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- Introduction

Bose-Einstein Condensation

» Macroscopic occupation of bosonic particles in the ground
state of the system

» Gas of bosonic particles is cooled below a critical temperature
T. condenses into a Bose-Einstein Condensatel

» Criteria for condensation when

2wh? 3/2
“= ”<mKT> ~1L

where, w is the phase space density.

» De Broglie wavelength A\gg is comparable to the distance
between the particles—wave packets start to overlap —particles
become indistinguishable.

! Anderson et al., Science 269,(1995), Davies et al. , Phys. Rev. Lett 75,
(1995), Ketterle et al. , Rev. Mod. Phys. 74, (2002)
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- Introduction

Bose-Einstein Condensation

» At T = 0K, the system is fully Bose condensed and can be
described by a macroscopic wavefunction

¥(r) = VNo(r),

where, ¢(r) is the single-particle wavefunction. 2

» To describe both static and time dependent phenomenon in
interacting dilute ultracold atomic gases we use
Gross-Pitaevskii Equation.

2C. Pethick & H. Smith, Bose-Einstein Condensation in Dilute Gases (2008)
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LGross-Pitaevskii Equation

Gross-Pitaevskii Equation(GPE)

0V - 2

i E = — %V + Vtrap(r) +gN|¢| ¢>
» ) = 1)(r, t): condensate wave function
> g = 4”!‘?)22

> a: atomic scattering length > O:repulsive
» N: Number of atoms in the condensate 3

m
Virap = = (wf(xz + wf,y2 + wﬁzz)

2

3C. Pethick & H. Smith, Bose-Einstein Condensation in Dilute Gases (2008)



Rayleigh-Taylor Instability in anisotropic binary Bose-Einstein Condensates

L Gross-Pitaevskii Equation

Gross-Pitaevskii Equation(GPE)

» GPE is restricted to weakly interacting regime, nlal® << 1

» GPE accommodates only isotropic interaction i.e. only s-wave
scattering length is sufficient to obtain an accurate
description. *

> A set of coupled GPE is used to describe two-species
Bose-Einstein Condensate.

*Dalfovo et al. , Rev. Mod. Phys. 71, (1999)
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LCv:)upled Gross-Pitaevskii Equation

Coupled Gross-Pitaevskii Equation

81/11 o, 2 2
— - V. N N
e [ S V2 4 VAF) 4 Un Mo+ Unaalial? i,
) h?
il aw: = [ - ﬁvz + Va(r) + UnaNo|tho]? + Ura Ny Jin | }

» 1)1 = 1(r, t): condensate wave function for species 1

19 = 1o(r, t): condensate wave function for species 2
» U= 47rh2a,-,-/m,-' intraspecies interaction
» Uj =2mh? a,J/m,J interspecies interaction

. mjmj
mij (m +m;)

®C. Pethick & H. Smith, Bose-Einstein Condensation in Dilute Gases (2008)
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LCoupIed Gross-Pitaevskii Equation

LPhase Separation in binary Bose-Einstein Condensates

Phase Separation

» Miscible Regime
U1 Up — (U2)? >0

Coexistence of both the species in some regions of space —
partially overlapping wave function

» Immiscible Regime
UniUx — (U2)? <0

No coexistence of species in any region of space — separated
wavefunction ©

®Ho et al. , Phys. Rev. Lett. 77, (1996)
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LRaerigh—Taonr Instability(RTI)

Rayleigh-Taylor Instability(RTI)

» Instability of an interface when a lighter fluid supports a
heavier one in a gravitational field

» Can also occur when a lighter fluid pushes a heavier one

» Leads to turbulent mixing of the two fluids as the
perturbations at the interface grow exponentially *

Courtesy:
en.wikipedia.org

"P. G. Drazin & W. H. Reid, Hydrodynamic Stability (2004)
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LRayleigh—Taonr Instability(RTI)
L RTIin binary Bose-Einstein Condensates

RTI in binary Bose-Einstein Condensates

» To initiate RTI® in TBEC, we consider harmonic trapping
potential.

» We choose the initial state of TBEC to be in
immiscible(phase-separated) domain.

> Species with stronger intraspecies repulsive interaction
surrounds the other.

» In analogy to normal fluids, species with stronger intraspecies
repulsive interaction may be considered to be the lighter fluid.

