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ABSTRACT

In this paper we describe a semi-supervised algorithm to
segment bird vocalizations using matrix factorization and
Rényi entropy based mutual information. Singular value
decomposition (SVD) is applied on pooled time-frequency
representations of bird vocalizations to learn basis vectors.
By utilizing only a few of the bases, a compact feature rep-
resentation is obtained for input test data. Rényi entropy
based mutual information is calculated between feature rep-
resentations of consecutive frames. After some simple post-
processing, a threshold is used to reliably distinguish bird
vocalizations from other sounds. The algorithm is evaluated
on the field recordings of different bird species and different
SNR conditions. The results highlight the effectiveness of the
proposed method in all SNR conditions, improvements over
other methods, and its generality.

Index Terms— Bird call segmentation, feature learning
using PCA, Rényi entropy

1. INTRODUCTION

Birds play important roles in maintaining the balance of
ecosystems. They are present at various steps of the food
chain, help in pollination and in seed dispersal. Many bird
species are under the threat of population decline due to habi-
tat destruction. Surveying and monitoring are essential for
their conservation. Acoustic monitoring provides a conve-
nient and passive way to monitor bird populations in their
natural habitats. With the advent of automated recording de-
vices (for eg. the SongMeter series from Wildlife Acoustics
Inc.), acoustic monitoring has become easier. These sophis-
ticated devices can collect large amounts of bioacoustic data.
By analyzing audio recordings containing bird vocalizations
collected in this manner, it is possible to perform tasks such
as species identification, tracking of migrant species or ex-
amining the avian biodiversity of a given region. Typically,
the collected data is processed off-line. In this process, the
first step is usually to determine regions of interest in the
recording, also termed as segmenting the vocalizations/calls
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from the background. The segmentation task becomes chal-
lenging due to the presence of various background sounds
such as rain, insects, other animals, passing traffic and other
sounds. In field conditions, background sounds are unpre-
dictable which makes acoustic modeling of the background
difficult. There is a need for unsupervised or semi-supervised
segmentation techniques in which modeling the background
is not required.

In this work, we propose a semi-supervised bird vocal-
ization segmentation algorithm which can work in different
recording environments and is not influenced by background
disturbances to a large extent. A dictionary of basis vectors
modeling bird vocalizations is learnt from a small amount
of labeled training data. The proposed method uses singu-
lar value decomposition (SVD) to learn these basis vectors
from the time-frequency representation (spectrogram) of bird
vocalizations. By projecting the time-frequency representa-
tion of a test audio recording onto these bases, a compact
representation is obtained for each short-time frame. By esti-
mating the Rényi entropy based mutual information between
each pair of consecutive frames, and with some simple post-
processing, bird vocalizations can be easily distinguished
from other sounds. This is an advantage over some other
methods, which are prone to false alarms by being unable to
distinguish naturally occurring background sounds like the
sounds of insects. Our experimental evaluation on the vocal-
ization of passerine birds demonstrates the generic nature of
the method.

The rest of this paper is organized as follows. In section
2, we discuss some of the methods proposed in the litera-
ture targeting the bird vocalization segmentation along with
their drawbacks. We also describe how the proposed algo-
rithm overcome these drawbacks. In section 3, the proposed
algorithm is described in detail. Performance analysis and
conclusion are in sections 4 and 5 respectively.

2. COMPARISONS TO PRIOR WORK

Most methods for segmenting bird vocalizations have ei-
ther utilized time-domain representations, or have used



spectrogram-based representations.
some of these below.

Manual segmentation: A few bioacoustic studies dealing
with bird vocalizations such as species identification [1] [2]
have used manually segmented bird vocalizations. Manual
segmentation can be tedious and unfeasible if the amount of
data to be processed is large.

Energy or entropy-based methods: Energy calculated in
the time domain has been used to segment the bird vocal-
izations in [3] [4] [5]. Spectral entropy and KL-divergence
based segmentation methods are proposed in [6] and [7] re-
spectively. The regions containing bird vocalizations exhibit
low entropy in comparison to the background regions. In
[7], KL-divergence between normalized power spectral den-
sity of an audio frame and the uniform distribution is com-
puted. This KL-divergence is a measure of entropy; higher
KL-divergence corresponds to less entropy and vice-versa.
These methods are unsupervised in nature which is desirable.
However, these methods are not able to distinguish bird vo-
calizations from any other sound event. Also, energy-based
segmentation is affected by the presence of background noise.

