parts). As shown in Fig. 6, the MED architecture
converts 64-bit input elements into 32-bit values, as well as
the matrix range n to 2n. As a result, n and Tc are replaced
by 2n and Tc = N/2, respectively, in (17). Thus, Tc equals
64/2 clock cycles and Tort is 0.208 μs. The suggested recon-
figurable architecture processes n = 8 sized input matrices
and therefore, Ttot = 9.377 μs for n = 2 × 8 size. On the
other hand, both the proposed stand-alone and reconfigurable
architectures that compute eigenvalues and eigenvector of
real-symmetric and CH/CSH/RSS matrices, respectively, are
ASIC synthesized as well as post-layout simulated in UMC
90-nm CMOS process using the standard electronic-design-
automation (EDA) tools. Thus, the implementation results
obtained from this ASIC-design process are presented in

Authorized licensed use limited to: Indian Institute Of Technology (IIT) Mandi. Downloaded on May 27,2022 at 11:31:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHARMA et al.: LOW-LATENCY AND RECONFIGURABLE VLSI-ARCHITECTURES 11

TABLE II

COMPARISON OF PROPOSED ARCHITECTURE WITH PRIOR REPORTED IMPLEMENTATIONS

TABLE III

ASIC SYNTHESIS AND POST-LAYOUT SIMULATION RESULTS OF

THE PROPOSED ARCHITECTURES

Table III where our designs are capable of delivering a latency
of 16 μs, while operating at a maximum clock frequency
of 100 MHz with the supply voltage of 0.9 V.

C. Hardware Prototyping and Functional Validation
This work presents hardware prototyping of the pro-

posed ECR architecture in Zynq Ultrascale+ ZCU102 eval-
uation FPGA board (xczu9eg-ffvb1156-2-i). It computes
eigenvalues of the real-symmetric (A16×16) matrix of order
n = 16. Real-world snapshot and schematic representation
of the test setup used in this work have been illustrated
in Fig. 10(a) and (b), respectively. Here, 136 upper-triangular
elements (each of 32-bit) of A16×16 matrix are the test vectors,
generated by MATLAB environment in the host computer,
and they are first stored in block random access-memory
(BRAM) of FPGA via universal serial bus (USB). These stored
test-vectors of 136 × 32-bit BRAM are transferred to the
ECR FPGA-core via on-board parallel buses that processes

Fig. 10. (a) Real-world and (b) detail schematic of the test setup for
the validation of proposed hardware prototype. (c) Snapshot of the output
waveform containing the measured output eigenvalues and latency count of
our design.

them to generate the eigenvalues of A16×16 matrix. Con-
secutively, using the Vivado in-built integrated-logic-analyzer
(ILA), these output eigenvalues and the latency L (i.e., count
output from on-board implemented-counter) are transferred

Authorized licensed use limited to: Indian Institute Of Technology (IIT) Mandi. Downloaded on May 27,2022 at 11:31:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 11. Comparative analysis of latency (Norc) with respect to scaling bit-
width (N) values of proposed implementation with the reported ones.

to host computer via USB to be displayed on its screen,
as shown in Fig. 10. Note that the system frequency of
Zynq Ultrascale+ ZCU102-FPGA board is 300 MHz and our
hardware prototype can be operated up to 172.25 MHz of max-
imum clock frequency for the validation. Hence, we employed
a frequency divider on FPGA-board that divides the frequency
of system clock by two to generate an operating clock signal
of 150 MHz that is routed to ILA core, BRAM, and the
proposed ECR FPGA-core, as shown in Fig. 10(b). Two
of the on-board FPGA switches (SW1 and SW2) are used
for generating enable (En) and reset (Rst) signals for the
proposed design. Here, En switch initiates the process of
transferring the BRAM data (i.e., test-vectors) to the ECR
FPGA-core and simultaneously starts the counter that tracks
L value of the hardware prototype. Eventually, the snapshot
of ILA screen (from host computer) that shows the output
waveform of hardware-generated eigenvalues λ1, λ2, . . . , λ16
has been presented in Fig. 10(c). In comparison with the
simulated values, the eigenvalues of our hardware prototype
incurs an error of 0.0106%. Additionally, Fig. 10(c) presents
the latency value of 1620 clock cycles via 16-bit count
value. Finally, aforementioned process clearly illustrates the
functional validation of proposed design in FPGA platform
with minimal error, and subsequently demonstrates its lower
latency requirement.

