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Abstract

Finding good solutions for NP Hard problems is a highly researched area, as most of these

problems have many real life applications. Bio-inspired meta-heuristics like Genetic Al-

gorithm and Ant Colony Optimization for these NP Hard optimization problems like the

Travelling Salesman Problem and Vertex Cover have proved to provide much better results

in reasonable amount as compared to algorithms based on other techniques.

In this project, we focus mainly on Firefly Algorithm which is one of the less studied

bio-inspired algorithm and apply the algorithm on some of these optimization problems and

thereby analyze the performance by comparing the results with other well known algorithms.

We first try the algorithm on an unconstrained continuous optimization function to gain an

understanding of the algorithm and it’s parameters, and later move on to the standard TSP

(Travelling Salesman Problem) and modify the firefly algorithm to incorporate the discrete

nature of the TSP and compare the results with an implementation of the well known Ant

Colony Optimization Algorithm. Finally, we study the TDMA (Time Division Multiple

Access) Scheduling Problem which can be considered as a modified version of the standard

Graph Coloring problem and compare the performance of our implementation of the firefly

algorithm with an implementation of the Maximum Independent Set based approach for the

problem.

Keywords: NP Hard Problems, Bio-inspired meta-heuristics, Genetic Algorithm, Ant

Colony Optimization, Travelling Salesman Problem, Vertex Cover, Firefly Algorithm, Opti-

mization Problems, TDMA Scheduling, Maximum Independent Set
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Chapter 1

Introduction

Optimization problems are the problems involving maximizing or minimizing some func-

tion relative to some set, often representing a range of choices available in a certain situa-

tion. The function allows comparison of the different choices for determining which might

be best. The scope of this project is restricted to a specific sub-class of optimization prob-

lems that have been a topic of research for the past few decades namely NP hard problems.

Some common examples of NP hard problems include Vertex cover (finding minimum sized

subset of vertices in a graph such that at-least one of the end points of every edge belongs

to the subset) and Independent set (finding the maximum sized subset of vertices in a graph

such that no edge exists between any 2 vertices in the subset). NP hard problems are an

important area of research as many of the real world optimization scenarios can directly be

mapped to them, yet no polynomial time algorithm is known to exist to solve these prob-

lems. Since, exact optimal solution to these set of problems can not be found in reasonable

amount of time, computer science researchers have come up with certain heuristics that can

be used to find near optimal answers.

Nature-inspired meta heuristics are currently among the most powerful tools for op-

timization of many NP-hard combinatorial problems. These methods are based on existing

mechanisms of a biological phenomenon of nature. Both simplicity and efficiency have at-

tracted researchers towards these natural phenomenon, resulting in some popular algorithms.

The project aims at exploring one of the lesser explored nature inspired algorithm [1],

namely the firefly algorithm and thereby use it to solve some real world optimization prob-
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lems.

Several real-world applications require distributed approaches for finding near optimal

values. Also, there are problems that can be casted as multi-objective optimization prob-

lems. Many of these problems are difficult to solve using traditional optimization tech-

niques. However, bio inspired algorithms can be used to obtain a pragmatic solution within

reasonable time limit. In this project, we will explore the efficiency of firefly algorithm over

other bio inspired solutions for solving some optimization problems.

1.1 Continuous Function

The first part of the project involves trying out the firefly algorithm on a simple continuous

function to get an idea about the performance and parameters involved in the algorithm. The

major objective of this sub-task is to gain familiarity with the algorithm and have a basic

working program of the firefly algorithm which in future can be used as a black box to solve

more complex real life problems later in the project.

1.2 Travelling Salesman Problem

The next part involves the implementation of firefly algorithm for the well known TSP

(Travelling Salesman Problem) [2] problem and comparing the results with some other

bio-inspired algorithm. We use Ant Colony Optimization algorithm for the comparison as

it is known to produce better results than most other algorithms for this problem.

One of the most widely studied and researched algorithmic optimization problem in the

field of computer science and operational research is the Travelling Salesman Problem. The

problem is that of a salesman and a given set of cities he needs to visit. Each city is connected

to every other city by a link. Each of those links between the cities have some cost attached

to it. The cost describes how difficult it is to traverse this edge on the graph, and may be

given, for example, by the length of the link. The main aim of the salesman is to keep the

total cost of his journey as low as possible.