Template-based method: A noise-robust template match-
ing based method is proposed in [8]. This methods uses dy-
namic time warping (DTW) and high-energy regions of spec-
trograms to build noise-robust templates for each type of vo-
calization. Each vocalization template is built using various
examples of that vocalization. This method is effective for
most of the background conditions. However, the disadvan-
tage is that we must know beforehand what vocalizations we
wish to segment. Hence, this method may not be scalable in
real-world scenarios.

Other methods: In [9], time-frequency based segmenta-
tion using a random forest classifier is proposed to segment
bird vocalizations in noisy conditions. This method requires
a large amount of training examples. A spherical K-means
based feature learning method [10] is proposed to model the
bird vocalizations of different species. In [11], an unsuper-
vised two-pass segmentation method is proposed. In the first
pass, training labels are generated using inverse spectral flat-
ness (ISF) from the input recording itself. ISF is used to dis-
tinguish vocalizations and background regions from the input
recordings. These vocalizations and background regions are
used to build Gaussian mixture models which are used in the
second pass to classify each input frame as the background or
the bird vocalization. However, like energy and entropy, the
ISF used in first pass is also unable to distinguish bird sounds
from non-bird sounds.

We briefly categorize

2.1. Advantages of the proposed algorithm

Ability to discriminate other background sounds: Using
only a few of the basis vectors helps in retaining the informa-
tion corresponding only to the bird vocalizations and not to
the other background sounds. Hence, unlike some of the ear-

lier methods, the proposed method can discriminate between
bird vocalizations and non-bird sounds (see section 3).

Better precision: Mutual information criteria based on
Rényi entropy is calculated for each pair of consecutive
frames i.e. between the current frame under process and the
previous frame, providing more precision as compared to
the time-frequency window based entropy calculated in [6].
Entropy calculated from a time-frequency window several
frames long will exhibit the presence of bird vocalization
even if the vocalization is present in the first or last few
frames of the window, leading to a decrease in segmentation
precision.

Generalization: Since the learnt dictionary is a genera-
tive model, a bird vocalization not used in learning the basis
vectors can still be approximated by the learned basis vectors.
This makes the proposed algorithm more generic as compared
to the template based technique described in [8]. This behav-
ior is analyzed in detail in section 4.

3. PROPOSED METHOD

3.1. Dictionary learning

To learn the basis vectors, the time-frequency representations
of bird vocalizations are extracted using a small amount of
labeled training data. The training labels provide information
about the start and end time of the vocalizations. These ex-
tracted vocalizations are pooled together to form a matrix M
of dimensions D x N. Here N is the number of pooled frames
and D represents the number of FFT bins used in the spec-
trogram. This matrix, M, is factorized using singular value
decomposition (SVD): M = U x 3 x V*. Here U is a
D x D unitary matrix whose columns contains the left singu-
lar vectors, ¥ is a D x N diagonal matrix containing singular
values and V is N x N unitary matrix whose columns con-
tains the right singular vectors. The columns of U are used as
the basis vectors of the subspace on which the time-frequency
representation of the audio recording is projected to get the
features in the testing stage.

Typically vocalizations of many song birds occupy only
few frequency bins at any given time. Hence the information
regarding bird vocalization regions is mostly consolidated in
the first few columns of U which correspond to the directions
of highest singular values and hence highest variances. Hence
to retain only the bird vocalization information in the feature
domain, the input test audio recording is projected on the first
K columns of U as: F = B” x P. Here B is matrix of
D x K dimensions whose columns are the first K columns
of U. P is the time-frequency representation of the test audio
signal having D x M dimensions, M is the number of frames
and D is the number of frequency bins. F is the matrix of
dimension K x M whose columns contain the feature repre-
sentations of each input frame. The value of K is determined
experimentally.
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Fig. 1: (a) Spectrogram of an audio recording containing hu-
man speech, background noise and vocalization of Cassin’s
vireo (b) Feature representation of the above spectrogram (c)
Normalized MI extracted from the feature representations de-
picted in (b).

