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Motivation

◮ Haematopoiesis: Formation of
blood cellular components

◮ Erythropoiesis: Formation of
erythrocytes (red blood cells)
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Motivation

“Attempt to devise novel therapies for disease by manipulating control
parameters back into normal range”

“Demonstrate the onset of abnormal dynamics in animal bodies by gradual
tuning of control parameters”

M.C. Mackey and L. Glass
Oscillation and chaos in physiological control systems

Science, 1977
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Motivation

“Attempt to devise novel therapies for disease by manipulating control
parameters back into normal range”

“Demonstrate the onset of abnormal dynamics in animal bodies by gradual
tuning of control parameters”

M.C. Mackey and L. Glass
Oscillation and chaos in physiological control systems

Science, 1977

Stability analysis

Stability conditions ⇒ manipulate control parameters ⇒ devise therapies

Bifurcation analysis

Alerts us about the onset of abnormal dynamics as parameters vary
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Model

Mackey-Glass equation (haematopoiesis)

ẋ(t) = β
x(t− τ)

1 + xn(t− τ)
︸ ︷︷ ︸

F
(
x(t−τ)

)

− γx(t)

x(t) > 0 : number of blood cells

β > 0 : dependence on the number of mature cells

τ > 0 : delay between cell production and release into blood stream

γ > 0 : cell destruction rate

n > 0 : captures non-linearity

Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations 5 / 20



Model

Lasota equation (erythropoiesis)

ẋ(t) = β xn(t− τ)e−x(t−τ)

︸ ︷︷ ︸

F
(
x(t−τ)

)

−γx(t)

x(t) > 0 : number of red blood cells

β > 0 : demand for oxygen

τ > 0 : time required for erythrocytes to attain maturity

γ > 0 : cell destruction rate

n > 0 : captures non-linearity
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Local Stability

General form

ẋ(t) = βF
(
x(t− τ)

)
− γx(t)

Non-trivial equilibrium: x∗

Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations 7 / 20



Local Stability

General form

ẋ(t) = βF
(
x(t− τ)

)
− γx(t)

Non-trivial equilibrium: x∗

Sufficient condition

−x∗F ′(x∗)
F (x∗) γτ < π

2 ⇒ −F ′(x∗)βτ < π
2

Insights to ensure stability

x∗F ′(x∗)/F (x∗) and γτ need to be bounded
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Local Stability

Necessary and Sufficient condition

τ
√

(

βF ′(x∗)
)2

− γ2 < cos−1

(

γ
βF ′(x∗)

)

Hopf condition

τ =

cos−1

(

γ

βF ′(x∗)

)

√

(

βF ′(x∗)
)2

−γ2

Period: 2πτ/ cos−1
(

γ/βF ′(x∗)
)
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Figure: Stability chart (τ = 1)
Region below the lines is stable

Hopf bifurcation ⇒ limit cycles
Oscillations in cell count (limit cycles) ⇒ pathological behaviour

Are the limit cycles orbitally stable ?
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Local Hopf Bifurcation

Bifurcation parameter

◮ System parameters
◮ may vary with time
◮ affect the equilibrium

◮ Introduce non-dimensional parameter

ẋ(t) = η
(

βF
(
x(t− τ)

)
− γx(t)

)

= fη(x)
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Local Hopf Bifurcation

Bifurcation parameter

◮ System parameters
◮ may vary with time
◮ affect the equilibrium

◮ Introduce non-dimensional parameter

ẋ(t) = η
(

βF
(
x(t− τ)

)
− γx(t)

)

= fη(x)

Transversality condition

At the Hopf condition, η = ηc = 1

Re

(
dλ

dη

)

η=ηc

6= 0
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Local Hopf Bifurcation

Using Poincaré normal forms and center manifold theory[1]

◮ supercritical/subcritical Hopf

◮ orbital stability of limit cycles

[1] B. Hassard, N. Kazarinoff and Y. Wan, Theory and Applications of Hopf Bifurcation, 1981
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Local Hopf Bifurcation

Using Poincaré normal forms and center manifold theory[1]

