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Deep Archetypal Analysis Based Intermediate
Matching Kernel For Bioacoustic Classification

Anshul Thakur and Padmanabhan Rajan

Abstract—We introduce a new classification framework that
combines the characteristics of matrix factorization with the
discriminative capabilities of kernel methods. Short-time analysis
of audio signals having different durations result in sets of feature
vectors having different cardinalities. Support vector machines
handle such varying-length feature sets using dynamic kernels,
such as the intermediate matching kernel (IMK). IMK works
by utilising the so-called virtual vectors which select pairs of
feature vectors to learn discrimination between classes. Existing
formulations of IMK choose virtual vectors from the most
information-bearing regions of classes, such as cluster means.
This form of IMK completely ignores the feature vector pairs that
lie around the class boundaries. To overcome this limitation, we
propose an alternative formulation of IMK based on archetypal
analysis (AA) and deep archetypal analysis (DAA). AA represents
the data in terms of boundary elements, whereas DAA represents
data in terms of both boundary and average elements. The
proposed AA and DAA based intermediate matching kernel
(AA/DAA-IMK) utilizes the elements generated from AA and
DAA as the virtual feature vectors. Experimental evaluation on
four different bioacoustic datasets show that the introduction of
AA and DAA into the IMK framework leads to a noticeable
improvement in classification accuracy.

Index Terms—deep archetypal analysis based IMK, bioacoustic
classification, bird species classification, kernel methods

I. INTRODUCTION

For the past many years, there is an upsurge in efforts for
conserving various avian and amphibian species [1], [2]. These
conservation tasks often include monitoring and surveying
different species in their natural habitats. Automated acoustic
monitoring provides a convenient and passive way to monitor
target species effectively [3]. It is cost-effective and requires
less human intervention compared to manual field studies,
which are often tedious, expensive and require experienced
ecologists [4], [5]. Bioacoustic signal classification is an im-
portant module in any automated acoustic monitoring system
[6] such as bird species classification, bird activity detection
[7], [8] and frog species classification. Most of these bioa-
coustic classification tasks suffer from the lack of labeled data.
Due to this, there is a hindrance in using state-of-the-art data-
intensive frameworks such as deep neural networks (DNN)
and convolutional neural networks (CNN). Thus, there is a
need for techniques which could provide effective bioacoustic
classification under low training data conditions.

This being said, the literature does contain some bioacoustic
studies that utilize convolutional neural networks [9], [10],
[11], [12]. However, these deep learning frameworks require
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a sufficient amount of data to provide effective generalization
and may not be effective for many bioacoustic classification
tasks such as species identification and vocalization segmen-
tation where labeled data is scarce. Some studies such as [13],
[14] have overcome the limitation of labeled data by utilizing
transfer learning. However, these techniques have only been
tested on a small number of classes and their scalability to a
large-scale bioacoustic classification task is yet unproven.

Classical methods such as sinusoidal modeling of bird
syllables for species identification have successfully been used
in a few early studies [15], [16]. Hidden Markov models
(HMM) have been effectively used to model the temporal
arrangements of syllables for birdsong [17] and species clas-
sification [18]. However, in field conditions, many birds and
other animals vocalize at the same time. Hence, obtaining
a completely unaltered sequence of syllables or phrases for
temporal modelling can be difficult. Apart from syllables
and birdsong modelling, many studies have shown the effec-
tiveness of data-driven feature representations for bioacoustic
classification tasks, such as bird and frog species identification.
Based on spherical K-means, Stowell and Plumbley proposed
an unsupervised feature learning method for large-scale bird
species classification [19]. A random forest classifier was used
to highlight the discriminative abilities of these unsupervised
features. In [20] and [21], convex representations obtained
from dictionary learning frameworks are used as the fea-
ture representations. These representations exhibit good class-
specific characteristics and are shown to be effective for bird
species classification. A major disadvantage of these methods
is that if the correlation between class-specific dictionaries is
large, the discriminative characteristics of convex representa-
tions are significantly affected.

