Rayleigh-Taylor Instability in anisotropic binary Bose-Einstein Condensates

Arko Roy

Physical Research Laboratory, Ahmedabad

May 24, 2012

Outline of the talk

Bose-Einstein Condensation

- Macroscopic occupation of bosonic particles in the ground state of the system
- Gas of bosonic particles is cooled below a critical temperature *T_c* condenses into a Bose-Einstein Condensate¹
- Criteria for condensation when

$$\varpi = n \left(\frac{2\pi\hbar^2}{mKT}\right)^{3/2} \sim 1,$$

where, ϖ is the phase space density.

 De Broglie wavelength λ_{dB} is comparable to the distance between the particles–wave packets start to overlap –particles become indistinguishable.

¹ Anderson et al., *Science* **269**,(1995), Davies et al. , *Phys. Rev. Lett* **75**, (1995), Ketterle et al. , *Rev. Mod. Phys.* **74**, (2002)

Bose-Einstein Condensation

 At T = 0K, the system is fully Bose condensed and can be described by a macroscopic wavefunction

$$\psi(\mathbf{r}) = \sqrt{N}\phi(\mathbf{r}),$$

where, $\phi(\mathbf{r})$ is the single-particle wavefunction. ²

 To describe both static and time dependent phenomenon in interacting dilute ultracold atomic gases we use Gross-Pitaevskii Equation.

²C. Pethick & H. Smith, Bose-Einstein Condensation in Dilute Gases (2008)

Gross-Pitaevskii Equation(GPE)

$$i\hbar \frac{\partial \psi}{\partial t} = \left[-\frac{\hbar^2}{2m} \nabla^2 + V_{trap}(\mathbf{r}) + gN|\psi|^2 \right] \psi,$$

- ► a: atomic scattering length > 0:repulsive
- N: Number of atoms in the condensate 3

$$V_{trap} = \frac{m}{2} \left(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2 \right)$$

³C. Pethick & H. Smith, Bose-Einstein Condensation in Dilute Gases (2008)

Gross-Pitaevskii Equation(GPE)

- GPE is restricted to weakly interacting regime, $n|a|^3 << 1$
- GPE accommodates only isotropic interaction i.e. only s-wave scattering length is sufficient to obtain an accurate description.⁴
- A set of coupled GPE is used to describe two-species Bose-Einstein Condensate.

⁴Dalfovo et al. , *Rev. Mod. Phys.* **71**, (1999)

Coupled Gross-Pitaevskii Equation

$$i\hbar\frac{\partial\psi_1}{\partial t} = \left[-\frac{\hbar^2}{2m_1}\nabla^2 + V_1(\mathbf{r}) + U_{11}N_1|\psi_1|^2 + U_{12}N_2|\psi_2|^2\right]\psi_1,$$

$$i\hbar\frac{\partial\psi_2}{\partial t} = \left[-\frac{\hbar^2}{2m_2}\nabla^2 + V_2(\mathbf{r}) + U_{22}N_2|\psi_2|^2 + U_{12}N_1|\psi_1|^2\right]\psi_2.$$

 ψ₁ ≡ ψ₁(**r**, t): condensate wave function for species 1 ψ₂ ≡ ψ₂(**r**, t): condensate wave function for species 2
 U_{ii} = 4πħ²a_{ii}/m_i: intraspecies interaction
 U_{ij} = 2πħ²a_{ij}/m_{ij}: interspecies interaction m_{ii} = m_im_j 5

$$\frac{1}{5}$$
 (m_i+m_j)

⁵C. Pethick & H. Smith, *Bose-Einstein Condensation in Dilute Gases* (2008)

Coupled Gross-Pitaevskii Equation

Phase Separation in binary Bose-Einstein Condensates

Phase Separation

Miscible Regime

$$U_{11}U_{22} - (U_{12})^2 > 0$$

Coexistence of both the species in some regions of space – partially overlapping wave function

Immiscible Regime

$$U_{11}U_{22} - (U_{12})^2 < 0$$

No coexistence of species in any region of space – separated wavefunction $^{\rm 6}$

⁶Ho et al. , *Phys. Rev. Lett.* **77**, (1996)

Rayleigh-Taylor Instability(RTI)

- Instability of an interface when a lighter fluid supports a heavier one in a gravitational field
- Can also occur when a lighter fluid pushes a heavier one
- Leads to turbulent mixing of the two fluids as the perturbations at the interface grow exponentially ⁷

Courtesy: en.wikipedia.org

⁷P. G. Drazin & W. H. Reid, *Hydrodynamic Stability* (2004)

Rayleigh-Taylor Instability(RTI)

RTI in binary Bose-Einstein Condensates

RTI in binary Bose-Einstein Condensates

- ► To initiate RTI⁸ in TBEC, we consider harmonic trapping potential.
- We choose the initial state of TBEC to be in immiscible(phase-separated) domain.
- Species with stronger intraspecies repulsive interaction surrounds the other.
- In analogy to normal fluids, species with stronger intraspecies repulsive interaction may be considered to be the lighter fluid.

⁸Gautam et al. , *Phys. Rev. A* **81**, (2010)

Rayleigh-Taylor Instability(RTI)

RTI in binary Bose-Einstein Condensates

Phase-Separated Pan-Cake Shaped TBEC

The trapping potential is

$$V_i(x,y,z) = \frac{m_i\omega^2}{2}(x^2 + \alpha_i^2y^2 + \lambda_i^2z^2)$$

- ω : radial trap frequency
- α_i, λ_i : anisotropy parameters
- For pancake shaped trap: $\lambda_i >> 1$
- ► For simplicity of analysis, we consider, $\alpha_1 = \alpha_2 = \alpha$, $\lambda_1 = \lambda_2 = \lambda$.

