A story of geometry and fluctuations in the stage of condensates

Arko Roy
Physical Research Laboratory, Ahmedabad

March 10, 2016

Young Physicists' Meet - 2016

AR, D. Angom, arXiv:1511.08655 (2015)

Plan of the talk

Motivation

Generalized GP equation

Results

Conclusions

Trapping potential

from simply to multiply connected

From pancake to toroidal
How does the fluctuations get modified?

Toroidal condensates

- Spontaneous seeding of topological defects through Kibble-Zurek mechanism
(Weiler et al. Nature 455, 948 (2008))
- Observation of persistent superfluid flow (Ryu et al., Phys. Rev. Lett. 99, 260401 (2007))

What is the basic nature of the fluctuations in toroidal condensates ?
can provide fundamental understanding on the scale, structure, and energetics of the defect formation.
W. H. Zurek, Nature 317, 505 (1985)
T. W. B. Kibble, J. Phys. A 9, 1387 (1976)

Gross-Pitaevskii equation (GPE)

- Equation of motion of the condensate wavefunction is given by Gross-Pitaevskii equation(GPE), strictly valid at $T=0 \mathrm{~K}$.

$$
i \hbar \frac{\partial \psi}{\partial t}=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{\text {trap }}(\mathbf{r})+g N|\psi|^{2}\right] \psi
$$

- $\psi \equiv \psi(\mathbf{r}, t)$: condensate wave function
- $g=\frac{4 \pi \hbar^{2} a}{m}$
- a: atomic scattering length >0 : repulsive
- N : Number of atoms in the condensate
E. P. Gross, II Nuovo Cimento Series 10 20, (1961),
L. P. Pitaevskii, Soviet Physics JETP-USSR 13, (1961),
C. Pethick \& H. Smith, Bose-Einstein Condensation in Dilute Gases, (2008)

Many-body Hamiltonian

$$
\begin{aligned}
\hat{H}= & \int \underbrace{d \mathbf{r} \hat{\psi}^{\dagger}(\mathbf{r}, t)[\hat{h}(\mathbf{r})-\mu] \hat{\psi}(\mathbf{r}, t)}_{\text {single-particle part }} \\
& +\frac{1}{2} \iint \underbrace{d \mathbf{r} d \mathbf{r}^{\prime} \hat{\psi}^{\dagger}(\mathbf{r}, t) \hat{\psi}^{\dagger}\left(\mathbf{r}^{\prime}, t\right) U\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \hat{\psi}\left(\mathbf{r}^{\prime}, t\right) \hat{\psi}(\mathbf{r}, t)}_{\text {two-particle interaction term }}
\end{aligned}
$$

where $\hat{h}=K . E+V_{\text {trap }}$

$$
U\left(\mathbf{r}-\mathbf{r}^{\prime}\right)=g \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right),\left\langle\int d \mathbf{r} \hat{\psi}^{\dagger}(\mathbf{r}, t) \hat{\psi}(\mathbf{r}, t)\right\rangle=N
$$

$U::$ Repulsive contact interaction; N :: Total number of atoms

$$
\left[\hat{\psi}(\mathbf{r}), \hat{\psi}\left(\mathbf{r}^{\prime}\right)\right]=\left[\hat{\psi}^{\dagger}(\mathbf{r}), \hat{\psi}^{\dagger}\left(\mathbf{r}^{\prime}\right)\right]=0 ;\left[\hat{\psi}(\mathbf{r}), \hat{\psi}^{\dagger}\left(\mathbf{r}^{\prime}\right)\right]=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

A.Griffin, Phys. Rev. B 53, 9341 (1996)

Generalized GP equation

Equation of motion of the Bose field operator

$$
i \hbar \frac{\partial \hat{\psi}(\mathbf{r}, t)}{\partial t}=(\hat{h}-\mu) \hat{\psi}(\mathbf{r}, t)+g \hat{\psi}^{\dagger}(\mathbf{r}, t) \hat{\psi}(\mathbf{r}, t) \hat{\psi}(\mathbf{r}, t)
$$

where, $\hat{\psi}(\mathbf{r}, t)=\phi(\mathbf{r})+\tilde{\psi}(\mathbf{r}, t) . \phi / \tilde{\psi}$ is the condensate/fluctuation part.

Including the fluctuation terms, the generalized GP equation is

$$
(\hat{h}-\mu) \phi(\mathbf{r})+g|\phi(\mathbf{r})|^{2} \phi(\mathbf{r})+\underbrace{2 g \tilde{n}(\mathbf{r}) \phi(\mathbf{r})+g \tilde{m}(\mathbf{r}) \phi^{*}(\mathbf{r})}_{T \text {-dependent }}=0
$$

using the HFB approximation.