Formally, given n cities, and an n∗n cost matrix C where Cij denotes the cost between the
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i-th and the j-th city, find a permutation of the cities, determining a minimum distance circuit

passing through each vertex once and only once. Such a circuit is known as a tour or Hamil-

tonian cycle. i.e., finding a permutation A of i, 1 ≤ i ≤ n such that
∑n−1

j=1 CA[j]A[j+1] + CA[n]A[1]

is minimized.

As an example if we consider the graph shown in Figure 1.1 as the input instance

Fig. 1.1: A graph instance for TSP problem

Table 1.1 shows the cost matrix for the input instance. The optimal tour for this input

instance is 0-1-3-2-0 with a total cost of 80.

City 0 1 2 3
0 0 10 15 20
1 10 0 35 25
2 15 35 0 30
3 20 25 30 0

Table 1.1: Cost Matrix for graph in Figure 1

1.3 TDMA Scheduling for Sensor Networks

The last part of the project involves solving the problem of TDMA (Time Division Multi-

ple Access) scheduling for sensor networks. This is a famous optimization problem in the

4



networking domain. The problem is based on a situation where multiple clients needs to

utilize a same channel for their communication.

TDMA allows for shared transmission medium based on time slots. In TDMA multiple

transmitters can send packets at the same time provided their transmission does not cause

collision of packets. [3]

The TDMA scheduling problem is to determine the minimum number of time slots so

that all the nodes can transmit their packets without causing any loss of packets. The nodes

that conflict with each other are determined by the construction of a conflict which is differ-

ent from the network graph. [4]

1.3.1 3-Coloring

A sub-part to the work on TDMA Scheduling involves the implementation of the firefly

algorithm for the 3-coloring problem [5] which is a specific case for the well known k-

coloring problem [6]. The problem involves coloring each node of an input graph with one

of three colors in such a way that there is no edge in the graph with both the end points

colored with the same color.

Formally, given an undirected, unweighted graph G(V, E), assign each v ∈ V an element

of the set {0, 1, 2}, such that there is no e(a, b) ∈ E such that a and b are assigned the same

element.

For Example, if we consider the graph shown in Figure 1.2, one of the possible color

assignment can be as shown in Table 1.2.

To convert this problem into an optimization problem, we try to minimize the number

of conflicts in the above mentioned assignment wherein a conflict is defined as an edge

e(a, b) ∈ E with a and b having same color assignment.

Node Color
0 0
1 1
2 2
3 1
4 0

Table 1.2: Color Assignment for graph in Figure 1.2
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Fig. 1.2: A graph instance for 3-coloring problem

1.3.2 General Graph Coloring Problem

The next sub-part to the work of TDMA Scheduling involves implementing the firefly algo-

rithm for the general graph coloring problem [7] which involves finding the optimal coloring

in an undirected graph. Just like in the case of 3-coloring, colors have to be assigned to nodes

in such a manner that there is no edge in the graph whose end points share the same color.

In this case, rather than checking whether there exists a 3-coloring in the graph, the problem

involves finding the minimum value of k such that a k-coloring exists in the graph.

Formally, given an undirected, unweighted graph G(V, E), assign each v ∈ V , a color,

such that there is no e(a, b) ∈ E such that a and b are assigned the same element and the

total number of colors used are minimized.

The best possible color assignment for the graph shown in Figure 1.3 is shown in the

Table 1.3. As is evident from the table, the minimum value of k which there exists a k-

coloring is 3.
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Fig. 1.3: A graph instance for graph coloring problem

Node Color
0 1
1 2
2 0
3 2
4 1
5 0
6 0

Table 1.3: Color Assignment for graph in Figure 1.3
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Chapter 2

Background and Related Work

2.1 Background

The goal of an optimization problem is either to minimize or maximize a particular objec-

tive function. The use of randomized algorithms has been propelled by the fact that most of

the optimization problems are very complex.Most of the randomized algorithms are based

on some heuristic information that is extracted from nature.Some of the most common ex-

amples of bio inspired algorithms include Ant Colony Optimization(ACO), Evolutionary

Algorithms(EA) etc. These algorithms have been widely used in optimization problems

pertaining to different domains like computational biology, engineering and telecommuni-

cations. These algorithms have achieved a lot of success when applied to these optimization

problems.

Most of the bio inspired algorithms makes use of the behavior of swarm intelligence.

