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Introduction

(Ideal) Bose-Einstein Condensation

e Macroscopic occupation of non-interacting bosons in the
ground state of the system

A gas of bosonic particles cooled below a critical temperature
T, condenses into an ideal Bose-Einstein condensate (BEC)

Criteria for condensation

w = n<$> = 2.612,

De Broglie wavelength Ags comparable to the distance
between the particles—wave packets start to overlap

Anderson et al., Science 269, (1995); Davies et al., Phys. Rev. Lett 75,
(1995); Ketterle et al., Rev. Mod. Phys. 74, (2002).
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Basic Phenomenon

High Temperature (T), Density d—3 Low Temperature (T), Aus

s dag b

WSy

Pure Bose Condensate, T = 0

P. Muruganandam (Workshop on HPC, PRL Ahmedabad, 2012).



Introduction

General Criteria for BEC

When interactions are present=- Single-particle energy levels are
not defined. A reduced single-particle density operator is defined

pr=Traz.np

where Trp 3.y —Trace of p w.r.t particles 2,3,--- N

Define 5’1 = Nﬁl

Penrose-Onsager condition:

nm
M e0Q)
N
np: largest eigenvalue of &1, condensation occurs in

corresponding eigenstate
eVt

1. positive number of the order of unity.

O. Penrose and L. Onsager, Phys. Rev, 104, (1956)
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Gross-Pitaevskii equation

e Equation of motion of the condensate wavefunction is given
by Gross-Pitaevskii equation(GPE), strictly valid at T = 0K,

00 _[_h

2
8t 2 V2 + Vtrap( )+gN|¢|2 ¢7

1 = (r, t) : condensate wave function
B 4rh?a

m
e a: atomic scattering length > 0 : repulsive
e N: Number of atoms in the condensate

m
Virap = > (w x? + w? VY +w222>

E. P. Gross, Il Nuovo Cimento Series 10, 20, (1961);
L. P. Pitaevskii, Soviet Physics JETP-USSR, 13, (1961);
C. Pethick & H. Smith, Bose-Einstein Condensation in Dilute Gases, (2008)
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Why do we study finite temperature effects?

Region of interest :: 0 < T < T,

e T = 0K is physically unattainable. Experiments take place at
finite temperatures.

e When T # 0, the condensate co-exists with the thermal
cloud. Interactions between condensate and

non-condensate(thermal) atoms cannot be neglected.
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Why do we study finite temperature effects?

Region of interest :: 0 < T < T,

e T = 0K is physically unattainable. Experiments take place at
finite temperatures.

e When T # 0, the condensate co-exists with the thermal
cloud. Interactions between condensate and

non-condensate(thermal) atoms cannot be neglected.

Modify T = 0 GPE to include effects of temperature.



T # 0 regime
Many-body Hamiltonian
A= [ ardi(0) [b0)— ] dtr. )

single-particle part

1 !t T AW "
+2 // drdr’ P (r, )T (r, ) U(r — ¥ )(r, t)(r, t)

two-particle interaction term

where h = K.E + Vigap

Ute =) = gole = ). [ ar (e b)) =

U:: Repulsive contact interaction; N:: Total number of atoms

(90,50 = [3(0), 3] = 0: [dr). ()] = a(r = ¥)

A.Griffin, Phys. Rev. B, 53, (1996)



T # 0 regime

Hartree-Fock-Bogoliubov(HFB) approximation

The Bose field operator is

b t) =D ai()i(r) = do(t)to(r) + D ai()esi(r),
i=1

i=0 =
64””0”17"' 7ni7"'>: \/(ni—i_l)‘nonl;"' 7ni+17"'>7

Qilnony, -+ nj, -+ ) = +/njlnony, -+, nj —1,---).

BEC occurs when: ng = Ng > 1 — Ng, Ng =1 =~ Ny
where Ny — Number of condensate atoms

HFB approximation: &g = &8 = \/ﬁo, then
B(r, t) = /Notho(r)e ™ /" 4 4j(r, 1),
such that, (¢(r, t)) = (P(r, 1)) = 0.

Dalfovo et al, Rev. Mod. Phys., 71, (1999)
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Generalized GP equation

Equation of motion of the Bose field operator

9U(r. 1)

o = (A= (e ) + g (., 2)(r, £)0(r, 1)

ik
where, (r, t) = ¢(r) +(r. t), and ¢(r) = \/Novo(r). ¢/ is the

condensate/non-condensate part.