Along with the aforementioned data-driven feature represen-
tations, kernel methods based classification frameworks have
also been successfully exploited for bird activity detection
[7] and species classification. In [22], Quin et al. utilized
kernel-based extreme learning machines [23] for classifying
bird vocalizations. Chakraborty et al. [24] successfully used
support vector machines (SVM) powered with different dy-
namic kernels [25] including probabilistic sequence kernels
(PSK) and intermediate matching kernel (IMK) [26] to classify
calls of 26 bird species. In [8] and [27], the variants of
PSK incorporated in an SVM framework are used for bird
activity detection. Although the performances of both data-
driven feature representations and kernel-based classification
frameworks have been effective, there is still a room for
improvement. In this paper, the authors explore this possibility
by utilizing novel data-driven approaches to improve existing
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dynamic kernels.
Dynamic kernels [28], [29] are of particular interest for

bioacoustic (or acoustic) classification as they empower classi-
fication frameworks such as SVMs to handle feature sets with
varying cardinalities. These varying cardinalities arise from the
short-term analysis of audio signals to extract representations
such as mel spectrograms or mel frequency cepstral coeffi-
cients (MFCC). After short-time analysis, the audio signal
is represented as a set of feature vectors. The cardinality of
this set depends on the duration of the signal. Thus, audio
recordings of different durations are represented by feature
sets of different cardinalities. Dynamic kernels are used to
determine the similarity between two feature sets irrespective
of their cardinality. The similarity between the feature sets
is used by the SVM to learn the discrimination between
classes. Dynamic kernels are of two types: explicit mapping
kernels and matching-based kernels. Explicit mapping kernels
utilize generative models such as Gaussian mixture models
to map feature sets of different cardinalities to a fixed-length
representation. These fixed length representations can then be
processed by the SVM to learn the discrimination between
classes. Matching-based kernels bypass the problem of varying
cardinalities by computing similarities between pairs of feature
vectors from different feature sets. The individual similarities
are then accumulated to calculate the overall similarity be-
tween the feature sets. The feature set similarities between
training examples can be used to construct a kernel gram ma-
trix that is utilized by the SVM for learning the discrimination
between classes. More details about dynamic kernels and their
working can be found in [25].

Intermediate matching kernel (IMK) [26] is a type of
matching-based dynamic kernel that has been successfully
utilized for various audio classification tasks such as speaker
identification [30], speech recognition[29], [31] and birdcall
classification [24]. IMK is characterized by the utilization of
a set of virtual vectors V to calculate the kernel gram matrix
between feature sets of audio examples. Each virtual vector is
used to select a pair of feature vectors from the feature sets
(one from each set). These selected feature vectors are referred
as local feature vectors (LV) and are used to estimate similarity
between the feature sets. Let Xm = {x1

m,x
2
m, . . . ,x

y
m} and

Xn = {x1
n,x

2
n, . . . ,x

z
n} be two feature sets from two classes,

having cardinalities y and z respectively. To compute IMK
between Xm and Xn, first V = {v1,v2, . . . ,vd} is used to
chose pairs of feature vectors from Xm and Xn as:

xj∗
m = argmin

xk
m

‖xk
m − vj‖2,where k = 1 . . . y (1)

xj∗
n = argmin

xk
n

‖xk
n − vj‖2,where k = 1 . . . z (2)

where vj ∈ V is the jth virtual vector. xj∗
m and xj∗

n are
a pair of the local feature vectors selected from Xm and Xn

using vj . Thus, d pairs of feature vectors (one for each virtual
vector) are chosen. A base kernel, generally a Gaussian kernel
[32], is calculated between each chosen pair as:

Kbase(x
j∗
m ,x

j∗
n ) = exp(−δ‖xj∗

m − xj∗
n ‖22), (3)

Set A datapoints
Set B datapoints

First Cluster Mean

Second Cluster Mean

Chosen LV from Set A using  
            first Cluster Mean

Chosen LV from Set B using  
            first Cluster Mean
Chosen LV from Set A using  
        second Cluster Mean

Chosen LV from Set B using  
        second Cluster Mean

Fig. 1: Illustration of the process of selecting pairs of local
vectors (LV) from two sets (Set A and Set B), sampled from
two different classes, using cluster means. A pair of the local
vectors (one from each set) which are closest to a cluster centre
are chosen for calculating a base kernel.

where δ denotes the width parameter of Gaussian kernel and
is fine-tuned empirically. These base kernels are aggregated to
obtain the IMK between Xm and Xn as:

Kimk(Xm,Xn) =
d∑

j=1

Kbase(x
j∗
m ,x

j∗
n ) (4)

Since the base Gaussian kernels are positive definite, IMK is
bound to be positive definite [26].