◮ supercritical/subcritical Hopf

◮ orbital stability of limit cycles

Poincaré normal form

Two-dimensional, one parameter, system

ẋ1 = αx1 − x2 − x1(x
2
1 + x22)

ẋ2 = x1 + αx2 − x2(x
2
1 + x22)

Introducing a complex variable z = x1 + ix2,
the Poincaré normal form can be written as

ż = (α+ i)z ± z̄z2

[1] B. Hassard, N. Kazarinoff and Y. Wan, Theory and Applications of Hopf Bifurcation, 1981
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Local Hopf Bifurcation

Center manifold theorem

Two dimensional system

x′ = f(x, y), y′ = g(x, y)

◮ Invariant manifold: y = h(x) for small |x| if solution with x(0) = x0,
y(0) = h(x0) lies on y = h(x)

◮ The local behaviour of the system can be analysed by studying the
dynamics on the manifold

◮ Dimension of the system is hence reduced
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Local Hopf Bifurcation

Center manifold theorem

Two dimensional system

x′ = f(x, y), y′ = g(x, y)

◮ Invariant manifold: y = h(x) for small |x| if solution with x(0) = x0,
y(0) = h(x0) lies on y = h(x)

◮ The local behaviour of the system can be analysed by studying the
dynamics on the manifold

◮ Dimension of the system is hence reduced

Example
x′ = ax3 + xy − xy2, y′ = −y + bx2 + x2y

◮ Invariant manifold: y = h(x) = bx2 +O(x4)

◮ Reduced system

u′ = au3 + uh(u)− uh2(u)

u′ = (a+ b)u3 +O(u5)
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Local Hopf Bifurcation

Style of analysis

◮ Let ẋ = fη(x) be the non-linear system and q be the complex
eigenvector of Jacobian Dfη(x

∗)

◮ Reduce flow of fη(x) to a 2-manifold (center manifold) which is
invariant under the flow that is tangential to the q-plane

◮ Rewrite dynamics on center manifold using a single complex variable

◮ Determine the sign of first lyapunov coefficient and floquet exponent
to establish the type of Hopf and the orbital stability of limit cycles
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Local Hopf Bifurcation

Style of analysis

◮ Let ẋ = fη(x) be the non-linear system and q be the complex
eigenvector of Jacobian Dfη(x

∗)

◮ Reduce flow of fη(x) to a 2-manifold (center manifold) which is
invariant under the flow that is tangential to the q-plane

◮ Rewrite dynamics on center manifold using a single complex variable

◮ Determine the sign of first lyapunov coefficient and floquet exponent
to establish the type of Hopf and the orbital stability of limit cycles

First lyapunov coefficient ⇒ type of Hopf

µ2 > 0: supercritical µ2 < 0: subcritical

Floquet exponent ⇒ stability of limit cycles

β2 > 0: unstable β2 < 0: stable
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Numerical Example: Mackey-Glass Equation

◮ Parameter values: β = 0.8, γ = 0.3,n = 10

◮ Hopf condition: critical time delay τc = 1.14, η = 1

◮ For η = 1.05

µ2 = 29.10 > 0 β2 = −35.64 < 0

Hopf bifurcation is supercritical, and leads to orbitally stable limit cycles

0.9 1.0 1.1

0
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1
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1
.1

1
.2

η

x
(t
)

Figure: Bifurcation diagram. As η varies, limit cycles emerge
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Numerical Example: Lasota Equation

◮ Parameter values: β = 0.9, γ = 0.1,n = 0.1

◮ Hopf condition: critical time delay τc = 17.69, η = 1

◮ For η = 1.05

µ2 = 0.8072 > 0 β2 = −0.0398 < 0

Orbitally stable limit cycles emerge from a supercritical Hopf
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(a) Stable equilibrium (τ < τc )
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τ
)

Equilibrium point

(b) Limit cycle (τ > τc )

Figure: Phase portraits
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Contributions

Stability analysis

◮ Sufficient condition
◮ simple condition to guide models into normal range
◮ can be helpful for design considerations to devise therapies

