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Introduction

Bose-Einstein Condensation

I Macroscopic occupation of non-interacting bosons in the
ground state of the system

I A gas of bosonic particles cooled below a critical temperature
Tc condenses into an ideal Bose-Einstein condensate (BEC)

I Criteria for condensation

$ = n

(
2π~2

mkT

)3/2

= 2.612,

I De Broglie wavelength λdB comparable to the distance
between the particles–wave packets start to overlap

Anderson et. al, Science 269, (1995);
Davies et. al, Phys. Rev. Lett. 75, (1995);
Ketterle et. al, Rev. Mod. Phys. 74, (2002).
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Introduction

Basic Phenomenon

P. Muruganandam (Workshop on HPC, PRL Ahmedabad, 2012).
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Introduction

General Criteria for BEC
When interactions are present⇒ Single-particle energy levels are
not defined. A reduced single-particle density operator is defined

ρ̂1 ≡ Tr2,3,···N ρ̂

where Tr2,3,···N →Trace of ρ̂ w.r.t particles 2, 3, · · ·N

I Define σ̂1 = N ρ̂1

I Penrose-Onsager condition:

nM
N

= eO(1)

I nM : largest eigenvalue of σ̂1, condensation occurs in
corresponding eigenstate

I eO(1): positive number of the order of unity.

O. Penrose and L. Onsager, Phys. Rev, 104, (1956)
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Gross-Pitaevskii equation

Gross-Pitaevskii equation
I Equation of motion of the condensate wavefunction is given

by Gross-Pitaevskii equation (GPE), strictly valid at T = 0K.

i~
∂ψ

∂t
=

[
− ~2

2m
∇2 + Vtrap(r) + gN|ψ|2

]
ψ,

I ψ ≡ ψ(r, t) : condensate wave function

I g =
4π~2a

m
I a: s-wave scattering length > 0 : repulsive
I N: Number of atoms in the condensate

Vtrap =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
z z

2

)
E. P. Gross, Il Nuovo Cimento Series 10, 20, (1961);
L. P. Pitaevskii, Soviet Physics JETP-USSR, 13, (1961);
C. Pethick & H. Smith, Bose-Einstein Condensation in Dilute Gases, (2008)
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Effects of finite temperature on condensates

Why do we study finite temperature effects?

Region of interest :: 0 < T < Tc

I T = 0K is physically unattainable. Experiments take place at
finite temperatures.

I When T 6= 0, the condensate co-exists with the thermal
cloud. Interactions between condensate and non-condensate
(thermal) atoms cannot be neglected.

Modify GPE to incorporate the effects of temperature.
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Finite Temperature models

Finite Temperature models
Stationary Case:

I Hartree-Fock-Bogoliubov-Popov approximation

I Modified Popov approximation

Dynamical Case:

I Projected Gross-Pitaevskii equation

I Truncated Wigner approximation

I Self-consistent Gross-Pitaevskii-Boltzmann (ZNG formalism)

I Dissipative Gross-Pitaevskii equation

I Stochastic Gross-Pitaevskii equation (SGPE)

AR, S. Gautam, and D. Angom, Phys. Rev. A, 89, (2014);
Blakie et. al, Adv. Phys., 57, (2008);
A. J. Allen, Ph.D. Thesis (2010);
N. P. Proukakis and B. Jackson, J. Phys. B, 41, (2008)
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Langevin equation

Langevin equation of Brownian motion
I The apparently random movement of a particle in a fluid due

to collisions with the molecules of the fluid is termed as
Brownian motion.

I The equation of motion for a particle of mass m, subjected to
the frictional force, is given by Stokes’ law F = – αv

m
dv

dt
= −αv

⇒ v = v0e
−γt

I Solution implies that the motion will dissipate with a
characteristic time τ = 1/γ = m/α

I The average thermal velocity of a particle within a liquid at
some temperature T

vt =

√
kT

m
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Langevin equation

Langevin equation
I To take into account the random thermal background motion,

the force acting on the particle is written as a sum of a
viscous force proportional to the particle’s velocity (Stokes’
law), and a noise term Γ(t)

dv

dt
= −γv + Γ(t)

I Noise term (Langevin force), which has Gaussian probability
distribution, satisfies the relations

〈Γ(t)〉 = 0, 〈Γ(t)Γ(t ′)〉 = qδ(t − t ′),

I The solution of the Langevin equation

v(t) = v0e
−γt + e−γt

∫ t

0
eγt

′
Γ(t ′)dt ′

N. Pottier, Nonequilibrium Statistical Physics, (2010)
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Langevin equation

Fluctuation-dissipation relation

I Velocity correlation between two times in long time limit
(t1, t2 � γ−1)