The analysis of the aforementioned formulation of IMK
shows that the choice of virtual vectors can have a significant
effect on classification performance. Earlier studies on IMK
have either used clustering [26] or Gaussian mixture modelling
[29] to obtain virtual vectors. In [26], cluster centres, obtained
by clustering the training data, are used as the virtual vectors.
A pair of local feature vectors (one from each feature set)
which exhibit minimum distance from a cluster centre are
selected for learning a base kernel. This process of selecting
pairs of the feature vectors using cluster means is illustrated
in Fig. 1. In [29], [31], the authors proposed to use Gaussian
mixture models (GMM) to choose these local feature vector
pairs. For each GMM component, a feature vector from each
set, having maximum affinity to the respective GMM com-
ponent is chosen. The GMM-based IMK has provided better
classification than the cluster-centre based approach [29]. This
can be attributed to the fact that along with mean vectors,
GMM-based IMK also utilizes covariance and weight of each
component in choosing the feature vectors. These earlier
studies utilize the most informative regions of the data (cluster
centres or GMM components) as the virtual vectors. Hence,
pairs of feature vectors chosen for calculating the base kernels
are easily classifiable. Whereas, some of the most confusing
(hard to classify) feature vector pairs are ignored. These pairs
lie around the class boundaries and provide important cues
about the separation between classes.

Archetypal analysis (AA) [33] is a matrix decomposition
method that factorizes an input matrix into a dictionary of
archetypes and convex-sparse representations. Archetypes lie
on the convex hull or boundary of the data spread and hence,
model the extremal behaviour of the data. In this work, a new
classification framework is proposed by combining the data
modelling capabilities of AA-based matrix factorization with
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Set A datapoints
Set B datapoints

Class 1 (C1) Archetypes

LV chosen from Set A using  
            a C1 archetype

LV chosen from Set B using  
            a C1 archetype
LV chosen from Set A using  
            a C2 archetype

LV chosen from Set B using  
            a C2 archetype 

Class 2 (C2) Archetypes

Fig. 2: Illustration of the process of selecting pairs of local
vectors (LV) from two sets (Set A and Set B), from two
different classes, using class-specific archetypes in AA-IMK
framework. For illustration, only one class-specific archetype
is shown to be used for the selection of local vectors. In the
proposed method, all archetypes are used for learning AA-
IMK.

the implicit discriminative abilities of kernel methods. A new
formulation of IMK that targets the limitations existing in both
the classical IMK and standard AA based dictionary learning
frameworks is proposed. The inclusion of AA improves clas-
sical IMK by helping in choosing pairs of feature vectors that
may lie around the class boundaries and are difficult to classify.
The incorporation of such feature vector pairs in the kernel
computation helps in learning a better classifier. On the other
hand, the combination of kernel methods with an AA based
dictionary learning framework helps in increasing the inter-
class discrimination. AA are data-modeling methods and no
external efforts are made to increase the inter-class separation
as in the kernel methods. Thus, if two classes are overlapping,
the dictionaries learnt using AA exhibit high correlation,
leading to a less discriminative convex-sparse representation
[20]. Taking advantage of kernel methods, AA based IMK
learns the class-separation boundaries in an implicit higher
dimensional space where the two-overlapping classes may be
linearly separable.

In the proposed AA based formulation of IMK (AA-IMK),
class-specific archetypes learned from the training data are
utilized as the virtual vectors. Since archetypes lie on the
convex hull or boundary of a class, they help in choosing
pairs of local feature vectors that lie on or near the class
boundaries. This behaviour of AA-IMK is illustrated in Fig. 2.
As discussed earlier, these pairs of local vectors are hard to
classify and including them in the training process helps in
learning a better classifier. Though AA shows good extremal
modeling capabilities, it lacks the ability to model the average
or prototypical behaviour of the data. To overcome this prob-
lem, deep archetypal analysis (DAA) [21], [34] was proposed
in our recent studies. In the DAA framework, the convex-
sparse representation matrix obtained from AA is further
factorized. This chain of factorization is continued up to a
desired depth. In [21], it has been observed that atoms of
the deeper dictionaries can model the extremal as well as
the prototypical behaviour, i.e. some atoms can lie on or
near the boundary while others can exist inside the boundary
(More details about AA and DAA are in Section II). These

deeper dictionary atoms can help in choosing local feature
vectors from the most informative regions (similar to classical
IMK) as well as from the class boundaries (similar to AA).
Thus, utilization of DAA in the IMK framework can help in
combining the properties of both IMK and AA-IMK.

The main contributions of this paper are as follows:
• A new classification framework that embeds the proper-

ties of matrix factorization in a kernel method framework.
• Based on AA and DAA, two alternative formulations of

the classical IMK are proposed for bioacoustic classifica-
tion. The data modeling capabilities of AA and DAA are
exploited to choose pairs of feature vectors for learning
the base kernels.