Figure 1(b) depicts the feature representation learned
from the time-frequency representation of an audio recording
shown in Figure 1(a). This feature representation is ob-
tained by projecting the time-frequency representation on the
first 5 columns of U. This U is learned by factorizing the
pooled time-frequency representations of the vocalizations
of Cassin’s vireo, a North American song bird, using SVD.
The audio corresponding to the spectrogram shown in figure
1(a) contains human speech and two Cassin’s vireo vocaliza-
tions. By analyzing figure 1(b), it is clear that information
corresponding to the human speech and other background
disturbances is not reflected in the feature domain. Each of
the coefficients calculated for any non-bird frame has magni-
tude close to zero. Hence, the variance of coefficients of any
non-bird frame is low. On the other hand, each coefficient
calculated for any bird frame has larger magnitudes in com-
parison to the non-bird frame. The variance of coefficients
within a bird sound frame is also high. This is due to the fact
that none of the learned basis vectors have any contribution
in defining the background frames. However, a bird vocaliza-
tion frame can be represented as a combination of the scaled
versions of the learned basis vectors [12]. The contribution of
some basis vectors in defining the input bird frame is higher
than the others. This leads to the difference in magnitudes of
the coefficients calculated for bird frames.

This behavior is highlighted in figure 2. The box plots
of coefficients of 100 human speech frames, 100 background
frames and 100 bird vocalization frames are shown in Fig-
ure 2. From this figure it is evident that the magnitude of
coefficients for human speech and background frames is al-

x10°

n
o

o

Coefficients

o

Backgr‘ound Hun‘1an Bi‘rd

Fig. 2: Box plots of the coefficients calculated for (a) 100
background frames (b) 100 human speech frames and (c) 100
bird sound frames.

most constant. However, a significant amount of variation is
present for the bird vocalizations.

3.2. Rényi entropy based mutual information

The feature representation of nth frame, x,,, is converted into
a normalized vector using the softmax function: (x,); =
25117;,;%, for 7=1,2,.., K.

Since the feature coefficients of each non-bird frame ap-
proach zero, each coefficient of the frame becomes almost
equal after applying the softmax function. However, for any
bird vocalization frame, some coefficients exhibit higher val-
ues than others. Hence, the normalized feature representa-
tions for all the non-bird frames are nearly similar and more
variation occurs for the bird vocalization frames. Considering
these feature vectors as sampled random vectors in RX, this
can behavior can be discriminated by using mutual informa-
tion.

Mutual information (MI) between normalized feature rep-
resentations of each pair of the consecutive frames (i.e. be-
tween ny, and (n — 1)y, frames) is calculated. This serves
the purpose of considering the previous frame along with the
current frame in making the segmentation decisions. MI of
a random vector with itself is highest, therefore MI between
two almost similar feature representations will be higher than
between two representations which are different. Hence for
non-bird regions, MI will be high as compared to the regions
having vocalizations as depicted in Figure 1(c). Also, since
the feature representations for the frames of non-bird regions
are almost similar, MI across all these regions is almost con-
stant.

MI between feature representations of two consecutive
frames i.e. x, and x,_1, each of dimensions K X 1, can
be calculated as

MI(XnaXn—l) = H(Xn) + H(Xn—l) - H(Xnaxn—l) (1

Here H () represents the entropy. Rényi entropy is used in this
work to calculate the MI. Rényi entropy of the pth order for
feature representation of nth frame,x,, can be calculated as
[13]:

p
I—p

H(xn) = log([[%nl|)- 2)



where p controls the sensitivity towards the shape of proba-
bility distribution of the coefficients of x,, [14]. The value of
p (0 < p < 1) is determined experimentally.

3.3. Segmentation using thresholding

The nature of MI calculated from the feature representations
makes the task of thresholding simple. Since the MI for back-
ground regions is almost constant, any drop in the value of
MI signifies the presence of bird vocalization. The calculated
MI is smoothed using a moving average filter and normalized
to be between 0 and 1. This results in the MI to be close to 1
for background regions as can be seen in Figure 1(c). Thus,
a threshold ¢, just below one, is able to reliably discriminate
call regions from other regions.