Swarm intelligence [8] is based on the interaction between the organisms despite having

any central structure governing their movement.These organisms use simple rules dictating

their behaviour. Their behavior is not completely deterministic and also includes a random

component. Despite such simple structure, these interactions lead to the emergence of an

intelligent global behaviour which is not known to any individual organism.

Some examples of swarm intelligent system in nature include ant colonies, birds flock-

ing, bacterial growth etc. Various algorithms have been developed that use swarm intelli-

gence. Example - Ant Colony Optimization [9], Bee Optimization [10], Particle Swarm
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Optimization [11].

Among the various swarm intelligent systems, firefly algorithm [12] has been known to

perform better than most others. The firefly algorithm uses the phenomenon of difference in

the light intensities emanated by the fireflies. This helps the firefly to move towards brighter

and more attractive locations in order to obtain optimal solutions. To avoid convergence at

local optimal values in the solution space, a random component is also added to the move-

ment of the fireflies. The combined effect of both these components namely exploitation

and exploration have been known to produce optimal results reasonably quickly.

From our general knowledge of physics we all know that light intensity, I is inversely

proportional to the squared distance of the distance between the source and the point of

observation. i.e. I ∝ 1/r2 [13]. Also, air absorbs some amount of light as light passes passes

through it. Due to these factors, fireflies can be seen only till a certain distance.

For simplicity, the following simplifying assumptions are made while using the firefly

algorithm: [12]

1. There is no concept of sex within this population of fireflies which allows for every

firefly to get attracted towards every other firefly.

2. The brighter a particular firefly is, more will the other fireflies get attracted to it. The

level of attraction of a firefly towards another firefly reduces with increase in the dis-

tance between them. A firefly will in random directions if there is no firefly more

attractive than this firefly.

3. The value of the objective function is what governs the brightness of a firefly. If the

problem is a maximization function, the value of the objective function can itself be

considered as brightness or a value proportional to it.

2.2 Related Work

Graph Coloring Problem which is an NP Hard Problem is a highly studied problem, and

many researchers have tried to find good solutions for the problem using various classes

of algorithms including constructive heuristics [14], local search heuristics [15], and meta-
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heuristics although most studied among them are the metaheuristics based approaches, since

they are believed to produce the best results.

Previously, Ehsan Salari and Kourosh Eshghi [16], in their paper on Graph coloring in

the year 2008 have provided an Ant Colony Optimization based algorithm for finding the

graph coloring. Also, Vincenzo Cutello, Giuseppe Nicosia, and Mario Pavone [17] have

provided a Hybrid Immune Algorithm with Information Gain for the graph coloring prob-

lem. Another similar research is done by M.Chams, A.Hertz, and D.de Werra [18] in which

they have experimented with simulated annealing based approach for finding solutions to

the problem.

Sinem Coleri Ergen and Pravin Varaiya in two different papers [19] [20] have studied

TDMA scheduling algorithms for Sensor Networks. They have proposed two algorithms for

the problem both of which are based on heuristics.
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Chapter 3

Work Done

As mentioned in the previous sections, we have worked on three different optimization prob-

lems which included an unconstrained continuous function, Travelling Salesman Problem

and the TDMA scheduling problem and implemented the firefly algorithm for each of them

and compared the results with other algorithms. In the following sections we describe in

detail about the work done specific to these problems.

3.1 Continuous Function

We first implemented the basic version of firefly algorithm for a trivial continuous function

and gaining familiarity with the algorithm and the different parameters involved and how

these parameters can be tweaked to produce optimal results in less number of iterations. For

this purpose, f (x1, x2, x2) = −(x2
1+ x2

2+ x2
3) was chosen as the objective function. The reason

for the choice of such a function was the known global optima point, because of which it

becomes easy to get an estimate of the efficiency of the algorithm.

To check the convergence of fireflies, the program was run for different parameters and

the number of fireflies that ended up in the vicinity of the optimal point were recorded. The

results of these experiments can be found in chapter 4, section 4.1.
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3.2 Travelling Salesman Problem

This part of the project involved implementing the firefly for the Traveling Salesman Prob-

lem and comparing the results with the implementation of Ant Colony Optimization. For

this task, it was decided that I will implement the firefly algorithm for TSP and my team-

mate, Rajat was given the responsibility to implement the ACO for the same and then the

results of both were compared.

