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Introduction

Outline:
I Emergence of the third Goldstone mode in binary condensates at

phase-separation for density profiles where one component is
surrounded on both sides by the other component.

I At higher interspecies interaction, the third Goldstone mode
persists for the above case. This does not happen in
symmetry-broken density profiles where one species is to entirely to
the left and the other is entirely to the right.

I We use Hartree-Fock-Bogoliubov theory with Popov approximation
to examine the mode evolution at T 6= 0 and demonstrate the
existence of mode bifurcation near the critical temperature.

I The Kohn mode exhibits deviation from the natural frequency at
finite temperatures after the phase separation.

Theory

I For a quasi-1D system (cigar shaped condensate) the trapping
potential V = (1/2)m(ω2

xx2 + ω2
yy2 + ω2

z z2), the trapping frequencies
should satisfy the condition ωx = ωy = ω⊥ � ωz.

I Grand-canonical Hamiltonian, in the second quantized form,
describing the mixture of two interacting BECs is given by

H =
∑
k=1,2

∫
dzΨ̂†k(z, t)

[
− ~2

2mk

∂2

∂z2 + Vk(z)− µk +
Ukk

2
Ψ̂†k(z, t)Ψ̂k(z, t)

]
Ψ̂k

+U12

∫
dzΨ̂†1(z, t)Ψ̂†2(z, t)Ψ̂1(z, t)Ψ̂2(z, t),

The strength of intra- and inter-species interactions are
Ukk = (akkλ)/mk and U12 = (a12λ)/(2m12), respectively, where
λ = (ω⊥/ωz)� 1 is the anisotropy parameter.

I Equation of motion of the Bose field operators is

i~
∂

∂t

(
Ψ̂1

Ψ̂2

)
=

(
ĥ1 + U11Ψ̂†1Ψ̂1 U12Ψ̂†2Ψ̂1

U12Ψ̂†1Ψ̂2 ĥ2 + U22Ψ̂†2Ψ̂2

)(
Ψ̂1

Ψ̂2

)
where ĥk = (−~2/2mk)∂

2/∂z2 + Vk(z)− µk. We define
Ψ̂(z, t) = Φ(z) + Ψ̃(z, t), where Φ(z) is a c-field and represents the
condensate, and Ψ̃(z, t) is the fluctuation part.(

Ψ̂1

Ψ̂2

)
=

(
φ1

φ2

)
+

(
ψ̃1

ψ̃2

)
,

For a TBEC, φks are the stationary solutions of the coupled
generalized GP equations, with time-independent HFB-Popov
approximation, given by

ĥ1φ1 + U11 [nc1 + 2ñ1]φ1 + U12n2φ1 = 0,
ĥ2φ2 + U22 [nc2 + 2ñ2]φ2 + U12n1φ2 = 0,

where, nck(z) ≡ |φk(z)|2, ñk(z) ≡ 〈ψ̃†k(z, t)ψ̃k(z, t)〉, and
nk(z) = nck(z) + ñk(z) are the local condensate, non-condensate, and
total density, respectively.

Hartree-Fock-Bogoliubov-Popov approximation

Using Bogoliubov transformation

ψ̃k(z, t) =
∑

j

[
ukj(z)α̂j(z)e−iEjt − v∗kj(z)α̂†j (z)eiEjt

]
,

where, α̂j (α̂†j ) are the quasi-particle annihilation (creation) operators.
I Bogoliubov-de Gennes equations (BdG) for TBEC

L̂1u1j − U11φ
2
1v1j + U12φ1 (φ∗2u2j − φ2v2j) = Eju1j,

L̂1v1j + U11φ
∗2
1 u1j − U12φ

∗
1 (φ2v2j − φ∗2u2j) = Ejv1j,

L̂2u2j − U22φ
2
2v2j + U12φ2 (φ∗1u1j − φ1v1j) = Eju2j,

L̂2v2j + U22φ
∗2
2 u2j − U12φ

∗
2 (φ1v1j − φ∗1u1j) = Ejv2j,

where L̂1 =
(
ĥ1 + 2U11n1 + U12n2), L̂2 =

(
ĥ2 + 2U22n2 + U12n1

)
and

L̂k = −L̂k. To solve, we consider

u1j =

N∑
i=0

pijξi, v1j =

N∑
i=0

qijξi,

u2j =

N∑
i=0

rijξi, v2j =

N∑
i=0

sijξi,

where ξi is the ith harmonic oscillator eigenstate and pij, qij, rij and sij

are the coefficients of linear combination.
I The number density ñk of the non-condensate atoms is

ñk =
∑

j

{[|ukj|2 + |vkj|2]N0(Ej) + |vkj|2},

where 〈α̂†j α̂j〉 = (eβEj − 1)−1 ≡ N0(Ej) is the Bose factor of the
quasi-particle state with real and positive energy Ej.

It should be emphasized that, when T → 0, N0(Ej)’s vanishes. The
non-condensate density is then reduced to

ñk =
∑

j

|vkj|2.

Thus, at zero temperature we need to solve the equations
self-consistently as the quantum depletion term |vkj|2 in the above
equation is non-zero.

Numerical Scheme

I For the T = 0 studies we solve the pair of coupled GP equations by
neglecting the non-condensate density (ñk = 0) using
Crank-Nicholson method adapted for binary condensates.

I Using the stationary ground state wave function of the TBEC. we
cast the BdG equations as a matrix eigenvalue equation in the basis
of the trapping potential.

I The matrix is then diagonalized using the LAPACK routine zgeev to
find the quasi-particle energies and amplitudes, Ej, and uk’s and vk’s,
respectively. These uk’s and vk’s along with Ej are used to get the
initial estimate of ñk .

