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Introduction

Bose-Einstein Condensation

I Macroscopic occupation of bosonic particles in the ground
state of the system

I Gas of bosonic particles is cooled below a critical temperature
Tc condenses into a Bose-Einstein Condensate1

I Criteria for condensation when

$ = n

(
2π~2

mKT

)3/2

∼ 1,

where, $ is the phase space density.

I De Broglie wavelength λdB is comparable to the distance
between the particles–wave packets start to overlap –particles
become indistinguishable.

1 Anderson et al., Science 269,(1995), Davies et al. , Phys. Rev. Lett 75,
(1995), Ketterle et al. , Rev. Mod. Phys. 74, (2002)
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Introduction

Bose-Einstein Condensation

I At T = 0K, the system is fully Bose condensed and can be
described by a macroscopic wavefunction

ψ(r) =
√
Nφ(r),

where, φ(r) is the single-particle wavefunction. 2

I To describe both static and time dependent phenomenon in
interacting dilute ultracold atomic gases we use
Gross-Pitaevskii Equation.

2C. Pethick & H. Smith, Bose-Einstein Condensation in Dilute Gases (2008)
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Gross-Pitaevskii Equation

Gross-Pitaevskii Equation(GPE)

i~
∂ψ

∂t
=

[
− ~2

2m
∇2 + Vtrap(r) + gN|ψ|2

]
ψ,

I ψ ≡ ψ(r, t): condensate wave function

I g = 4π~2a
m

I a: atomic scattering length > 0:repulsive

I N: Number of atoms in the condensate 3

Vtrap =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
z z

2

)
3C. Pethick & H. Smith, Bose-Einstein Condensation in Dilute Gases (2008)
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Gross-Pitaevskii Equation

Gross-Pitaevskii Equation(GPE)

I GPE is restricted to weakly interacting regime, n|a|3 << 1

I GPE accommodates only isotropic interaction i.e. only s-wave
scattering length is sufficient to obtain an accurate
description. 4

I A set of coupled GPE is used to describe two-species
Bose-Einstein Condensate.

4Dalfovo et al. , Rev. Mod. Phys. 71, (1999)
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Coupled Gross-Pitaevskii Equation

Coupled Gross-Pitaevskii Equation

i~
∂ψ1

∂t
=

[
− ~2

2m1
∇2 + V1(r) + U11N1|ψ1|2 + U12N2|ψ2|2

]
ψ1,

i~
∂ψ2

∂t
=

[
− ~2

2m2
∇2 + V2(r) + U22N2|ψ2|2 + U12N1|ψ1|2

]
ψ2.

I ψ1 ≡ ψ1(r, t): condensate wave function for species 1
ψ2 ≡ ψ2(r, t): condensate wave function for species 2

I Uii = 4π~2aii/mi : intraspecies interaction

I Uij = 2π~2aij/mij : interspecies interaction
mij =

mimj

(mi+mj )
5

5C. Pethick & H. Smith, Bose-Einstein Condensation in Dilute Gases (2008)
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Coupled Gross-Pitaevskii Equation

Phase Separation in binary Bose-Einstein Condensates

Phase Separation

I Miscible Regime

U11U22 − (U12)2 > 0

Coexistence of both the species in some regions of space –
partially overlapping wave function

I Immiscible Regime

U11U22 − (U12)2 < 0

No coexistence of species in any region of space – separated
wavefunction 6

6Ho et al. , Phys. Rev. Lett. 77, (1996)
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Rayleigh-Taylor Instability(RTI)

Rayleigh-Taylor Instability(RTI)
I Instability of an interface when a lighter fluid supports a

heavier one in a gravitational field
I Can also occur when a lighter fluid pushes a heavier one
I Leads to turbulent mixing of the two fluids as the

perturbations at the interface grow exponentially 7

7P. G. Drazin & W. H. Reid, Hydrodynamic Stability (2004)
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Rayleigh-Taylor Instability(RTI)

RTI in binary Bose-Einstein Condensates

RTI in binary Bose-Einstein Condensates

I To initiate RTI8 in TBEC, we consider harmonic trapping
potential.

I We choose the initial state of TBEC to be in
immiscible(phase-separated) domain.

I Species with stronger intraspecies repulsive interaction
surrounds the other.

I In analogy to normal fluids, species with stronger intraspecies
repulsive interaction may be considered to be the lighter fluid.