• Two variants to choose local feature vectors in AA/DAA-
IMK framework are proposed. In first variant, nearest
neighbour approach is followed to select local feature
vector pairs. In the second approach, simplex decom-
position [33] on class-specific archetypal dictionaries is
utilized to choose the local feature vectors (see Section
II).

The rest of this paper is organized as follows. In Sec-
tion II, the proposed AA/DAA-IMK are described in detail.
Experimental setup is described in Section III. Results and
Discussion are in Section IV. Section V concludes this paper.

II. PROPOSED FRAMEWORK

In this section, first, we describe archetypal analysis (AA)
and deep archetypal analysis (DAA) in detail. Then, we
describe the proposed AA/DAA based intermediate matching
kernel (AA/DAA-IMK).

A. Archetypal and deep archetypal analysis

Archetypal analysis (AA) [35] decomposes a matrix con-
taining l feature vectors of K dimensions, X ∈ RK×l,
as X ≈ DA. D ∈ RK×d contains d archetypes, which
lie on the convex hull of the data and are forced to be
convex combinations of the input features i.e., D = XB where
B ∈ Rl×d and A ∈ Rd×l are convex representation matrices.
The archetypal dictionary D can be obtained by solving the
following optimization problem [33]:

argmin
B,A

bj∈∆l,ai∈∆d

‖X−XBA‖2F ,

∆l , [bj � 0, ‖bj‖1 = 1],∆d , [ai � 0, ‖ai‖1 = 1].
(5)

Here ai and bj are columns of A ∈ Rd×l and B ∈ Rl×d,
respectively. The objective defined in Equation 5 is non-
convex; however, it is convex in terms of A if B is fixed or
vice-versa. Thus, the optimization objective in Equation 5 can
be easily solved using the block-coordinate descent scheme.
More details about the implementation of AA can be found in
[33].

Compared to conventional matrix factorization, AA can be
considered as a deep model with three factors, the first being
the data itself (X ≈ XBA). Inspired by this observation, AA
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X D1 A1 D2 A2 DL AL
AA AA

Layer 1 Layer 2 Layer L 

Fig. 3: Illustration of the deep archetypal analysis (DAA)
based matrix factorization framework. Here a matrix X is
factorized into L+ 1 factors as: X ≈ D1D2D3 . . .DLAL.

is used in a deep matrix factorization framework to uncover
the hidden attributes of the data by further decomposing
the convex-sparse representations [21], [34]. This deep AA
(DAA) framework is a layered architecture which begins with
factorizing the input matrix X into an archetypal dictionary
D1 and convex-sparse representation matrix A1 using AA as
discussed earlier. A1 is passed to the second layer and is
again factorized using AA to obtain dictionary D2 and the
convex-sparse representations A2. At this layer, the overall
data decomposition is: X ≈ D1A1 ≈ D1D2A2 = DL2A2,
here DL2 is the DAA dictionary obtained at the second layer
of DAA framework. This process is followed till the desired
levels of factorization. Fig.3 illustrates the factorizations at
each layer of DAA. Thus, in this deep variant of AA, X is
factorized into L+ 1 factors as:

X ≈ D1D2D3 . . .DLAL. (6)

At each layer of DAA framework, the factorizations can be
unfolded as:

X ≈ D1A1 = XB1A1

A1 ≈ A1B2A2

A2 ≈ A2B3A3

...
AL−1 ≈ AL−1BLAL

AL ≈ ALBL+1AL+1.

(7)

Note that the factorizations at each layer of the DAA
framework are obtained in a greedy fashion, i.e. the opti-
mization objective solved at each layer is independent of
decompositions done at other layers.

Analyzing geometric properties of AA/DAA atoms: The ge-
ometric properties of archetypes are well studied [35]. As
discussed earlier, archetypes lie on the convex hull and model
the geometry or extremal of the data. Fig. 4(A), (D) and
(G) exhibit the geometric modeling capabilities of archetypes
on three different datasets. The 2-dimensional data points
in Fig. 4(A) and Fig. 4(D) are randomly generated from a
uniform distribution and a Gaussian distribution respectively,
whereas data points in Fig. 4(G) are two-dimensional t-SNE
[36] representations of 39-dimensional MFCC feature vectors
obtained from the song phrases of Cassin’s vireo, a North
American song bird.