D. Comparisons and Discussion
Implementation results of the proposed stand-alone and

reconfigurable VLSI-architectures are compared with the
reported works from literature, as presented in Table II.
It shows that the proposed design for a real-symmetric matrix
consumes the least number of clock cycles for one rotation
(Norc) and latency (L), compared to the state-of-the-art imple-
mentations from [15], [18]. For n = 8 sized input-matrix
and the input bit-width N = 32 bit, suggested architectures
are capable of computing both eigenvalues and eigenvectors.
However, both (i.e., eigenvalues and eigenvectors) and only
eigenvalues are computed for input-matrix of order n =
8 in [18] (for N = 32 bit) and [15] (for N = 16 bit),
respectively. Furthermore, both eigenvalues and eigenvectors
are computed in [14] for n = 16 sized input-matrix. In addi-
tion, error percentage of our design is 89.4% better than
the contemporary implementation of [18] (both are 32-bit
quantized designs), and lesser than the errors incurred by other
related works [14], [15], [20], as shown in Table II.

On the other hand, we proposed a reconfigurable architec-
ture for processing CH, CSH, RSS input-matrices, as shown in
Fig. 6. In this design, Norc has been alleviated by 4× compared
to the reported implementation by Parrado et al. [20] which

uses complex arithmetic equations to calculate eigenvalues
using only the CH for n = 10 sized matrix-dimension.
Unlike, we use only real arithmetic calculations to generate
eigenvalues and eigenvectors of CH, CSH, and RSS matrices
which is less complex in terms of hardware. However, area
utilizations of the proposed architectures for n = 8 sized
real-symmetric matrix and n = 8 sized CH, CSH, and RSS
matrices are moderate compared to reported works. Addition-
ally, we present the analysis of Norc values of proposed and
reported implementations for increasing N values, as shown in
Fig. 11. It clearly shows that our design is scalable with respect
to delay and the proposed architecture delivers 43.75% lower
delay for N = 32 bit input matrix elements compared to the
state-of-the-art implementation [18]. In nutshell, the suggested
architecture is reconfigurable for computing eigenvalues and
eigenvectors of real-symmetric, CH, CSH, and RSS matrices,
while incurring minimal error and consuming lowest latency
that makes our design suitable for high-speed applications.

Apart from the aforementioned CORDIC-based imple-
mentations, there are other eigenvalues and eigenvector
computation methods based on Jacobi method, without
using the CORDIC algorithm, like the approximation Jacobi
method (AJM) [25], [26] and the algebraic Jacobi method
(ALJM) [27]. Here, the AJM has almost linear convergence
and its computations are performed using the shift-and-add
operations [25], [26]. Unlike, ALJM with almost quadratic
convergence uses simplification, polynomial approximation,
and Newton–Raphson method to perform the Jacobi rota-
tion for the computation of eigenvalues [27]. Our article
presents the comparison of the proposed stand-alone archi-
tecture (that computes eigenvalues and eigenvector of real-
symmetric matrix) with the reported architectures based on
AJM and ALJM from [26] and [27], respectively, in Table IV.
It shows that the suggested design consumes lesser number of
clock cycles (i.e., latency L) in comparison with the reported
implementations from [26], [27]. In addition, our architecture
is capable of calculating both eigenvalues and eigenvectors.
Similarly, [27] computes both these values; however, [26]
calculates only the eigenvalues. With the same bit quantization,
proposed design delivers better error percentage than both the
reported works [27] and [26], as shown in Table IV. Compared
to the state-of-the-art work [27], the proposed design has
acceptable and moderate hardware consumption. Note that
our design is memoryless whereas the reported work of [27]
requires 9 kB of BRAM.

E. Hardware-Complexity Analyses
For computing eigenvalues and/or eigenvectors for the input

matrix of n × n order, this article presents the hardware
complexity analysis of the proposed architectures with the con-
ventional parallel Jacobi method [13] as well as other reported
works in Table V. In the proposed Algorithm 1, there are three
primary parts: step-1 calculates Rk matrix {lines 11−22},
step-2 performs a double rotation {lines 23 and 24}, and
step-3 computes eigenvalues and eigenvectors {lines 28 and
29}. Hardware complexity of the conventional parallel Jacobi
method [13] is estimated by assuming that the Rk matrix is
obtained using adders, subtractors, CORDIC processors and
read-only-memories (ROMs), as shown in Table V. Subse-
quently, its double rotation and eigenvector calculation are
performed using multipliers, adders, and subtractors. Table V
shows that the conventional parallel Jacobi method has total
computational hardware complexity of 8·n2+2·n with memory