〈v(t1)v(t2)〉 =
q

2γ
[e−γ|t1−t2|]

I Equipartition relation

1

2
m〈[v(t)]2〉 =

1

2
kT

I Relation between the strength of the noise and the magnitude
of the damping

q =
2γkT

m

This relation must be satisfied if thermal equilibrium is to be
reached at long times.
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Stochastic Gross-Pitaevskii equation

Stochastic GP equation / Langevin equation for BEC

I At finite temperatures a BEC can described by Stochastic
GP equation (SGPE),

i~
∂Ψ

∂t
= (1−iγ)

[
− ~2

2m
∇2 + Vtrap − µ+ g |Ψ|2

]
Ψ(x, t)+η(x, t)

γ → Dissipation, µ→ Chemical Potential

I The fluctuating noise term satisfies

〈η(x, t)〉 = 0

〈η(x, t)η(x′, t ′)〉 = 2γkT~δ(x− x′)δ(t − t ′)

I The strength of the noise is ∝
√
γkT

R. A. Duine and H. T. C. Stoof, Phys. Rev. A, 65, (2001);
S. P. Cockburn, Bose Gases In and Out of Equilibrium within the Stochastic
Gross-Pitaevskii Equation, Ph.D. Thesis (2010)
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Stochastic Gross-Pitaevskii equation

What is Ψ in SGPE ?

System described by SGPE is divided into two parts:

I Few highly occupied low-lying modes which is represented by
a Langevin field Ψ(x, t).

I A heat bath denoted by the noise η. Effect of the higher
modes is taken into account by the noise.

I Langevin field Ψ = 〈Ψ̂〉+ δΨ̂ ≡ Φ + δΨ̂

Φ→ Condensate part at T = 0
δΨ̂→ Non-condensate part (thermal fluctuations).

To extract the condensate part from the Langevin field, one has to
employ Penrose-Onsager criterion.

S. P. Cockburn,Bose Gases In and Out of Equilibrium within the Stochastic
Gross-Pitaevskii Equation, Ph.D. Thesis (2010)
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Dynamics of single vortex at T 6= 0

Dynamics of single vortex at T 6= 0

I We consider a BEC in quasi-two dimensional trap for which
ωx = ωy � ωz . The axial degrees of freedom of the system
are frozen.

I We use the scaled two-dimensional equation after integrating
out the axial coordinate:

(i − γ)
∂ψ

∂t
=

(
−∇2

xy + 2Vxy + 2gxy |ψ|2 − 2µ
)
ψ

+
2η

1− iγ
,

where ∇2
xy = ∂2/∂x2 + ∂2/∂y2, Vxy = x2/2 + y2/2 and

gxy =
√
λz/2πg
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Dynamics of single vortex at T 6= 0

Present work
Parameter Set:
We choose ω = ωx = ωy = 2π × 10 Hz and ωz = 2π × 100 Hz.
We consider ≈ 1× 105-1.5× 105 atoms of 87Rb.
The s-wave scattering length of 87Rb is 99a0.
T q2d
c ≈ 44− 53 nK.

We take dissipation parameter

γ = κ
4mkT

π

(a
~

)2
,

where κ = 3 (reproduces the growth rate observed in most
experiments).
Higher temperature implies greater rate of decay.
We first generate a single vortex by rotating the condensate
with a frequency Ω = 0.1 ωx at T = 30 nK, 40 nK and 50 nK

Penckwitt et. al Phys. Rev. Lett., 89, (2002).
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Dynamics of single vortex at T 6= 0

Present work

Results:
For a temperature of 40 nK,

x Hunits of aoscL
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The panel on the right shows the trajectory traversed by the vortex
for two different values of γ; γ = 7.5× 10−4 (left) and
γ = 7.5× 10−3 (right).
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Dynamics of single vortex at T 6= 0

Present work
In absence of rotation,

I Vortex slowly spirals out of the condensate. This leads to the
decrease in energy of the system, which indicates the energetic
instability of the vortex state.

I The lowest mode known as the fundamental Kelvin mode or
anomalous mode is stable only if the condensate is rotating at an
optimum frequency. In the absence of rotation, the energy of the
fundamental Kelvin mode becomes negative, which indicates the
energetic instability of this mode.

I At T = 0 K, when there is no dissipation, an off-center vortex will
follow an isoenergetic circular trajectory around the center of the
trap .

I At T 6= 0, the dissipation slowly reduces the energy of the
condensate and hence makes the vortex execute a spiral trajectory
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I We have studied the dynamics of a single vortex in quasi
two-dimensional systems at finite temperatures using the
SGPE.

I We find the single vortex tends to decay at finite temperature
which is not the case at T = 0.
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