8Gautam et al. , Phys. Rev. A 81, (2010)
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LRaerigh—Taonr Instability(RTI)
LRTlin binary Bose-Einstein Condensates

Phase-Separated Pan-Cake Shaped TBEC

The trapping potential is

2
miw
Vilx,y,2) = o2 + afy? 4+ NF2?)

v

w : radial trap frequency

> «j, \;: anisotropy parameters

v

For pancake shaped trap: \; >>1

v

For simplicity of analysis, we consider, a1 = asr =
A==\
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LRaerigh—Taonr Instability(RTI)
LRTlin binary Bose-Einstein Condensates

Details
In the initial state, at t =0
» We consider a system of 85Rb-87Rb atoms
> ai;] = 46080, doy = 9930, dip = a1 = 21430 9
» Ny =5 x10% and N, = 10°
» a=1,wx =w, =27 X 8Hz

A=11.25
_ x 107
:810 4
@)
5-10
>

-10 0 10 -10 0 10

X (unitsofa__ )
oscC

°Papp et al. , Phys. Rev. Lett. 101, (2008)
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LRayleigh—Taonr Instability(RTI)
L RTIin binary Bose-Einstein Condensates

Development of RTI

We initiate RTI in this system by

» Decreasing aj; = 460a, to aj; = 553, between t = 0 ms and
t =200 ms

» After t = 100 ms, aj1 is kept fixed. The system is let to
evolve freely for another t = 200 ms.

» Phase separation condition is maintained throughout the
process.

> The outer species tends to come inside the inner species.

> In the process, the circular interface develops instability and
grows into mushroom shape pattern.
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LRaerigh—Taonr Instability(RTI)
L RTIin binary Bose-Einstein Condensates

Development of mushroom pattern
After t =358 ms, t = 378 ms, t = 400 ms 10

]
=y

/ osc)
—r —r
o O O o O O

y (units of a

-10 0 10 -10 0 10 -10 0 10
X (units of aosc)

19Sasaki et al. , Phys. Rev. A 80, (2009), Kadokura et al. , Phys. Rev. A
85, (2012)
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LRTI in different geometries

Development of various patterns
On changing the anisotropy of the trap for« =1,1.2,1.4,1.6

—~, 10
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LRTI in different geometries

Development of various patterns
For a =1.8,2.0,3.0
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L Inhibition of RTI

Inhibition of RTI

As « is increased, planar interface is developed
» a11 = 200a,, axo = 99a,, a2 = a1 = 2144,
» N; =10° and N, = 10°

» a =50,wy =27 x 8Hz
A =100

» Decreasing a;; = 2003, to aj1 = 55a,

> Phase separation condition is maintained throughout
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L Inhibition of RTI

Inhibition of RTI
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LAnalysis using Mathieu Function

Helmholtz equation

» 2-dimensional Helmholtz equation in Cartesian
coordinates(x, y) transformed to elliptic cylindrical
coordinates(u, )

X = acosh ucosv,

y = asinh usinv.

» Helmholtz equation in elliptic cylindrical coordinates

1 (a2F PF

+ + K*F =0,
a%(sinh? u + sin?v) \ Ou? = Ov? )

where, F is the solution of the form F = U(u)V(v)
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I—Analysis using Mathieu Function

Helmholtz Equation

» U's and V's satisfy the Mathieu Equations

2
%— [A — 2qcosh 2u] U=0,
d?v
W—i— [.A — 2qcos 21/] vV =0.
where,
2
c
A=A+ o
2 a%k?
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LAnaIysis using Mathieu Function

Angular Mathieu Function

Plots of cem(v, q) and sem+1(v, g) on (v, q) plane. 1!

Y Gutierrez-Vega et al. , Am. J. Phys. 71, (2003)
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|—Analysis using Mathieu Function

Equation of ellipse

2 2
X +y_:L
132 ,),2
2
Y
e = 1—?
Again,
1
/BN I
Wx
1
Yy~
Wy

Therefore, g “ .
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LAnaIysis using Mathieu Function

The Mathieu equations become

d2U k2 5 1 K2\ , 1

d2v k2 ) 1 K2\ 1

W—F[A—i-( )B (l_a_>_ 7)6 (1—$>cos2l/]v—0.
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THANK YOU
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