The mapping of TSP to a problem instance for firefly algorithm caused the following

challenges:

• Representation of the state and intensity measure of fireflies: For this, we decided

to represent the state of a firefly by a permutation of cities, which uniquely determines

a valid solution for the problem instance and the intensity measure of a firefly was

decided to be the inverse of the total cost incurred by the tour corresponding to that

firefly. The motivation behind this was to convert the minimizing problem of TSP

into a maximizing function as the firefly algorithm is designed to achieve states which

correspond to maximum intensity.

• The notion of distance between two fireflies: For this, it was decided to take the

hamming distance between the permutations corresponding to the fireflies as the dis-

tance measure. The hamming distance between two permutations is defined as the

number of positions at which the corresponding values are different. In other words,

it measures the minimum number of substitutions required to change one permutation

into the other. For example, the hamming distance between the permutations 3142

and 3241 is 2 and the numbers marked in bold contribute to the hamming distance.

• Movement of a firefly towards another firefly: For the case when we need to move

the firefly A towards another firefly B, we keep the cities which are in the same po-

sition in the representation of both the fireflies fixed. Further, we generate a random

number x between 2 and the calculated hamming distance and replaced x number of

cities from A by the cities at corresponding positions in B and the remaining cities

were placed randomly.

12



To further improve the exploration of the search space by the algorithm, in each iteration

we generate m different fireflies corresponding to each movement of firefly. In this manner,

we generate k ∗m fireflies after each iteration if we have k fireflies at the start of the iteration

and then we pick the best k out of these fireflies. This introduces a new parameter m into the

algorithm.

After the implementation phase of the algorithm, various parameters involved in the

program namely the number of iterations, number of fireflies, m (number of fireflies to

generate for each movement) and Gamma (light absorption coefficient) were tweaked to

get some idea about the optimal values of the parameters and the results were recorded

for mainly two data-sets from TSPLIB [21]. Further, the results obtained from both the

algorithms, Ant Colony Optimization [9] and Firefly Algorithm were compared. For this

both the programs were for a number of different combinations of parameter values and best

set of values were recorded and compared. These results and the corresponding plots can be

found in Chapter 4.

3.3 TDMA Scheduling Problem

Since the problem instance of TDMA scheduling can be easily mapped to an instance of

graph coloring problem, we first worked on implementing the algorithm for a very restricted

version of graph coloring problem and later generalized for the general coloring problem.

3.3.1 3-Coloring Problem

For this purpose we first define a set of terminologies to be used. We define the set of fireflies

as X where each Xi ∈ X represents a candidate solution i.e. each Xi is an n dimensional vector

where the j-th element, Xi j represents the color assigned to the j-th node in the graph and

takes a value from the set {0,1,2} each of the numbers 0, 1 and 2 representing a different

color. For the purpose of evaluation of a candidate solution Xk, we use a fitness measure as

follows [22]:

Fitness(Xk) = 1 −
con f lict(Xk)

m

13



where m is the total number of edges in the graph and con f lict(Xk) measures the total number

of conflicts in the candidate solution and is mathematically defined as follows:

con f lict(Xk) =
1
2

n∑
i=1

n∑
j=1

con f licti j

Here con f licti j is an indicator variable for each pair of vertices (i, j) which denote

whether or not the pair of vertices (i, j) cause a conflict. Formally,

con f licti j =


1 colori = color j and (i, j) ∈ E

0 otherwise

Since the coloring problem is ultimately to be used to solve an instance of the TDMA

problem, we first convert the input graph into an instance of conflict graph and then find

the coloring assignment on the conflict graph. The conflict graph represents which pair of

edges in the initial graph cannot be used simultaneously, which basically means the pair of

edges which share a common end-point vertex. Formally, corresponding to every edge in

the initial graph, there is a vertex in the conflict graph and corresponding to each pair of

edges e1 and e2 which share a end-point vertex in the initial graph, there is an edge between

the vertices corresponding to e1 and e2 in the conflict graph.

For example, if we consider the input graph shown in Figure 12, the conflict graph will

look something like the one depicted in figure 13. The numbers written along the edges

in the input graph represent the edge number. If we consider edge number 5 in the input

graph, edges which have a common end-point with it are 0, 2, 3 and 4. Therefore, the vertex

numbered 5 in the conflict graph has edges with vertices numbered 0, 2, 3 and 4.