◮ Necessary and Sufficient condition
◮ strict bounds that can be used to ensure healthy behaviour
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Contributions

Stability analysis

◮ Sufficient condition
◮ simple condition to guide models into normal range
◮ can be helpful for design considerations to devise therapies

◮ Necessary and Sufficient condition
◮ strict bounds that can be used to ensure healthy behaviour

Bifurcation analysis

Used a non-dimensional bifurcation parameter

◮ Emergence of limit cycles ⇒ onset of abnormal behaviour

◮ Pathological behaviour could be predicted and prevented
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Population Dynamics

Logistic equation

ẋ(t) = rx(t)
(

1−
(
x(t− τ)/K

))

delayed response to diminishing resources
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Population Dynamics

Logistic equation

ẋ(t) = rx(t)
(

1−
(
x(t− τ)/K

))

delayed response to diminishing resources

Logistic equation + constant harvesting rate [1]

ẋ(t) = rx(t)
(

1−
(
x(t− τ)/K

))

− γx(t)

[1] S.A.H. Geritz and É. Kisdi, Mathematical ecology: why mechanistic models?

Journal of Mathematical Biology, 2012
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Population Dynamics

Logistic equation

ẋ(t) = rx(t)
(

1−
(
x(t− τ)/K

))

delayed response to diminishing resources

Logistic equation + constant harvesting rate [1]

ẋ(t) = rx(t)
(

1−
(
x(t− τ)/K

))

− γx(t)

◮ Necessary and Sufficient condition

◮ Hopf condition

[1] S.A.H. Geritz and É. Kisdi, Mathematical ecology: why mechanistic models?

Journal of Mathematical Biology, 2012
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Population Dynamics

Perez-Malta-Coutinho equation

ẋ(t) = r x(t− τ)
(

1−
(
x(t− τ)/K

))

︸ ︷︷ ︸

F
(
x(t−τ)

)

−γx(t)

shown to fit experimental data
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Population Dynamics

Perez-Malta-Coutinho equation

ẋ(t) = r x(t− τ)
(

1−
(
x(t− τ)/K

))

︸ ︷︷ ︸

F
(
x(t−τ)

)

−γx(t)

shown to fit experimental data

◮ Stability and Hopf bifurcation analysis

◮ Also exhibits chaos
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Predator-Prey Dynamics

Lotka-Volterra logistic model with discrete delays

ẋ(t) = x(t)
(
r1 − a11x(t− τ1)− a12y(t− τ2)

)

ẏ(t) = y(t)
(
− r2 + a21x(t− τ3)− a22y(t− τ4)

)

x(t) : prey population

y(t) : predator population

ri, aij > 0 : model parameters, i, j ∈ {1, 2}

τi ≥ 0 : time delays, i ∈ {1, 2, 3, 4}

S. Manjunath and G. Raina, A Lotka-Volterra time delayed system: stability switches and Hopf

bifurcation analysis, in Proceedings of 26th Chinese Control and Decision Conference, 2014
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Predator-Prey Dynamics
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Figure: In Case 1, system becomes unstable as τ varies. In Case 2, system undergoes
multiple stability switches as τ varies.
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1977

[2] M.C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science,
1977

[3] P. Mitkowski and W. Mitkowski, Ergodic theory approach to chaos: Remarks and
computational aspects, International Journal of Applied Mathematics and Computer
Science, 2012

[4] M.N. Qarawani, Hyers-Ulam stability for Mackey-Glass and Lasota differential equations,
Journal of Mathematics Research, 2013

Population dynamics

[1] A.J. Lotka, Elements of Physical Biology, 1925

[2] J.F. Perez, C.P. Malta and F.A.B. Coutinho, Qualitative analysis of oscillations in isolated
populations of flies, Journal of Theoretical Biology, 1978

[3] V. Volterra, Variations and fluctuations of the number of individual animal species living
together, Animal Ecology, 1931

[4] J. Wang, X. Zhou and L. Huang, Hopf bifurcation and multiple periodic solutions in
Lotka-Volterra systems with symmetries, Nonlinear Analysis: Real World Applications, 2013

Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations 20 / 20