Authorized licensed use limited to: Indian Institute Of Technology (IIT) Mandi. Downloaded on May 27,2022 at 11:31:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHARMA et al.: LOW-LATENCY AND RECONFIGURABLE VLSI-ARCHITECTURES 13

TABLE V

HARDWARE COMPLEXITY COMPARISON OF PROPOSED VLSI-ARCHITECTURES WITH REPORTED WORKS

TABLE IV

COMPARISON OF CORDIC-BASED PROPOSED ARCHITECTURE AND PRIOR

REPORTED DESIGNS WITHOUT USING CORDIC

requirement of n number of N×N-bit ROMs where N is input
bit width. To compute only eigenvalues in [18], its architecture
comprises of two processing units: diagonal and off-diagonal
processors. Here, Rk matrix and the diagonal elements of dou-
ble rotation are determined using n/2 number of such diagonal
processors. Hence, the hardware complexity is calculated using
n subtractors, n adders, n CORDICs, and n/2 multipliers,
as presented in Table V. In n(n−2)/8 number of off-diagonal
processors, an off-diagonal element is calculated using n(n −
2)/2 ROMs, n(n − 2)/2 adders, n(n − 2)/2 subtractors,
n(n − 2)/4 CORDICs, and n(n − 2)/2 multipliers. Similarly,
the designs presented in [15] and [14] compute eigenvalues
and eigenvectors using diagonal and off-diagonal processors
that consume CORDICs, adders/subtractors, multipliers and
ROMs, as listed in Table V. It shows that the proposed
architectures have lower hardware complexity than the conven-
tional parallel Jacobi method [13] and higher computational
hardware complexity than [14], [15], [18]. Nevertheless, our

designs are memory less that further alleviates the hardware
requirement. In general, an overall computational complex-
ity of the proposed stand-alone architecture for computing
eigenvalues and eigenvectors of n ordered input matrix has
two parts: space and time complexities. Here, complete space
complexity S(n) = κ(n) + ϑ(n) + ω(n) where κ(n) = n2

represents multiplier complexity and ϑ(n) = n2 + 5 × n
is the adder/subtractor complexity. Similarly, the multiplexer
complexity is given by ω(n) = n:1(n) + 4:1(n) + 2:1(n)
such that n:1(n) = 5n(n + 1)/2, 4:1(n) = 2n2, and
2:1(n) = 10n2 +n denote the space complexities of (n−1):1,
4:1 and 2:1 multiplexers, respectively. Second, an overall time-
complexity is given as T(n) = O{log2 n × (n − 1) × (N + 4)}
where N + 4 is the number of clock cycles consumed for
single rotation with N bit-width input matrix, and log2 n is the
number of sweeps such that each sweep comprises of (n − 1)
rotations. On the other side, eigenvalues for the CH matrix are
obtained using the complex arithmetic in [20]. Table V shows
that the computational hardware complexity of [20] is lower
than the proposed reconfigurable architecture. However, our
reconfigurable architecture is capable of computing eigenval-
ues and eigenvector of CH, CSH, and RSS matrices using the
real arithmetic, without the memory requirement. Therefore,
an overall time complexity of the proposed reconfigurable
architecture can be derived by replacing n with 2n in T(n)
and is given by Trecon(n) = T(n→2n) = O{log2 2n ×
(2n − 1) × (N + 4)}. Eventually, the space complexity of
our reconfigurable architecture is expressed as Srecon(n) =
S(n→2n) + n(3n + 1)/2 where n(3n + 1)/2 represents the
additional space complexity of 2:1 multiplexers used in MED
architecture, as discussed earlier in Section IV-B.

VI. CONCLUSION

This work presented lower latency and reconfigurable algo-
rithms for the computation of eigenvalues and eigenvectors of
wide variety of matrices like real-symmetric, CH, CSH, and
RSS matrices. Comprehensive explanations of stand-alone and
reconfigurable VLSI architectures for such computations were

Authorized licensed use limited to: Indian Institute Of Technology (IIT) Mandi. Downloaded on May 27,2022 at 11:31:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

presented in our article. Detail error analysis and implemen-
tation results showed that the proposed algorithms incurred
minimal error and lowest latency. Thus, these designs are
extremely useful for various real-time applications. Our article
illustrated the complete process of transforming a complex
algorithm for eigenvalues and eigenvectors computation into
implementation-friendly (i.e., low-latency and reconfigurable)
algorithms, transforming them into efficient VLSI architec-
tures and their FPGA implementations.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Jun. 1948.

[2] S. Deshmukh and A. Dubey, “Improved covariance matrix estimation
with an application in portfolio optimization,” IEEE Signal Process.
Lett., vol. 27, pp. 985–989, 2020.