Further, A measure of similarity is used for the purpose of difference between any two

fireflies Xi and X j and is defined as follows: [22]

S imilarityi j = 1 −
H(Xi, X j)

n

14



Fig. 3.1: Input instance for conversion to conflict graph

Here H(Xi, X j) is the hamming distance between the vectors Xi and X j and n is the number

of vertices in the graph. Further, the attractiveness between fireflies Xi and X j is defined as:

β(Xi, X j) = β0e−γS imilarity2
i j

where β0 and γ are constant parameters. With the help of these similarity and attractiveness

measures, the function for movement of a firefly Xi towards X j becomes as follows: [22]

Algorithm 1 Move function for firefly algorithm
Function Move(Xi , X j):

calculate the Similarity(Xi , X j)
calculate the attractiveness beta
for k in [1..n]:

generate a random number r in range [0,1]
if r ≤ beta:

replace Xi[k] with X j[k]
End if

End or

The performance of the firefly algorithm were then compared to those of a greedy algo-

rithm. I worked on the implementation of the firefly variant whereas my group mate, Rajat
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Fig. 3.2: Conflict graph for input graph in Figure 3.1

worked on the implementation of greedy algorithm for the same. The results of performance

comparison can be found in the chapter 4.

3.3.2 General Graph Coloring Problem

This part involved converting an instance of TDMA scheduling problem into an instance of

graph coloring and then implementing the firefly algorithm to come up with a solution for

this graph coloring problem instance. In the general graph coloring problem, we optimize

the number of colors required to color the graph unlike the case of 3-coloring problem where

we were optimizing on the number of conflicting edges in the color assignment. Further,

unlike the case of 3-coloring, the candidate solutions can have any number of colors, due

to which the representation of a candidate solution has to be made more general. Also, the

move function defined for 3-coloring solution can no longer be used in the same way, as now

different candidate solutions can have different number of colors and moving a candidate

solution in the direction of another would mean that the number of colors in the solution

also changes.

To incorporate these requirements, we made several modifications to the algorithm to

make it suitable for this problem

1. Since the fireflies can now have any number of colors, the initial population was gen-

erated in such a manner that different individuals of the population have different

16



number of colors. For this purpose, the number of colors of each candidate was de-

cided by drawing a number from a uniform distribution in the range 2 to n (number of

vertices in the graph).

2. Another major change was made in the fitness function as now the fitness function had

to incorporate both, the number of colors in the solution and the number of conflicting

edges. The new fitness function was taken as the weighted sum of the fitness measures

corresponding to the number of colors the number of conflicts. Formally, the Fitness

of a candidate solution Xk is defined as follows:

Fitness(Xk) = ε ∗Color Fitness(Xk) + δ ∗Con f lict Fitness(Xk)

where ε and δ are parameters and Color Fitness and Conflict Fitness are defined as

follows:

Color Fitness(Xk) = 1 −
Colors(Xk)

n

Con f lict Fitness(Xk) = 1 −
con f lict(Xk)

m

Here, Colors(Xk) denotes the number of colors in the candidate solution Xk, Conflict(Xk)

denotes the number of conflicts in the solution as defined in the previous section, n de-

notes the number of vertices in the conflict graph and m denotes the number of edges

in the conflict graph.

3. Both Alpha step and Beta step also had to be modified to incorporate different num-

ber of colors in different solutions. The movement steps were modified so as to try

and reduce the number of conflicts by modifying those vertices which are causing a

conflict.

I worked on the implementation of the beta step whereas Rajat worked on the alpha

step. Algorithm 2 shows the pseudo code for the beta step which tries to move one firefly

in the direction of other firefly and the extent of the movement is decided by the value of

attractiveness between them. The value of attractiveness between the fireflies is defined by
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the following formula:

Attractiveness(Xi, X j) = β0 ∗ expγ∗similarity(Xi,X j)2

Where, Similarity between the fireflies is defined as follows:

S imilarity(Xi, X j) = 1 −
dist(Xi, X j)

n

Here n is the number of vertices and dist is the hamming distance between the fireflies.

Algorithm 2 Beta Step for movement one firefly in the direction of other
function BETA STEP(firefly to move, firefly brigther, β0, gamma)

attractiveness← Attractiveness(Xi,X j)
conflicts = ∅
for e ∈ E do

u← e.first
v← e.second
if u.color == v.color then

conflict.append(e)
for e ∈ conflict do

r← random no. between 0 and 1.
if r ≤ attractiveness then

node← one end point of e
firefly to move[node]← firefly brigther[node]

Return firefly to move
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Chapter 4

Exerimental Studies and Results

The results of various experiments performed for different sub-tasks during the project have

been presented in the following sections.