Unlike archetypes, the DAA dictionary (DLi,where i > 1)
atoms are observed to lie on or near the boundary as well
as inside the data spread. Fig. 4 illustrates this behaviour of
the DAA atoms. Fig. 4 (B), (E) and (H) show the nature of

the dictionary atoms obtained at the second layer of DAA
framework. Similarly, Fig. 4 (C), (F) and (I) illustrate the
geometric properties of the third layer DAA dictionary (DL3)
atoms. To analyze this behaviour, we consider first two layers
of the DAA framework. At first layer, a matrix X is factorized
into an archetypal dictionary D1 and convex representations
A1. At the second layer, A1 is factorized to D2 and A2.
At this point, the input matrix X can be represented as:
X = D1D2A2 = DL2A2. By the definition of AA, it is
known that D2 is the convex combination of columns of A1

and A1 is the convex combination of columns of D2. Since
A1 is already a convex representation matrix, the convex
combinations of its columns also exhibit the properties of
convex representations. As a result, each column d of D2

is: d � 0, ‖d‖1 = 1. Thus, the second layer DAA dictionary,
DL2 = D1D2, can be seen as the convex combination of
archetypes (D1) of X, where D2 is a convex representation
matrix. Hence, the atoms of DL2 can lie anywhere in the
space spanned by convex combination of archetypes. A DAA
dictionary atom lies near the boundary if the contribution
of an archetype in defining this atom is significantly greater
than the contribution of other archetypes. On the other hand,
DAA atoms lie inside the data spread (away from boundary)
when multiple archetypes have significant contributions in the
definition of these atoms. This allows the DAA atoms to
tessellate the entire data spread (as shown in Fig. 4) and equips
the DAA dictionaries with better data modeling capabilities.
The atoms lying around or near the boundary model the
extremal behaviour while the atoms lying inside the boundary
exhibit average or prototypical behaviour of the data.

B. Archetypal/deep archetypal analysis (AA/DAA) based IMK

Characteristically, kernel methods can only be used for
binary classification and IMK is no exception. However, these
methods can be extended to multiple classes using the one-
vs-rest approach where a binary classifier such as SVM is
trained to discriminate examples of one class from the other
remaining classes. Thus, all the other classes are regarded as
one non-target class and multiple binary classifiers are trained
to solve a given multi-class classification problem.

In this subsection, we describe the proposed AA/DAA-
IMK for binary classification. The proposed formulations
can be easily extended to the multi-class setting using one-
vs-rest approach. To calculate the proposed AA/DAA-IMK
between examples of two possible classes, the class specific
DAA dictionaries i.e. D1

Li and D2
Li are obtained using the

DAA framework as explained earlier. Here DC
Li represents

the Cth class dictionary obtained from the ith layer of DAA
framework. Each atom of these class-specific dictionaries are
used as a virtual vector for choosing a pair of the local
feature vectors. The proposed formulations utilize two dif-
ferent methods to select pairs of local feature vectors from
Xm = {x1

m,x
2
m, . . . ,x

y
m} and Xn = {x1

n,x
2
n, . . . ,x

z
n}:

1. Nearest neighbour approach: The jth atom, dC
j , of DC

Li is
used to choose a pair of the local feature vectors (one from
each Xm and Xn) as:



1932-4553 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2019.2906465, IEEE Journal
of Selected Topics in Signal Processing

5

Fig. 4: Illustration of data modeling abilities of deep archetypal dictionaries (DL1, DL2 and DL3 i.e. first, second and third
level dictionaries respectively) on two randomly generated data (in first and second row) and on two dimensional t-SNE
representation of MFCC vectors obtained from Cassin’s vireo song phrases (in last row). The number of dictionary atoms are
the same in each layer. Note that some of atoms of the lower layer dictionaries are falling in same position.

xj∗
m = argmin

xk
m

‖xk
m − dC

j ‖2 (8)

xj∗
n = argmin

xk
n

‖xk
n − dC

j ‖2, (9)

where xk
m ∈ Xm, xk

n ∈ Xn and DC
Li is the Cth class

dictionary (C = 1, 2) obtained from the ith layer. Using
equations 8 and 9, 2d pairs of local feature vectors (assuming
d atoms in each class-specific dictionary) are selected for
computing IMK.

2. Simplex decomposition approach: In this method, the
simplex projections of feature vectors on the class-specific
DAA dictionaries are used to choose the local feature vector
pairs for calculating the IMK. This approach is based on the
contribution of the dictionary atoms in defining a feature vector
rather than the Euclidean distance between dictionary atoms

and the feature vectors. This contribution is defined by the
magnitude of the coefficient corresponding to a dictionary
atom in the convex-sparse representation of the given vector. A
vector xk

m is projected on a simplex whose vertices correspond
with atoms of the class-specific DAA dictionary DC

Li (having
d atoms) to obtain the convex-sparse representation:

r∗km = argmin
rkm

rkm∈∆d

‖xk
m −DC

Lir
k
m‖22

∆d , [rkm � 0, ‖rkm‖1 = 1],

(10)

where rkm ∈ Rd is the convex-sparse representation that
defines the contribution of each atom of DC