[3] M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
Mar. 1991, pp. 586–591.

[4] R.-L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, “Face detection in
color images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5,
pp. 696–706, May 2002.

[5] Y. Xie, C. Peng, X. Jiang, and S. Ouyang, “Hardware design and imple-
mentation of DOA estimation algorithms for spherical array antennas,”
in Proc. IEEE Int. Conf. Signal Process., Commun. Comput. (ICSPCC),
Aug. 2014, pp. 219–223.

[6] C. Zhou, Y. Gu, S. He, and Z. Shi, “A robust and efficient algorithm
for coprime array adaptive beamforming,” IEEE Trans. Veh. Technol.,
vol. 67, no. 2, pp. 1099–1112, Feb. 2018.

[7] C. Zhou, Y. Gu, Z. Shi, and Y. D. Zhang, “Off-grid direction-of-arrival
estimation using coprime array interpolation,” IEEE Signal Process.
Lett., vol. 25, no. 11, pp. 1710–1714, Nov. 2018.

[8] K.-C. Huarng and C.-C. Yeh, “A unitary transformation method for
angle-of-arrival estimation,” IEEE Trans. Signal Process., vol. 39, no. 4,
pp. 975–977, Apr. 1991.

[9] C. F. van Loan and G. H. Golub, Matrix Computations. vol. 52.
Baltimore, MD, USA: Johns Hopkins Univ. Press, 1983.

[10] J. Demmel and K. Veselić, “Jacobi’s method is more accurate than QR,”
SIAM J. Matrix Anal. Appl., vol. 13, no. 4, pp. 1204–1245, 1992.

[11] S. Pal, S. Pathak, and S. Rajasekaran, “On speeding-up parallel Jacobi
iterations for SVDs,” in Proc. IEEE 18th Int. Conf. High Perform.
Comput. Commun.; IEEE 14th Int. Conf. Smart City; IEEE 2nd Int.
Conf. Data Sci. Syst. (HPCC/SmartCity/DSS), Dec. 2016, pp. 9–16.

[12] R. P. Brent and F. T. Luk, “The solution of singular-value and symmetric
eigenvalue problems on multiprocessor arrays,” SIAM J. Sci. Stat.
Comput., vol. 6, no. 1, pp. 69–84, 1985.

[13] A. H. Sameh, “On Jacobi and Jacobi-like algorithms for a parallel
computer,” Math. Comput., vol. 25, no. 115, pp. 579–590, Jan. 1971.

[14] I. Bravo, P. Jimenez, M. Mazo, J. L. Lazaro, and A. Gardel, “Imple-
mentation in FPGAs of Jacobi method to solve the eigenvalue and
eigenvector problem,” in Proc. Int. Conf. Field Program. Logic Appl.,
Aug. 2006, pp. 1–4.

[15] T. Wang and P. Wei, “Hardware efficient architectures of improved
Jacobi method to solve the eigen problem,” in Proc. 2nd Int. Conf.
Comput. Eng. Technol., vol. 6, 2010, pp. 22–25.

[16] A. Ahmedsaid, A. Amira, and A. Bouridane, “Improved SVD systolic
array and implementation on FPGA,” in Proc. IEEE Int. Conf. Field-
Program. Technol. (FPT), Dec. 2003, pp. 35–42.

[17] S. Zhang, X. Tian, C. Xiong, J. Tian, and D. Ming, “Fast implementation
for the singular value and eigenvalue decomposition based on FPGA,”
Chin. J. Electron., vol. 26, no. 1, pp. 132–136, Jan. 2017.

[18] Z. Shi, Q. He, and Y. Liu, “Accelerating parallel Jacobi method for
matrix eigenvalue computation in DOA estimation algorithm,” IEEE
Trans. Veh. Technol., vol. 69, no. 6, pp. 6275–6285, Jun. 2020.

[19] R. Andraka, “A survey of CORDIC algorithms for FPGA based com-
puters,” in Proc. ACM/SIGDA 6th Int. Symp. Field Program. Gate
Arrays (FPGA), 1998, pp. 191–200.

[20] A. Lopez-Parrado and J. Velasco-Medina, “Efficient systolic architecture
for Hermitian eigenvalue problem,” in Proc. IEEE 4th Colombian
Workshop Circuits Syst. (CWCAS), Nov. 2012, pp. 1–6.

[21] G. L. Haviland and A. A. Tuszynski, “A CORDIC arithmetic processor
chip,” IEEE J. Solid-State Circuits, vol. 15, no. 1, pp. 4–15, Feb. 1980.