8Gautam et al. , Phys. Rev. A 81, (2010)
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Rayleigh-Taylor Instability(RTI)

RTI in binary Bose-Einstein Condensates

Phase-Separated Pan-Cake Shaped TBEC

The trapping potential is

Vi (x , y , z) =
miω

2

2
(x2 + α2

i y
2 + λ2

i z
2)

I ω : radial trap frequency

I αi , λi : anisotropy parameters

I For pancake shaped trap: λi >> 1

I For simplicity of analysis, we consider, α1 = α2 = α ,
λ1 = λ2 = λ.
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Rayleigh-Taylor Instability(RTI)

RTI in binary Bose-Einstein Condensates

Details
In the initial state, at t = 0

I We consider a system of 85Rb–87Rb atoms
I a11 = 460ao, a22 = 99ao, a12 = a21 = 214ao

9

I N1 = 5× 105 and N2 = 106

I α = 1, ωx = ωy = 2π × 8Hz
λ = 11.25

9Papp et al. , Phys. Rev. Lett. 101, (2008)
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Rayleigh-Taylor Instability(RTI)

RTI in binary Bose-Einstein Condensates

Development of RTI

We initiate RTI in this system by

I Decreasing a11 = 460ao to a11 = 55ao between t = 0 ms and
t = 200 ms

I After t = 100 ms, a11 is kept fixed. The system is let to
evolve freely for another t = 200 ms.

I Phase separation condition is maintained throughout the
process.

I The outer species tends to come inside the inner species.

I In the process, the circular interface develops instability and
grows into mushroom shape pattern.
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Rayleigh-Taylor Instability(RTI)

RTI in binary Bose-Einstein Condensates

Development of mushroom pattern
After t = 358 ms, t = 378 ms, t = 400 ms 10

10Sasaki et al. , Phys. Rev. A 80, (2009), Kadokura et al. , Phys. Rev. A
85, (2012)
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RTI in different geometries

Development of various patterns
On changing the anisotropy of the trap for α = 1, 1.2, 1.4, 1.6
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RTI in different geometries

Development of various patterns
For α = 1.8, 2.0, 3.0
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Inhibition of RTI

Inhibition of RTI

As α is increased, planar interface is developed

I a11 = 200ao, a22 = 99ao, a12 = a21 = 214ao
I N1 = 105 and N2 = 105

I α = 50, ωx = 2π × 8Hz
λ = 100

I Decreasing a11 = 200ao to a11 = 55ao
I Phase separation condition is maintained throughout
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Inhibition of RTI

Inhibition of RTI
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Analysis using Mathieu Function

Helmholtz equation

I 2-dimensional Helmholtz equation in Cartesian
coordinates(x , y) transformed to elliptic cylindrical
coordinates(u, ν)

x = a cosh u cos ν,

y = a sinh u sin ν.

I Helmholtz equation in elliptic cylindrical coordinates

1

a2(sinh2 u + sin2ν)

(
∂2F

∂u2
+
∂2F

∂ν2

)
+ k2F = 0,

where, F is the solution of the form F = U(u)V (ν)
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Analysis using Mathieu Function

Helmholtz Equation

I U’s and V ’s satisfy the Mathieu Equations

d2U

du2
−
[
A− 2qcosh 2u

]
U = 0,

d2V

dν2
+

[
A− 2qcos 2ν

]
V = 0.

where,

A ≡ A +
c2

2
,

q ≡ c2

4
≡ a2k2

4
.
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Analysis using Mathieu Function

Angular Mathieu Function
Plots of cem(ν, q) and sem+1(ν, q) on (ν, q) plane. 11

11Gutierrez-Vega et al. , Am. J. Phys. 71, (2003)
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Analysis using Mathieu Function

Equation of ellipse

x2

β2
+

y2

γ2
= 1,

e =

√
1− γ2

β2
.

Again,

β ∼
1

ωx
,

γ ∼
1

ωy
.

Therefore, β
γ v α.
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Analysis using Mathieu Function

The Mathieu equations become

d2U

du2
−
[
A+

(
k2

2

)
β2

(
1− 1

α2

)
−
(
k2

2

)
β2

(
1− 1

α2

)
cosh 2u

]
U = 0,

d2V

dν2
+

[
A+

(
k2

2

)
β2

(
1− 1

α2

)
−
(
k2

2

)
β2

(
1− 1

α2

)
cos 2ν

]
V = 0.
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THANK YOU
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