Li in representing
xk
m. Using Equation 10, the convex-sparse representations for

all y and z vectors in Xm and Xn respectively are calculated
and are pooled in matrices Cm ∈ Ry×d and Cn ∈ Rz×d.
Here Cm(o, j) represents the coefficient corresponding to the
dC
j (jth atom) in the convex-sparse representation of the oth
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feature vector of Xm. For an atom dC
j , a pair of local feature

vectors is chosen as:

indjm = argmax
o

Cm(o, j) (11)

indjn = argmax
o

Cn(o, j). (12)

Here indjm and indjn represent indices of the selected local
feature vectors (xj∗

m and xj∗
n ) chosen from Xm and Xn using

jth atom (dC
j ) of DC

Li. In this way, 2d pairs of the local feature
vectors (d dictionary atoms per class-specific dictionary) are
chosen for calculating the proposed AA/DAA-IMK.

Once these 2d pairs of local feature vectors are chosen
(using either simplex decomposition or nearest neighbour
approach), a Gaussian base kernel is computed between each
pair using Equation 3. These 2d base kernels are aggregated
to obtain the proposed AA/DAA-IMK between Xm and Xn:

Kaa/daa−imk(Xm,Xn) =
2d∑
j=1

Kbase(x
j∗
m ,x

j∗
n ) (13)

Note that when dictionaries obtained from the first layer of
DAA framework are used to calculate IMK, the proposed ker-
nel is dubbed as AA-IMK. Similarly when deeper dictionaries
are used, the proposed kernel is referred as DAA-IMK.

These kernel gram matrices can be incorporated in support
vector machine (SVM) framework to classify the feature
sets of varying cardinalities. During training, the proposed
AA/DAA-IMK (Equation 13) is calculated between each pair
of training examples and these kernel values are stored in a
kernel-gram or similarity matrix. This matrix is passed to the
SVM to learn the discrimination between classes. The overall
procedure to train SVM with AA/DAA-IMK is summarized
in Algorithm 1. To test an example, a test kernel-gram matrix
is calculated between this test example and each training
example. Then, the test kernel-gram matrix is passed to the
trained SVM to obtain the prediction. Algorithm 2 contains
the pseudo-code explaining the testing procedure.

III. EXPERIMENTAL SETUP

In this section, the experiments designed to evaluate the
classification performance of the proposed AA/DAA-IMK are
described. The datasets, train-test data distribution, compara-
tive methods and parameter settings used for experimentation
are also discussed here.

A. Experiments and datasets

The classification performances of AA/DAA-IMK are eval-
uated on four different tasks: bird species classification, frog
species classification, bird activity detection and birdsong
phrase classification. For bird species classification, a collec-
tion of audio recordings of 50 different species, obtained from
three different sources, is used here. The recordings of 17 bird
species were obtained from the Macaulay Library1 and were
provided on an academic license. The recordings of 7 bird

1http://www.macaulaylibrary.org

Algorithm 1: Training SVM with AA/DAA-IMK for
binary classification
input : X = {X1X2....XM}: Examples of ith class

Y = {Y1Y2....YN}: Examples of jth class
Di

L: Lth layer DAA dictionary of ith class
Dj

L: Lth layer DAA dictionary of jth class
output: SVM: Trained support vector machine

1 K = [ ] // Empty matrix of size M ×N to store

kernel values

2 Labels = [repeat(1,M); repeat(−1, N)] // Creating M

"1" labels for ith class and N "-1" labels for

jth class.

3 for x← 1 to M do
4 for y ← 1 to N do
5 I,J =get Local Vectors(X [x], Y[y], Di

L,Dj
L)

// Selecting 2d local vector pairs

w.r.t. Di
L and Di

L either by nearest

neighbours (using Equations 8-9) or

simplex decomposition (using Equations

10-12)

6 kernel = 0
7 for z ← 1 to 2d do
8 base=get Base Kernel(I[z],J [z])

// computing base kernel using

Equation 3

9 kernel = kernel + base // Aggregating

base kernels (Equation 13)

10 end
11 K[x, y] = kernel // Kernel-gram matrix

12 end
13 end
14 SVM=train SVM(K,Labels) // Training SVM

species were downloaded from bird database maintained by
Art & Science Centre, UCLA2. The recordings of 26 bird
species were obtained from the Great Himalayan national
park (GHNP) dataset3 and were also used in [24]. The in-
formation about these 50 species along with the total number
of recordings and vocalizations per species is available at
https://goo.gl/z6UEQa. The publicly available Anuran dataset4

is used for the frog species classification task. This dataset
contains audio recordings of 10 different frog species, which
are 16-bit mono and are sampled at 44.1 kHz.