[22] J. H. Wilkinson, The Algebraic Eigenvalue Problem. vol. 87. Oxford,
U.K.: Clarendon Press, 1965.

[23] C. F. van Loan and H. G. Golub, Matrix Computations. Baltimore, MD,
USA: Johns Hopkins Univ. Press, 1983.

[24] K. Kuang-Chi Lee and C.-E. Chen, “An eigen-based approach for
enhancing matrix inversion approximation in massive MIMO systems,”
IEEE Trans. Veh. Technol., vol. 66, no. 6, pp. 5480–5484, Jun. 2017.

[25] J. Gotze, S. Paul, and M. Sauer, “An efficient Jacobi-like algorithm for
parallel eigenvalue computation,” IEEE Trans. Comput., vol. 42, no. 9,
pp. 1058–1065, Sep. 1993.

[26] A. Ibrahim, M. Valle, L. Noli, and H. Chible, “Assessment of FPGA
implementations of one sided Jacobi algorithm for singular value decom-
position,” in Proc. IEEE Comput. Soc. Annu. Symp. (VLSI), Jul. 2015,
pp. 56–61.

[27] M. Sajjad, M. Z. Yusoff, N. Yahya, and A. S. Haider, “An efficient
VLSI architecture for FastICA by using the algebraic Jacobi method for
EVD,” IEEE Access, vol. 9, pp. 58287–58305, 2021.

Rahul Sharma (Graduate Student Member, IEEE)
received the Bachelor of Technology degree in
electronics and communication engineering from
Rajasthan Technical University, Kota, India, in 2017.
He is currently working toward the M.S. degree (by
research) at the School of Computing and Electrical
Engineering, IIT Mandi, Mandi, India.

His research interest focuses on developing
efficient VLSI architectures and implementation-
friendly algorithms for the spectrum sensing process
of cognitive radio technology.

Rahul Shrestha (Senior Member, IEEE) received
the Bachelor of Engineering degree in telecommu-
nication engineering from the B. M. S. College
of Engineering, Bengaluru, India, in 2008, and the
Ph.D. degree in electronics and electrical engineer-
ing from IIT Guwahati, Guwahati, India, in 2014.

From 2014 to 2016, he worked as an Assistant
Professor with the Center for VLSI and Embed-
ded Systems Technologies, International Institute
of Information Technology Hyderabad, Hyderabad,
India. Since 2016, he has been holding the position

of an Assistant Professor with the School of Computing and Electrical Engi-
neering, IIT Mandi, Mandi, India. In 2018, he served as a Visiting Assistant
Professor with Blekinge Institute of Technology, Karlskrona, Sweden, under
the European Erasmus+ International Credit Mobility Program. His primary
research interest is designing efficient algorithms as well as digital VLSI
architectures and its transformation into ASIC-chip or field-programmable
gate array (FPGA)-prototype for the real-world applications of signal process-
ing, wireless communication, deep neural networks, forward-error-correction
channel decoders, cognitive radio, and cooperative spectrum sensing.

Satinder K. Sharma (Senior Member, IEEE)
received the M.S. degree in physics (electronic sci-
ence) from Himachal Pradesh University, Shimla,
India, in 2002, and the Ph.D. degree from the
Department of Electronic Science, Kurukshetra Uni-
versity, Kurukshetra, India, in 2007.

From 2007 to 2010, he was a Postdoctoral
Fellow with the DST Unit on Nanoscience and
Nanotechnology, Department of chemistry (CHE),
IIT Kanpur, Kanpur, India. From 2010 to 2012,
he worked as a Faculty with the Electronics and

Microelectronics Division, Indian Institute of Information Technology, Alla-
habad, India. Since 2012, he has been working as a Faculty with the School
of Computing and Electrical Engineering, IIT Mandi, Mandi, India. In 2015,
he worked as a Visiting Faculty with the Institute of Semiconductor Engi-
neering, University of Stuttgart, Stuttgart, Germany. He has published more
than 92 publications in the international peer-reviewed journals, and presented
several invited talks and research papers at more than 65 international and
national conferences. He holds eight submitted patents. His current research
interests include microelectronics circuits and systems, CMOS memories
and 2-D-FETs fabrication and characterization, MEMS/nanoelectromechanical
system (NEMS), sensors, and next generation lithography.

Authorized licensed use limited to: Indian Institute Of Technology (IIT) Mandi. Downloaded on May 27,2022 at 11:31:51 UTC from IEEE Xplore. Restrictions apply.