4. PERFORMANCE ANALYSIS

4.1. Datasets used

Experimental validation of the proposed algorithm is per-
formed on three datasets. Two datasets consists of the record-
ings of Cassins vireo, a North American songbird. The third
dataset has the recordings of another song bird, California
thrasher. The first Cassin’s vireo dataset (CV1) contains
twelve audio recordings and are available at [15]. These
audio recordings were collected over two months in 2010
and contain almost 800 bird vocalizations or song phrases of
65 different types. The second Cassin’s vireo dataset (CV2)
and California thrasher recordings (CT) are available at [16].
Out of the available 459 recordings of Cassin’s vireo, we
have used only 100 recordings here. The recordings hav-
ing longest durations and maximum number vocalizations
are chosen. These recordings contain almost 25000 Cassin’s
vireo vocalizations of 123 different types. Similarly out of the
available 698 California thrasher recordings, we have chosen
100 recordings having maximum durations and number of vo-
calizations. These 100 recordings contain about 15000 bird
vocalizations. All the recordings from these three sources
are field recordings and contain various types of background
noise including human speech. These recordings are 16-bit
mono WAV files having a sampling rate of 44.1 kHz.

To test the proposed algorithm in extreme conditions,
background sounds are artificially added to the recordings of
the CV1 dataset. Three different types of background sounds
i.e. rain, waterfall, river and cicadas at O dB, 5 dB, 10 dB,
15 dB and 20 dB SNR are added using Filtering and Noise
Adding Tool (FaNt) [17]. The sound files are downloaded
from FreeSound [18].

4.2. Experiments

Two different experiments are performed to evaluate various
aspects of the proposed algorithm. In the first experiment,
we compare the performance of the proposed algorithm with

existing unsupervised segmentation methods such as short-
term energy (STE), spectral entropy (SE) [6], inverse spectral
flatness (ISF) [19] and two-pass unsupervised method (US)
[11]. Apart from these methods, the performance is also com-
pared with the supervised template-based method (TM) in [8],
and two variants of the proposed algorithm. The first vari-
ant uses non-negative matrix factorization (NMF) for learn-
ing the basis vectors instead of SVD. The second variant uses
the normalized energy of the feature coefficients (CE) instead
of Rényi entropy based mutual information. The second ex-
periment is to demonstrate the general nature of the proposed
method by testing on unseen vocalizations.

F score, defined as the geometric mean of precision and
recall, is used as a metric for evaluation, by comparing with
the manually labeled ground truth. Both experiments use 10-
fold cross-validation. During each fold, one audio recording
was used for learning bases and the rest were used as test
examples. The average results of these 10 folds are presented
in Figure 3 and Table 1 for the first and second experiments
respectively.

A frame length of 20 ms with a 10 ms overlap, Hamming
window and 512 FFT points are used to compute the time-
frequency representations of the input audio. For calculating
the feature coefficients, we project the time-frequency repre-
sentation of the test audio file on the top K = 5 left singular
vectors. For calculating Rényi entropy, an order of p = 0.7
is used, and a moving average filter of length 10 is used to
smooth the MI. A threshold ¢ = 0.9999 is applied on MI to
segment the bird vocalizations. These values of K, p and ¢ are
chosen experimentally using a validation set. Two recordings
from CV1 having the shortest durations are chosen to form
the validation set. These audio recordings are not used for
either learning basis vectors or testing in any of the experi-
ments. After validation, the same values of K, p and ¢ are
used for all the experiments (including the noisy cases.)

The parameter setting used in [11] are used for imple-
menting STE, SE, ISF and US. Similarly the parameter values
discussed in [8] are used for implementing TM. The param-
eter setting used in the proposed algorithm is also used for
implementing NMF and CE. However, in the NMF variant,
approach, 256 basis vectors are learned from the training data.
This number is chosen experimentally.

4.2.1. Comparison of the proposed algorithm with other
methods

The performance of the proposed algorithm is compared
with other methods on dataset CV1 and on the artificially
created noisy versions of CV1. In the proposed algorithm,
the NMF variant and the CE variant, the basis vectors are
learned from labeled bird vocalizations extracted from a sin-
gle audio recording of CV1 and the rest of the recordings are
used for testing during each of the 10 folds. For segment-
ing noisy versions of CV1, the basis learned from the clean



audio recordings of CV1 are used. The segmentation perfor-
mance of the proposed algorithm along with other methods is
summarized in Figure 3.