For bird activity detection task, the publicly available de-
velopment dataset provided for BAD Challenge 20175 is used
here. This development dataset is composed of two datasets:
Freefield and Warblr. A total of 16000 mono recordings (8000
birds and 8000 non-birds) having a sampling rate of 44.1 kHz
are available in this dataset.

For song phrase classification, the thirteen Cassin’s vireo
audio recordings available at http://taylor0.biology.ucla.edu/

2http://artsci.ucla.edu/birds/database.html
3https://tinyurl.com/y9robcdy
4http://goo.gl/FFBzbb
5http://machine-listening.eecs.qmul.ac.uk/bird-audio-detection-challenge/
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Algorithm 2: Prediction with AA/DAA-IMK in SVM
framework
input : T = {T1T2....Tt}: Test Examples

Z = {X1X2....XMY1....YN}: Training Examples
SVM: Trained SVM
Di

L: Lth layer DAA dictionary of ith class
Dj

L: Lth layer DAA dictionary of jth class
output: P : Predictions

1 K = [ ] // Empty matrix of size t×MN to store

test kernel gram matrix

2 for x← 1 to t do
3 for y ← 1 to MN do
4 I,J =get Local Vectors(T [x], Z[y], Di

L,Dj
L)

// Selecting 2d local vector pairs

w.r.t. Di
L and Di

L either by nearest

neighbours or (using Equations 8-9) or

simplex decomposition (using Equations

10-12)

5 kernel = 0
6 for z ← 1 to 2d do
7 base=get Base Kernel(I[z],J [z])

// computing base kernel using

Equation 3

8 kernel = kernel + base // Aggregating

base kernels (Equation 13)

9 end
10 K[x, y] = kernel // Kernel-gram matrix

11 end
12 end
13 P=predict(SVM,K) // obtain predictions

are used. The recordings are segmented using the provided
labels to obtain song phrases. The ten song phrase classes
having maximum number of examples are used for the ex-
perimentation. These segmented song phrases are hosted at
Figshare6.

The classification accuracy is used as a performance metric
for species and song phrase classification tasks, and, area under
ROC curve (AUC) is used for bird activity detection.

B. Train-test data distribution

For bird and frog species classification tasks, 10% of
vocalizations from each class are used for validation. These
vocalizations are not used for training or testing. The re-
maining 90% of vocalizations are used for three-fold cross-
validation. In each fold, 33% of vocalizations are used for
training while remaining vocalizations are used for testing. For
bird species classification, in each fold, approximately 2970
vocalizations are used for training while approximately 5920
vocalizations are used for testing. For bird activity detection
task, 50% of recordings (i.e. approx. 8000) are used for
training, 10% for validation (i.e. approx. 1600) while the
remaining (i.e. approx. 6400) are used for testing. For song

6https://figshare.com/s/cfca142fcedd3f206b8b

phrase classification, five phrases of each class are used for
training, five are used for validation while remaining phrases
are used for testing.

C. Comparative Methods

For the bird and frog species classification tasks, the per-
formance of the proposed kernels is compared with six other
methods. These include Gaussian mixture models (GMM),
class-specific intermediate matching kernel (IMK) proposed in
[31], probabilistic sequence kernels (PSK), a 3-layered fully-
connected neural network proposed in [24] for bird species
classification, an archetypal analysis based dictionary learning
framework (CCSE) [20], deep convex representations (DCR)
with random forest classifier [21] and spherical K-means based
framework (SKM) proposed in [19].

For the task of bird activity detection, the performance of
the proposed kernels is compared with some of the highest
performing methods of BAD Challenge 2017. These include
a CNN framework proposed in [12], a CNN-RNN hybrid
network [11], a masked non-negative factorization framework
[37], a probabilistic sequence kernel based method [8] and AA
based convex sparse sequence kernel (AA-CSK) [27].

For the song phrase classification task, the performance of
AA/DAA-IMK is compared against dynamic time warping
(DTW), sparse representation based classifier (SR) and a two-
pass framework fusing DTW and SR (DTW-SR-2Pass) [38]. In
DTW-SR-2Pass, if there is a disagreement between DTW and
SR classification decisions obtained in pass 1, then separate SR
classifier is used to break this stand-off in pass 2. This separate
SR classifier is a binary classifier trained on the examples
of two classes predicted by DTW and SR during the first
pass. The details about these methods can be found in [38].
Table I tabulates all the comparative methods along with their
abbreviations used in this study.