D, ) (e, ) (r, £) 2 2 (D)D) (v, 1) + ((r)d(r)) D (r, )
— —_—

m

fi — Non-condensate density; m — Anomalous average
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Generalized GPE

Including the thermal component and anomalous term, the
generalized GP equation is

(h— 1)o(r) + glo(r)Po(r) + 2g7i(r)o(r) + gri(r)d"(r) = 0

T —dependent

o h=K.E.+ Virap
o [ 1P de =1

A.Griffin, Phys. Rev. B, 53, (1996);
D. A. W. Hutchinson, E. Zaremba, and A. Griffin Phys. Rev. Lett., 78, (1997)



Generalized GP equation

Bogoliubov de-Gennes equations

Equation of motion of the thermal component

oY 0 .
’ha = ’7?5(@@;@7 ) )
= (h— p) + 2gn(r)y + gm(r)d",
where, n(r) = |p(r)]> + A(r); m(r) = $3(r) + m(r);
) = Z [uj&jef"EJt - vJ-*oAzJT-e’.Eft};

J

uj, v; = quasiparticle amplitudes
Bogoliubov de-Gennes equations:

Lu;j — gmv; = Eju;

* f— . .
Lvi — gm'u;=—Ejy

where £ = h — pi+ 2gn(r)
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Non-condensate density
Density of the thermal component:

Wb =i =3 { [P + 1y @) + 2}
J
and multiplying factor

<OéJ-O[J'> = ﬁ = No(EJ)

is the Bose-Einstein distribution.

At T=0,i= Z |vi|*> — Quantum depletion
J

The anomalous average:

(BB = == wvy [26a)a) +1],

J

A.Griffin, Phys. Rev. B, 53, (1996)



Generalized GP equation

Summary of steps
I. Generalized GPE:

(h = 1)d(r) + glo(N)P6(r) + 2g7(r)o(r) + gmg* (r) =
Il. Bogoliubov de-Gennes equations:

Lup — gmy; = Ejy

* —_— . .
Lvi — gm'u;=—Ejy

where £ = h — 1+ 2g(|o(r)|? + 7)
I1l. Non-condensate density:

i(r) = Z{qurmvm (@) + v}
m(r) = —Zuj i) + 1]



Generalized GP equation

Problems in HFB

e HFB theory is not gapless. Violates Hugenholtz-Pines
theorem.
Reason :: Approximate factorization of operator averages
e The anomalous pair average m is divergent.

Reason :: Inconsistent treatment of collisions through contact
potential. Treats collisions of different energy with same

probability.
Gapless finite temperature approximation
U
Neglect m.
U

HFB-Popov approximation
Validin0 < T <0.657,

N. P. Proukakis and B. Jackson, J. Phys. B, 41, (2008)



Solitons

Solitons in BEC

e Localized disturbances which propagate without change of
form. Subject of intensive study in nonlinear optics describing
the propagation of light pulses in optical fibers.

Ultracold atoms:

e At T =0, 1D GPE predicts a stable dark (bright) solitonic
solution when inter-atomic interactions are repulsive
(attractive).

e Features of dark soliton

» Local density minimum and is equal to zero,

» Sharp phase gradient of 7 across the position of minimum of
the wave function.

» Presence of an anomalous mode — signature of an energetically
excited state.

At T # 0, dark soliton exhibits dynamical instabilities.

C. Pethick & H. Smith, Bose-Einstein Condensation in Dilute Gases, (2008)
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Solitons in BEC

e Features of dark soliton
» Local density minimum and is equal to zero,
» Sharp phase gradient of 7 across the position of minimum of
the wave function.
» Presence of an anomalous mode — signature of an energetically
excited state.

e At T # 0, dark soliton exhibits dynamical instabilities.

C. Pethick & H. Smith, Bose-Einstein Condensation in Dilute Gases, (2008)
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Formation of soliton

e Spontaneously created during the formation of quasi-1D BECs
through Kibble-Zurek mechanism for ~ 10° Sodium (Na)
atoms. Ref: Lamporesi et. al, Nat. Phys. 9 (2013).

e Phase-imprinting employed to create solitons in elongated
BECs for ~ 10° Rubidium (8"Rb) atoms.

Ref: Burger et. al, PRL 83 (1999); Becker et. al, Nat. Phys.

4 (2008).
"\
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Solitons

Anomalous mode
Krein sign A; = / dz (|Uj|2 - |VJ|2)EJ

o Negative Krein sign implies presence of anomalous mode.
Signature of energetic instability.

e When modes with opposite Krein sign collide, it gives rise to
complex eigenfrequencies. Signature of dynamical instability.

Goldstone Anomalous Kohn
0.8
0.15 fu — a b 0.15 c
v —
! . ) m
-0.15 -0.15
-0.8
-8 0 8 -8 0 8 -8 0 8

Middelkamp et. al, Phys. Rev. A, 81, (2010)
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Fluctuation induced instability: T = 0 results

3.0
asr = ag
i = 100
2. 87 =
2.0 N Rb 2000
% Wz87TRp — 27 X 4.55Hz
= L0 e s : w| = 20w,
0
0 25 50 75 100
Number of iteration
200
<
100
0 N . . 0 2 &
-10 0 10 2 (in units of dos.) 4



Solitons

Quantum Depletion at T =0

30 1o
1.5
20
12 0

(0 S '