- $\hat{h}=K . E .+V_{\text {trap }}, \int|\phi(\mathbf{r})|^{2} d \mathbf{r}=1$
A.Griffin, Phys. Rev. B 53, 9341 (1996);

Hutchinson et. al Phys. Rev. Lett. 78, 1842 (1997)

Bogoliubov de-Gennes equations

Equation of motion of the fluctuation operator

$$
\begin{aligned}
i \hbar \frac{\partial \tilde{\psi}}{\partial t} & =i \hbar \frac{\partial}{\partial t}(\hat{\psi}-\phi) \\
& =(\hat{h}-\mu) \tilde{\psi}+2 g n(\mathbf{r}) \tilde{\psi}+\operatorname{gm}(\mathbf{r}) \tilde{\psi}^{\dagger}
\end{aligned}
$$

where, $n(\mathbf{r})=|\phi(\mathbf{r})|^{2}+\tilde{n}(\mathbf{r}) ; m(\mathbf{r})=\phi^{2}(\mathbf{r})+\tilde{m}(\mathbf{r})$;
$\tilde{\psi}=\sum_{j}\left[u_{j} \hat{\alpha}_{j} e^{-i E_{j} t}-v_{j}^{*} \hat{\alpha}_{j}^{\dagger} e^{i E_{j} t}\right] ;$
$u_{j}, v_{j} \Rightarrow$ quasiparticle amplitudes
Bogoliubov de-Gennes equations:

$$
\begin{aligned}
\mathscr{L} u_{j} & -g m v_{j}=E_{j} u_{j} \\
\mathscr{L} v_{j} & -g m^{*} u_{j}=-E_{j} v_{j}
\end{aligned}
$$

where $\mathscr{L}=\hat{h}-\mu+2 g n(\mathbf{r})$

Non-condensate density

Density of the thermal component:

$$
\left\langle\tilde{\psi}^{\dagger}(\mathbf{r}) \tilde{\psi}(\mathbf{r})\right\rangle=\tilde{n}=\sum_{j}\left\{\left[\left|u_{j}\right|^{2}+\left|v_{j}\right|^{2}\right]\left\langle\hat{\alpha}_{j}^{\dagger} \hat{\alpha}_{j}\right\rangle+\left|v_{j}\right|^{2}\right\} .
$$

and multiplying factor

$$
\left\langle\hat{\alpha}_{j}^{\dagger} \hat{\alpha}_{j}\right\rangle=\frac{1}{e^{\beta E_{j}}-1} \equiv N_{0}\left(E_{j}\right)
$$

is the Bose-Einstein distribution.
At $T=0, \tilde{n}=\sum_{j}\left|v_{j}\right|^{2} \rightarrow$ Quantum depletion
The anomalous average

$$
\langle\tilde{\psi}(\mathbf{r}) \tilde{\psi}(\mathbf{r})\rangle=\tilde{m}=-\sum_{j} u_{j} v_{j}^{*}\left[2\left\langle\hat{\alpha}_{j}^{\dagger} \hat{\alpha}_{j}\right\rangle+1\right],
$$

is neglected in the HFB-Popov approximation.
A. Roy and D. Angom, Phys. Rev. A 90, 023612 (2014)
A.Griffin, Phys. Rev. B 53, 9341 (1996)

Quasiness

from harmonic to toroidal
$V(x, y, z)=(1 / 2) m \omega_{x}^{2}\left(x^{2}+\alpha^{2} y^{2}+\lambda^{2} z^{2}\right)$
Quasi-2D condition
$\omega_{x}, \omega_{y} \ll \omega_{z}$, and $\hbar \omega_{z} \gg \mu, k_{\mathrm{B}} T$.
$\alpha=\omega_{y} / \omega_{x}$ and $\lambda=\omega_{z} / \omega_{x}, U=2 a \sqrt{2 \pi \lambda}$

Present Scheme:
$V_{\text {net }}(x, y)=V_{\text {trap }}(x, y)+U_{0} e^{-\left(x^{2}+y^{2}\right) / 2 \sigma^{2}}$
$U_{0}=0 \rightarrow$ Harmonic; $U_{0} \gg 0 \rightarrow$ Toroid.
Ryu et al., Phys. Rev. Lett. 99, 260401 (2007)

Other Scheme:

Using Laguerre-Gaussian (LG_{p}^{\prime}) beams.
$p \geqslant 0$ and I, are radial and azimuthal orders of the laser beam.

- LG_{p}^{\prime} laser beams do not have limiting case equivalent to a harmonic oscillator potential.
- LG_{p}^{\prime} laser beams are not suitable to examine the variation in fluctuations as a pancake shaped condensate is transformed to a toroidal one.

Ramanathan et al., Phys. Rev. Lett. 106, 130401 (2011)
Wright et al., Phys. Rev. A 63, 013608 (2000)

The Kohn or dipole mode role of U_{0}

Moulder et al., Phys. Rev. A 86, 013629 (2012);
AR, D. Angom, arXiv:1511.08655 (2015) [under review].

The Kohn or dipole mode noticeable features

- When $U_{0}=0$, the quasiparticle spectrum has a Goldstone mode, and doubly degenerate Kohn modes with $\omega / \omega_{\perp}=1$.
- For $U_{0} \neq 0$, the condensate density shows a dip in the central region, and an overall increase in the radial extent due to the repulsive Gaussian potential.
- The wavelength of excitations becomes longer as they now lie along the circumference of the toroid. This decreases the quasiparticle energies.
- Variation in energy of breathing $(I=0)$ and hexapole $(I=3)$ modes with increasing U_{0}.

Quantum and thermal depletion

- Enhancement of non-condensate density \tilde{n} due to quantum (thermal) fluctuations with increasing U_{0} at $T=0(T \neq 0)$.
- At $T \neq 0$, the condensate and thermal densities have coincident maxima when $U_{0} \gg 0$. This is in stark contrast to the case of pancake geometry $\left(U_{0}=0\right)$.

Conclusions

How does the fluctuations get modified?

- We have demonstrated the decrease in the energy of the Kohn mode the external trapping potential undergoes transformation from a simply to multiply connected geometry.
- Close to the pancake to toroidal condensate transition, energies of all the modes with $I=0$ increase.
- For a toroidal trap, at $T \neq 0$ the condensate and the thermal densities have overlapping maxima.

Thank You