Rayleigh-Taylor Instability(RTI)

RTI in binary Bose-Einstein Condensates

Details

In the initial state, at t = 0

▶ We consider a system of ⁸⁵Rb–⁸⁷Rb atoms

►
$$a_{11} = 460a_{o}$$
, $a_{22} = 99a_{o}$, $a_{12} = a_{21} = 214a_{o}^{-9}$

•
$$N_1 = 5 \times 10^5$$
 and $N_2 = 10^6$

$$\ \, \bullet \ \, \alpha = 1, \omega_x = \omega_y = 2\pi \times 8Hz \\ \lambda = 11.25$$

⁹Papp et al. , *Phys. Rev. Lett.* **101**, (2008)

Rayleigh-Taylor Instability(RTI)

RTI in binary Bose-Einstein Condensates

Development of RTI

We initiate RTI in this system by

- Decreasing $a_{11} = 460a_0$ to $a_{11} = 55a_0$ between t = 0 ms and t = 200 ms
- ► After t = 100 ms, a₁₁ is kept fixed. The system is let to evolve freely for another t = 200 ms.
- Phase separation condition is maintained throughout the process.
- The outer species tends to come inside the inner species.
- In the process, the circular interface develops instability and grows into mushroom shape pattern.

Rayleigh-Taylor Instability(RTI)

RTI in binary Bose-Einstein Condensates

Development of mushroom pattern After t = 358 ms, t = 378 ms, t = 400 ms ¹⁰

¹⁰Sasaki et al. , *Phys. Rev. A* **80**, (2009), Kadokura et al. , *Phys. Rev. A* **85**, (2012)

Development of various patterns

On changing the anisotropy of the trap for $\alpha=1,1.2,1.4,1.6$

Development of various patterns For $\alpha = 1.8, 2.0, 3.0$

Inhibition of RTI

As α is increased, planar interface is developed

►
$$a_{11} = 200a_0$$
, $a_{22} = 99a_0$, $a_{12} = a_{21} = 214a_0$

•
$$N_1 = 10^5$$
 and $N_2 = 10^5$

$$\ \alpha = 50, \omega_x = 2\pi \times 8Hz \\ \lambda = 100$$

- Decreasing $a_{11} = 200a_0$ to $a_{11} = 55a_0$
- Phase separation condition is maintained throughout

Inhibition of RTI

Helmholtz equation

► 2-dimensional Helmholtz equation in Cartesian coordinates(x, y) transformed to elliptic cylindrical coordinates(u, v)

> $x = a \cosh u \cos \nu,$ $y = a \sinh u \sin \nu.$

Helmholtz equation in elliptic cylindrical coordinates

$$\frac{1}{a^2(\sinh^2 u + \sin^2 \nu)} \left(\frac{\partial^2 F}{\partial u^2} + \frac{\partial^2 F}{\partial \nu^2}\right) + k^2 F = 0,$$

where, F is the solution of the form $F = U(u)V(\nu)$

Helmholtz Equation

U's and V's satisfy the Mathieu Equations

$$\frac{d^2 U}{du^2} - \left[\mathcal{A} - 2q \cosh 2u\right] U = 0,$$
$$\frac{d^2 V}{d\nu^2} + \left[\mathcal{A} - 2q \cos 2\nu\right] V = 0.$$

where,

$$\mathcal{A} \equiv A + rac{c^2}{2},$$

 $q \equiv rac{c^2}{4} \equiv rac{a^2k^2}{4}.$

Angular Mathieu Function

Plots of $ce_m(\nu,q)$ and $se_{m+1}(\nu,q)$ on (ν,q) plane. ¹¹

¹¹Gutierrez-Vega et al. , Am. J. Phys. **71**, (2003)

Rayleigh-Taylor Instability in anisotropic binary Bose-Einstein Condensates Analysis using Mathieu Function

Equation of ellipse

$$\begin{aligned} &\frac{x^2}{\beta^2} + \frac{y^2}{\gamma^2} = 1, \\ &e = \sqrt{1 - \frac{\gamma^2}{\beta^2}}. \end{aligned}$$

Again,

$$\beta \sim \frac{1}{\omega_x},$$
$$\gamma \sim \frac{1}{\omega_y}.$$

Therefore,
$$\frac{\beta}{\gamma} \sim \alpha$$
.

The Mathieu equations become

$$\begin{aligned} \frac{d^2 U}{du^2} &- \left[A + \left(\frac{k^2}{2}\right) \beta^2 \left(1 - \frac{1}{\alpha^2}\right) - \left(\frac{k^2}{2}\right) \beta^2 \left(1 - \frac{1}{\alpha^2}\right) \cosh 2u \right] U = 0, \\ \frac{d^2 V}{d\nu^2} &+ \left[A + \left(\frac{k^2}{2}\right) \beta^2 \left(1 - \frac{1}{\alpha^2}\right) - \left(\frac{k^2}{2}\right) \beta^2 \left(1 - \frac{1}{\alpha^2}\right) \cos 2\nu \right] V = 0. \end{aligned}$$

THANK YOU