0 50 100 150 200

a1 (in units of ao)

o0

N :/ ii dz, N=500(Blue), 1000(Green), 2000(Black)

—0o0
Solid lines— Presence of soliton,
Dashed lines— Absence of soliton,

AR, D. Angom , arXiv : 1405:6459
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Unique feature of binary BEC

Role of interactions
Phase Separation

U1 Ux — (U2)* > 0 Ur1Uap — (U12)? <0
Miscible regime Immiscible regime

4 4
55 =780 g, (f) a,=51a, (e)

)
[

%Rb-%"Rb

summed OD (10%)
n

summed OD (10°)

o

-200 -100 0 100 200
position (um)

200 100 0 100 200
position (um)

Papp et. al, Phys. Rev. Lett., 101, (2008)
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Experimental realization of binary BEC

2 different atoms

87 Rb_41 K

Thalhammer et. al, PRL, 100, (2008) . .

4e 87 2 different isotopes
Sr—°'Rb

Pasquiou et. al, PRA, 88, (2013) ° 85 Rb_87 Rb

23Na_87 Rb Papp et. al, PRL, 101, (2008)

Xiong et. al, arXiv:1305.7091, (2013)

133 Cs_87 Rb

McCarron et. al, PRA(R), 84, (2011)

2 different hyperfine
states

® |F=1,mp=+1),
|F =2, me = —1) Of
%"Rb
|[F=2,m=
2),|F=2,m=-1)

Tojo et. al, PRA, 82, (2010)
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Coupled Generalized GP equation

From HFB-Popov approximation

Vv, ®1 I

(w) = () (2):
higr + Ui [me + 2] é1 + Uianace + fiz]ér = 0,
hagy +  Una [mac + 2fi2] 2 + Una[nic + fiz]én = 0.

e e = |¢|?: Condensate density of k™ species

e fix : Non-condensate density of k' species

. h2 2
where, h, = — > v

\/ _
e + Vi(r) — pk



Binary BEC

BdG Equations
Liwj — Un1¢3vij + Urnoi(dua; — davaj) hEjuyj,
—L1vij + Unngi?uj — Unogi(davoj — dpuzj) = hEjvaj,
Lowj — Unpd3vaj + Unago(diurj — p1vij) = hEjuyj,
)

—Lovoj + Unngs?upj — Unady(drvij — diury) = hEjva,
where, £; = (/A71 + 2U11m + Ui2ny),
LAQ = (/A'lz + 2Uxn + U12n1),
n = N+ Ay, 2 = nac + fa.

Felr,t) = 3 [ (1)) — vy (n)a] (1)
J
Non-Condensate density:

Z{iummm o(E) + [vigl?}

AR, S. Gautam, D. Angom, Phys. Rev. A.,89, (2014)
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Soliton in binary BEC

Density profiles
from miscible to immiscible(phase-separated)
13305 —87 Rb mixture in quasi-1D trap
(wz(rb) = 27 x 3.89Hz, w,(cs) = 27 x 4.55Hz,w | = 30w,)
acscs = 280ap, arpry, = 100ag

1000 | p= — a b c
cRb T
z
g
S 500
0
42 0 12 <12 0 12 -12 0 12
a —_ b
120 s LS ¢
T 60
0
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Interaction induced instability : T = 0 results

Mode evolution

w/w:(*33Cs)

w/w:(*33Cs)

O fecececcessilisttseegesnesecsegecsecnnes

300 330 360 290 300 310 320 330
a;5(in units of aj)

a12(in units of ao)

TBEC with soliton TBEC without soliton

AR, S. Gautam, D. Angom, Phys. Rev. A.,89, (2014)
AR, D. Angom , arXiv : 1405:6459
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Metamorphosis: From Bogolon to Goldstone
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Conclusion

We have predicted fluctuation induced instability due to dark
soliton in BECs at T = 0.

We have also shown presence of soliton enhances the
quantum depletion.

We have generalized HFB-Popov approximation to analyze
finite temperature effects on binary mixtures of Bose
condensed gases.

Symmetry preserving solution of highly phase separated
condensates with soliton gives rise to a fourth additional
Goldstone mode. Earlier, the presence of a third Goldstone
mode was also predicted in highly immiscible binary BEC
without soliton.

Binary BEC with soliton in one of the components give rise to
interaction induced instability.
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Conclusion

We have predicted fluctuation induced instability due to dark
soliton in BECs at T = 0.

We have also shown presence of soliton enhances the
quantum depletion.

We have generalized HFB-Popov approximation to analyze
finite temperature effects on binary mixtures of Bose
condensed gases.

Symmetry preserving solution of highly phase separated
condensates with soliton gives rise to a fourth additional
Goldstone mode. Earlier, the presence of a third Goldstone
mode was also predicted in highly immiscible binary BEC
without soliton.

Binary BEC with soliton in one of the components give rise to
interaction induced instability.

THANK YOU
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