By analyzing Figure 3, it can be concluded that the per-
formance of the proposed algorithm is better than all the other
methods except TM in both noisy and clean conditions. How-
ever, TM is a template based method which may not be scal-
able and requires prior knowledge of all the vocalizations we
wish to segment, in the form of templates. Also, the perfor-
mance of the proposed method is not affected vigorously as
compared to performances of STE, ENT, ISF and US in low
SNR conditions. The NMF and CE variants also outperforms
these methods. The use of the top K left singular vectors in
the proposed algorithm instead of the NMF based dictionary
provided better segmentation in all conditions. The CE vari-
ant method gave good segmentation performance. This shows
that a simple energy-based segmentation is good enough to
segment the bird vocalizations learnt from basis vectors. But
since Rényi entropy based MI uses context information in
terms of the previous and current frames, it provides slightly
better segmentation.
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Fig. 3: Results of experiment 1: Comparison of segmenta-
tion performances of different segmentation methods on noisy
variations of CV1 generated by adding noise types (a) rain,
(b) river, (c) waterfall (d) cicada and (e) on CV1.

4.2.2. Generic nature of the proposed algorithm

The second experiment has two parts, and establishes the
generic nature of the proposed algorithm. In the first part, we

learn basis vectors from CV1 and segment the audio record-
ings of CV2. In the second part, we use the basis vectors
learnt from CV1 to segment the recordings of CT i.e. we
learn the basis vectors from the recordings of one species
and segment the audio recordings of another. Again, 10 fold
cross-validation was used. During each fold, one recording
from CV1 was used to learn basis vectors and testing was
performed on all the recordings of CV2 and CT. These are
tabulated in Table 1. The analysis of Table 1 shows that the
proposed algorithm is able to segment CV2 recordings having
123 different types of Cassin’s vireo vocalizations using the
basis vectors learned from a single audio recording of CV1
which has 10 to 25 different types of Cassin’s vireo vocaliza-
tions (the number of vocalizations in the training recording
depends on the fold). Hence, the proposed method is able
to segment vocalizations which are not used in learning the
basis vectors.

Also, the proposed algorithm is able to segment record-
ings of California thresher using basis vectors learned from
Cassin’s vireo. The segmentation performance obtained in
this cross-species experiment is also compared with the seg-
mentation performance obtained by using the basis vectors
learned from the vocalizations of California thrasher. No sig-
nificant difference is observed in the performances which fur-
ther supports the generic nature of the proposed algorithm.
Table 1 also depicts the performance of other methods with
the proposed method. By analyzing Table 1, it is clear that
the proposed method outperforms the other methods except
TM, which requires templates of the vocalizations.

Table 1: Results of experiment 2: Performance of the pro-
posed method for various train-test conditions. (-) indicates
that the method is unsupervised. The TM method uses tem-
plates of the vocalizations.

Training | Testing | Testing

Method Dataset | on CV2 | on CT
STE - 0.53 0.55
SE - 0.56 0.57
ISF - 0.6 0.61
UsS - 0.64 0.63
™ CV2,CT 0.79 0.78
NMF CVl1 0.72 0.71
NMF CT 0.7 0.73
CE CVl1 0.74 0.71
CE CT 0.71 0.73
Prop. CVl1 0.76 0.73
Prop. CT 0.74 0.75

4.2.3. Discussion

The proposed method provides reliable segmentation per-
formance only if the vocalizations represented by the bases
are similar to the ones in the evaluation data. If the bases



are learned from bird vocalizations which exhibit rapid fre-
quency and temporal modulations but the target vocalizations
are wideband in nature, the proposed algorithm will fail. For
example, the basis vectors learned from CV1 are not able to
segment the sounds of greater sooty owls and forest ravens
which are wide-band in nature. On the other hand, sounds
from other passerine birds like the Verditer flycatcher and
blue magpies (found in the Indian subcontinent) are effec-
tively segmented by the bases learnt from Cassin’s vireo.
Five recordings of the vocalizations of these species (down-
loaded from [20]) resulted in an F1-score of 0.32, 0.38, 0.85
and 0.79 respectively.

5. CONCLUSION

This paper presented an algorithm for segmenting birdcalls
from the background using matrix factorization and Réyni en-
tropy based MI. Experimental evaluation, including compar-
isons with six existing methods demonstrated the effective-
ness and the generality of the proposed method. The results
also indicate that the method can be utilized for segmenting
the vocalizations of similar birds in other geographic regions,
irrespective of data used in learning the basis vectors.
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