Mode bifurcation in the Rayleigh-Taylor instability of binary condensates
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Introduction

» Rayleigh-Taylor Instability(RTl)is an instability of an interface when
a lighter fluid supports a heavier one in a gravitational field or
some external potential.

» It can also occur when a lighter fluid pushes a heavier one.

» Occurs due to unfavourable energy conditions and as a result, the
fluids tend to swap their positions.

» Leads to turbulent mixing of the two fluids as the perturbations at
the interface grow exponentially.

RTI in binary Bose-Einstein condensates

Objectives:

» We examine the generation and subsequent evolution of RTI in
anisotropic two-species Bose-Einstein condensates(TBEC) in a
pancake-shaped trap.

» Initiate instabllity, we tune intraspecies interaction between atoms.

» We analytically study normal modes of interface using elliptic
cylindrical coordinates.

» We find the normal modes undergo bifurcation at particular values
of anisotropy. and ratio of number of atoms.

Phase separated pancake-shaped TBECs

» 2-D Gross-Pitaevskii(GP) equation(scaled units)
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Normal modes of the interface

Helmholtz equation in 2D(scaled units)
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» This equation is valid only at the interface or close to it, where
densities are low.

» In elliptic cylindrical coordinates, Helmholtz equation assumes
the form of Mathieu equations
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» u represents the ellipse, v is the angular coordinate which varies
and lies in the domain [0, 27).

Allowed solutions
» Solutions of the angular Mathieu equation, are the ce,, (v, ¢) and
se, (v, g) functions, cosine and sine elliptic functions, respectively.
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» The solution of interest is ce, (v, ¢), it satisfies

> cez(v,q) = cex(v + m,q) and

»cez2(v,q) = cex(—v,q)
> cez(v,q) is maximum atv = 0

» Undergoes a smooth bifurcation at higher values of 4.

» At higher anisotropy parameter «, instead of four there must be six
mushroom shaped inward superfluid flow, which matches with our
numerical results.

Growth Rate

s==x[A+2g (1 —cos 2\/)]‘ll [8:’1;:2)] |
1+ 12

» 11(n,) refers to density of outer(inner) species.
» BTl sets in when n; > n,.
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Numerical Results

Mode bifurcation and density profiles
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Salient Features:
» Density profiles show early stages of RTI.

» Development of non-linear patterns on changing the anisotropy of
the trap.

» Bifurcation occurs at particular value of «.
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