I Using this updated value of ñk, the ground state wave function of
TBEC φk and chemical potential µk are again re-calculated. This
procedure is repeated till the solutions reach desired convergence.

I In general, the convergence is not smooth and we encounter severe
oscillations very frequently. To damp the oscillations and accelerate
convergence we employ successive over (under) relaxation
technique for updating the condensate (non-condensate) densities.

Results at T = 0

Mode evolution & density profiles of trapped TBEC
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First panel – Miscible to sandwich type density profile with
aCsRb = {200a0, 310a0, 420a0} respectively.

Second panel – Miscible to side-by-side density profile with
a85Rb87Rb = {100a0, 290a0, 400a0} respectively.

Right figure – Low-lying modes of 85Rb-87Rb.
At phase separation the structure of the density profiles is
side-by-side and one of the modes goes soft.

Trapping frequencies: ωz(Rb) = 2π × 3.89Hz and
ωz(Cs) = 2π × 4.55Hz.ω⊥(Cs) = 2π × 40.2Hz and ω⊥(Rb) = 2π × 32.2Hz

0

2.0

4.0

0 100 200 300 400

ω
/ω

z
(1

3
3
C

s
)

a

0

0.5

1.0

1.5

2.0

2.5

290 300 310 320 330

ω
/ω

z
(1

3
3
C

s
)

a12(in units of a0)

b

-0.04

0

0.04

u
(z

),
 v

(z
)

a

aCsRb=0a0

uCs(z)
vCs(z)
uRb(z)
vRb(z)

b

aCsRb=125a0

c

aCsRb=250a0

-0.04

0

0.04

-12 0 12

u
(z

),
 v

(z
)

d

aCsRb=300a0

-12 0 12
z (in units of aosc)

e

aCsRb=350a0

-12 0 12

f

aCsRb=400a0

Left figure – Evolution of the low-lying modes in the domain
0 6 aCsRb 6 400a0 for N87Rb = N133Cs = 104. Third Goldstone mode
emerges.

Right figure – Evolution of quasi-particle amplitude corresponding to
the Rb Kohn mode as aCsRb is increased from 0 to 400a0.

Results at T 6= 0

Mode evolution & density profiles of trapped TBEC
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Frequencies (ωj) of the low-lying modes at T/Tc 6= 0 with N = 103.
Evolution of the modes indicates bifurcations at T/Tc ≈ 1.
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Profiles correspond to NRb = 840(NCs = 8570),
NRb = 3680(NCs = 8510), and NRb = 15100(NCs = 6470), at T = 25nK.

Results of TBEC with soliton at T = 0
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Left figure – Evolution of the low-lying modes in the domain
0 6 aCsRb 6 420a0 for N87Rb = N133Cs = 103. Third and fourth
Goldstone mode emerges.

Emergence of fourth Goldstone mode :

Right figure – Evolution of quasi-particle amplitude corresponding to
the Rb Kohn mode as aCsRb is increased from 0 to 420a0.

Trapping frequencies: ωz(Rb) = 2π × 3.89Hz and
ωz(Cs) = 2π × 4.55Hz.ω⊥(Cs) = 30ωz(Cs)Hz and ω⊥(Rb) = 30ωz(Rb)Hz.
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Evolution of quasi-particle amplitude corresponding to the fourth
excited mode as aCsRb is increased from 0 to 420a0.

Nature of mode collisions

I Green dots – anomalous modes.
I Purple dots – complex modes.
Several instances of avoided crossings and mode collision are
evident.
Salient features:
I Mode collision occurs when the anomalous mode collides with an

excited state.
I The modes either cross each other or undergo bifurcation giving rise

to complex eigenmodes.
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(a-b) Quasi-particle amplitude corresponding to the anomalous and
fourth excited mode respectively, for aCsRb = 261a0.

(c-d) Quasi-particle amplitude corresponding to the anomalous and
sixth excited mode respectively, for aCsRb = 279a0. These two modes
after colliding gives rise to complex eigenfrequencies, which makes
the system oscillatory unstable.

Different mass ratios

Interplay of mass difference and intra-species scattering length:
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The evolution of the low-lying modes of the TBEC with soliton for
different mass ratios as a function of the inter-species scattering
length a12 in the domain 0 6 a12 6 420a0. The masses of the first and
second species in each of the panels correspond to (a) 95 and 87,
(b) 100 and 87, and (c) 105 and 87 amu, respectively for Ni = 103.
The intra-species scattering lengths of the first and second species
are a11 = 280a0 and a22 = 100a0, respectively. Shown here is only the
real part of ω/ωz.

Characteristic Features:

I In Fig. (a) with m1 = 95, the anomalous mode goes soft at phase
separation and becomes the third Goldstone mode of the system. In
addition, there are no mode collisions involving the anomalous
mode.

I In Fig. (b) with m1 = 100 two major changes in the mode evolution
are evident: there is an additional mode below the Kohn mode; and
anomalous mode collides with the second excited mode twice at
a12 ≈ 180a0 and 320a0. The emergence of a bifurcation is evident in
the second mode collision at a12 ≈ 320a0.

I In Fig. (c), the trend in the mode collision for m1 = 105 bear close
resemblance to the 87Rb-133Cs mixture. In this case, the bifurcation
arising from the collision between the anomalous and sixth excited
mode is quite evident.

I Soliton induced change in the density profiles when the atomic
masses of the two species differ widely. Based on a series of
computations, we find an enhancement in the mass ratio at which
the heavier species, with higher scattering length, occupies the
central position at phase separation.

Conclusions

I In TBEC with dark soliton at z = 0 with strong interspecies
interaction, we observe four Goldstone modes.

I TBECs with soliton in one of the components oscillate while
interacting even at zero temperature. This is due to the non-zero
density of the species without the soliton within the notch of the dark
soliton.
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