4.1 Continuous Function

For the continuous function case, since we know the exact optimal value of the optimization

function, we measure how many fireflies actually end up in the vicinity of the optimal value.

The following graph shown in the figure 4.1 plots fraction of fireflies that end up within

a distance of 0.1 units from the optimal value are plotted against the natural logarithm of

the number of iterations performed for two different combinations of the parameters. In the

first case, the value of the parameter alpha, which represents the randomization coefficient

is kept to be 0.2, beta, which represents the attractiveness coefficient is kept at 0.5 and the

number of fireflies is kept 100. In the other case, alpha is kept unchanged, beta is kept 0.3

and the number of fireflies is kept 50. As is evident from the graph, with the right choice

of parameters, more than 90% of the fireflies converge near the optimal value within 100

iterations of the program. This gives a good understanding of how quickly can the firefly

algorithm move towards optimal solutions
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Fig. 4.1: log(No. of iterations) vs Fraction of fireflies that ended within a distance of 0.1
units from optima

4.2 Travelling Salesman Problem

For the purpose of testing the performance of the firefly algorithm on the Travelling Sales-

man Problem, we chose two standard data-sets namely tsp225 and tsp442 which are random

graphs containing 225 and 442 vertices respectively. The graphs shown in Figure 4.2 to

Figure 4.9 show the values achieved by our implementation of firefly algorithm by varying

the different parameters involved in the algorithm namely, number of iterations, number of

fireflies, number of neighbours(m) and gamma.

It is evident from these graphs that the optimal value achieved does not monotonically

increase or decrease with any of the parameters, rather the best values are obtained with

parameter values kept somewhere in between the range.
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Fig. 4.2: Plot of Number of iterations vs Optimal value for tsp442 data-set

Fig. 4.3: Plot of Number of fireflies vs Optimal value for tsp442 data-set
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Fig. 4.4: Plot of Number of neighbours vs Optimal value for tsp442 data-set

Fig. 4.5: Plot of Gamma vs Optimal value for tsp442 data-set
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Fig. 4.6: Plot of Number of iterations vs Optimal value for tsp225 data-set

Fig. 4.7: Plot of Number of fireflies vs Optimal value for tsp225 data-set
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Fig. 4.8: Plot of Number of neighbours vs Optimal value for tsp225 data-set

Fig. 4.9: Plot of Gamma vs Optimal value for tsp225 data-set
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Further, Table 4.1 summarizes the results of the comparison between the firefly algorithm

and the . The best value obtained for both the data-sets are marked in green.

It is evident from these results that firefly algorithm produced better results in compar-

ison to Ant Colony Optimization, although the difference between the best values is not

much.

Dataset Firefly ACO
Fireflies Iterations Gamma m Optimal Value Alpha Beta Rho Optimal Value

250 1000 0.25 20 57010.1 4 4 0.3 57579
250 1000 0.2 20 56897.1 4 7 0.4 57616.7
250 1000 0.35 20 57151.1 4 7 0.42 57295.6

TSP442

500 1000 0.35 10 57254.0 4 5 0.3 57646.3
Fireflies Iterations Gamma m Optimal Value Alpha Beta Rho Optimal Value

250 500 0.3 15 4317.9 4 7 0.3 4440.9
100 1000 0.35 20 4287.2 4 8 0.3 4327.3
250 1000 0.2 20 4286.7 4 7 0.3 4440.9

TSP225

100 500 0.2 20 4321.7 2 4 0.3 4306.9

Table 4.1: Comparison of results of Firefly Algorithm and Ant Colony Optimization

4.3 3-Coloring

For the purpose of comparing the results we used an implementation of the greedy algorithm

for the problem. The results were compared for various combinations of the number of

vertices and the number of edges in the graph. The same were recorded multiple times

and the minimum, maximum and the average value obtained are reported. As can be seen

from table 4.2 that the implementation of the firefly algorithm performed better than the

implementation of the greedy approach. Figure 4.10 to Figure 4.13 pictorially represent the

same comparative analysis.
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Greedy Algorithm Firefly Algorithm
Nodes Edges

