

Trends in Scientific Computing

Timothy A. Gonsalves IIT Mandi

26th Nov 2018

Scientific Computing: in the Beginning

- Specialised hardware from Cray *et al*.
- Vector processors multiple arithmetic units
- Multiple ALUs
- Large shared memory
- Very expensive
- Parallel Fortran
- Suitable for regular problems:
 matrix manipulations, etc

Fundamental Laws (informally)

Moore's Law – The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

1. Moore's Law: the performance of computer hardware doubles every 1.5 years

Indian Institute of Technology Mandi

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic

Licensed under CC-BY-SA by the author Max Roser.

Our World in Data

Communications

Today

- Near universal availability of intermittent shared wireless at 10s-100s kb/s
- Network failures and congestion are common 2035
- Universal availability of shared wireless at 1-100 Mb/s
- Congestion and failures will still cause "intermittent" behaviour for high-bandwidth uses

Personal Hardware

Parameter	2015	2035*
Pocket-sized device	Lava 356 phone	XYZ digital assistant
CPU	1 core, 1 GHz	8,000 core, 1 GHz
RAM	0.5 GB	4 TB
Storage	32GB	128 TB
Network (wireless from telco)	100 kb/s shared	100 Mb/s shared
Display	2"x2"	10"x10" foldable
Security	PIN (insecure)	Biometric (unbreakable)
Cost (in 2015 Rs.)	Rs. 4,500	Rs. 2,000
2035: Cradle-to-grave pocket device =		
8,000	today's laptops	* Based on Moore's

- Moore's Law + Economies of Scale + PC Revolution
- => Design HPC using commercial off-the-shelf (COTS) microprocessors
- CPU power of N microprocessors > CPU of custom-built Cray AND
 Cost of COTS << Cost of Cray
- Shared memory multi-processors using COTS CPUs

- Shared memory multi-processors using COTS CPUs
 - interconnection network is bottleneck
 - cost increases, performance decreases
- Need a change in programming style, moving away from highly parallelisable matrix computation

How to address the computational needs of scientists and engineers?

2. Metcalfe's Law: the usefulness of a network is proportional to the square of the number of users

$$V_{Tencent} = 7.39 imes 10^{-9} imes n^2$$

$$V_{Facebook} = 5.70 imes 10^{-9} imes n^2$$
 [Wikipedia]

3. Law of Large Numbers: behaviour of a large population tends to a predictable normal distribution ==> Machine learning AI

IoT: Inexpensive sensors connected to Internet Weather stations:

- IMD: Rs. 10s lakhs each, in major towns, district HQ
 - Highly accurate
- IoT: Rs. 1,000s each, in every farm or field
 - Less accurate
 - Correct using statistical software

Likewise, GPS, web cameras, motion sensors, ...

- Costs declined from Rs. lakhs to Rs. 1,000s
- Long-life with batteries/solar-power
- \Rightarrow Vast quantities of data about every locality

Cloud Storage and Computing

- Easy, world-wide sharing of data
 Data Analytics
- Vast amounts of data ==> use probability and statistics to make inferences
 Machine Learning
 - Given large number of case histories, ML algorithms identify patterns to make predictions
 - Learns from experience

Evolution of Scientific Computing

- Two converging trends
 - Hardware tending towards very large clusters with non-uniform memory + cloud computing
 - Interesting scientific and engineering computation moving from solution of equations (regular) to searching for patterns in very large data sets (irregular)

==> Data Science

- Application of scientific processes, algorithms and systems to extract knowledge and insights from data in various forms [Wikipedia]
- Aspects of Data Science:
 - Data collection
 - Data analysis
 - Inference
 - Communication of results
- 4th paradigm of science: empirical, theoretical, computational, data science [Jim Gray]

Examples of Data Science

- Face recognition in social media
- Recommendations in online shopping
- Web search: find 1-10 most relevant pages out of millions
- Landslide prediction
- Precision Farming
- Design of structures
- Climate change
- Design of drug molecules, ...

TAG – IIT Mandi

TAG – IIT Mandi

Landslides

By Bbanerje - Own work, CC BY-SA 4.0, https:// commons.wikimedia.org/w/index.php? curid=45246184

... Landslides

- Measure soil strength under varying conditions
 - Soil type
 - Moisture content
 - Containment pressure
- Predict/mitigate landslides
 - Depends on weather
 - Load trees, vegetation, buildings
 - Stress due to nearby traffic, etc
- Cannot measure all combinations

 \rightarrow interpolate/extrapolate using Data Science

Precision Agriculture

... Precision Agriculture

Goal: a decision support system for whole farm management to optimise returns on inputs with minimal use of resources using Data Science

- Relate productivity with geography, environment, water, fertilizer
- Early warning of stresses and disease
- Determine ideal crop variety specific to the locality
- Determine best practices including crop rotation

Input info: weather, market prices, seed varieties, pesticides and fertilisers, soil conditions, ...

FarmerZone[™] @ IIT Mandi *a DBT initiative*

19

- Fundamental laws of technology and market forces drive evolution of computer hardware
- Technology disruptions and societal needs drive scientific and engineering R&D
- Hardware: Cray \rightarrow SMP \rightarrow Clusters \rightarrow Clouds
- Software: Fortran \rightarrow Parallel Fortran \rightarrow C \rightarrow Python
- Scientific computing: Equations → Patterns
- Computing paradigm: Sequential → Parallel → Distributed → Data Science

Books