Min Max Average Min Max Average
5 0.864 1 1 1 1 1

10 0.822 0.856 0.841 0.826 1 0.852
15 0.754 0.757 0.756 0.762 0.765 0.764
20 0.712 0.718 0.714 0.719 0.723 0.720

10

25 0.692 0.695 0.694 0.696 0.699 0.698
50 0.864 1 0.919 0.864 1 0.924

100 0.822 0.856 0.842 0.826 0.866 0.853
250 0.754 0.757 0.756 0.762 0.765 0.764
500 0.712 0.718 0.714 0.719 0.723 0.720

50

1000 0.692 0.695 0.694 0.696 0.699 0.698
100 0.888 0.945 0.915 0.895 0.945 0.924
250 0.802 0.821 0.810 0.811 0.825 0.816
500 0.741 0.755 0.747 0.748 0.759 0.752

1000 0.710 0.714 0.712 0.714 0.716 0.715
100

2000 0.692 0.693 0.692 0.694 0.695 0.694
500 0.903 0.927 0.916 0.907 0.927 0.917

1000 0.831 0.848 0.836 0.832 0.848 0.838
2500 0.744 0.750 0.748 0.746 0.750 0.749
5000 0.711 0.713 0.712 0.712 0.714 0.713

500

10000 0.692 0.693 0.693 0.693 0.694 0.693

Table 4.2: Comparison of results of greedy and firefly for 3-coloring problem
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Fig. 4.10: Comparison of greedy and firefly on input graph of 10 nodes

Fig. 4.11: Comparison of greedy and firefly on input graph of 50 nodes
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Fig. 4.12: Comparison of greedy and firefly on input graph of 100 nodes

Fig. 4.13: Comparison of greedy and firefly on input graph of 500 nodes
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4.4 TDMA Scheduling

For the TDMA scheduling problem, We generated the input graph randomly by specifying

the number of vertices and the clustering coefficient which is a measure of the ratio of the the

number of edges in the graph to the maximum number of edges that can exist in a graph with

given number of vertices. This gives a measure of how dense the graph is. The clustering

coefficient becomes the probability of adding an edge between any pair of vertices. For

example, if take an 10 as the number of vertices. The maximum number of edges possible

is
(

10
2

)
which is 45. suppose we want nearly 10 edges in the graph. Then the clustering index

becomes 10/45. Now for each pair of vertices, we generate a uniformly distributed random

between 0 and 1. If the generated number turns out to be less than or equal to the clustering

index, we add an edge between those pair of vertices.

For the purpose of comparing the results, we use an implementation of the Maximum

Independent Set approach, wherein we first try to find a set of vertices of the maximum

possible size in which no two vertices share an edge and remove these vertices from the

graph. We keep repeating this process until there are no more vertices left in the graph. The

number of iterations required to complete the process is also the number of colors required

to color the graph as the vertices removed in one particular iteration can be colored with the

same color.

The comparison was done for 3 different values of the number of nodes in the original

graph and the value of the Clustering Coefficient and multiple results for the same combi-

nation of inputs were recorded. The results of the same have been summarized in Table 4.3.

It is evident from the table table that firefly algorithm produced better results than the MIS

approach.

29



Input Graph Conflict Graph Number of Colors

Nodes Clustering
Coefficient Nodes Edges Firefly MIS

516 6992 23 24
492 6410 22 240.408
505 6867 24 28
1002 26282 41 41
967 24522 39 40

50

0.816
990 25538 41 43
986 12764 27 31
1002 13157 23 260.202
971 12133 24 27
1946 50218 45 48
1995 52371 45 47

100

0.404
2033 54621 43 43
2550 34354 27 28
2524 34179 26 270.080
2474 32643 29 30
4916 128448 52 55
5000 133397 51 51

250

0.161
5015 133799 50 51

Table 4.3: Performance of Firefly vs Maximum Independent Set for graph coloring problem
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

As can be seen from the results of various problems in Chapter 4, the firefly algorithm

produces better results than it’s counterparts. It has produced good results for problems

involving both continuous as well as discrete optimization functions. The quick convergence

and ease of implementation makes it a good alternative to other bio-inspired meta-heuristics.

5.2 Future Work

The movement functions for the firefly algorithm used in the TDMA scheduling problem

can be further optimized to give better results.

Also, the program for graph coloring can be converted into a full fledged package which

can take any graph and find the number of colors and the color assignment to the vertices.
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