D. Parameter Settings

All the parameters used in the proposed frameworks and the
comparative methods are fine-tuned on the respective valida-
tion datasets. For species classification, the bird and frog vocal-
izations are segmented from audio recordings using the semi-
supervised method proposed in [39]. Only these segmented
vocalizations are passed to the proposed framework and other
comparative methods for both training and testing purposes.
A feature representation derived from mel-frequency cepstral
coefficients (MFCC) with delta and acceleration coefficients
(39-dimensional) is used in the proposed framework. The
frequency-temporal structures present in bioacoustic signals
cannot be modelled effectively due to the short-term nature of
these MFCC vectors. To overcome this issue, W neighbouring
MFCC vectors are concatenated to form a W×39-dimensional
feature representation. W = 10 is used here to obtain a 390-
dimensional representation. This value of W is determined
using the validation dataset. To obtain MFCC, a frame length
of 20 ms with 10 ms overlap is used in this work. The same
feature representation is used in all the comparative studies
considered for bird and frog species identification. During
initial experimentation, the authors also tried linear frequency
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TABLE I: Comparative methods used for the performance evaluation of the proposed AA/DAA-IMK for species classification,
bird activity detection (BAD) and song phrase classification tasks.

Method Abbreviation Nature Task
SVM with Intermediate Matching Kernel [31] IMK Matching Dynamic Kernel Species Classification
SVM with Probabilistic Sequence Kernel [8] PSK Mapping Dynamic Kernel Species Classification

Compressed Convex Spectral Embeddings [20] CCSE Dictionary Learning Species Classification
Deep Convex Representations [21] DCR Deep Dictionary Learning Species Classification

Deep Neural Network [24] NN Multi-layer Perceptron Species Classification
Spherical K-means with Random Forest [19] SKM Feature Learning Species Classification

Masked Non-negative Matrix Factorization [37] Masked-NMF Non-negative Matrix Factorization BAD
Convolutional-Recurrent Neural Network [11] RCNN Deep Learning BAD

Convolutional Neural Network [12] Bulbul Deep Learning BAD
Archetypal Analysis Based Convex Sequence Kernel [27] AA-CSK Dictionary Learning + Mapping Dynamic Kernel BAD

Dynamic Time Warping DTW Sequence Matching Phrase Classification
Sparse Representation based Classification [38] SR Exemplars based Dictionary Learning Phrase Classification

DTW Followed by SR [38] DTW-SR-2Pass Combination of DTW and SR Phrase Classification
AA based Intermediate Matching Kernel AA-IMK Dictionary Learning + Matching Dynamic Kernel all

Deep AA based Intermediate Matching Kernel DAA-IMK Deep Dictionary Learning + Matching Dynamic Kernel all

cepstral coefficients (LFCC) as a feature representation. How-
ever, no significant difference was observed in classification
performance and hence, the authors continued with MFCC
features.

For the bird activity detection (BAD) experiments, 39-
dimensional MFCC vectors are used as feature representation
(no context embedding is used). A frame size of 20 ms
with no overlap is used for feature extraction. These features
are normalized and warped to have a normal distribution as
explained in [8]. Since the comparative methods for BAD
also include CNN based frameworks, using the same feature
representation for all comparative methods is not possible.
Hence, for this experiment, the feature representations used
in the respective studies are used here.

For song phrase classification task, MFCC with temporal
context of 10 frames is used as a feature representation
in AA/DAA-IMK. DTW is applied on the mel-spectrogram
representation for phrase matching. Whereas, for SR classifier,
each song phrase is represented by a 128-dimensional com-
pressed feature representation. This representation is obtained
from the time warped mel-spectrograms by concatenating all
frames and compressing the concatenated representation using
PCA [38]. Across all methods, a frame length of 20 ms with
50% overlap is used for short-term analysis.
Parameters in AA/DAA-IMK: For BAD and species classi-
fication experiments, three layered DAA framework is used
to obtain dictionaries. The order of factorization i.e. 128 is
maintained at each layer to obtain DLi ∈ R390×128 where i
ranges from 1 to 3. The number of layers in DAA framework
and the order of factorizations are dependent on the nature
of data and are fine-tuned using the validation datasets. For
phrase classification, 16 atoms per dictionary and three layers
of factorizations are used.
Parameters in other methods: The number of GMM com-
ponents used in the class-specific GMM and in PSK are
determined using the Akaike information criterion (AIC). In
CCSE and AA-IMK framework, 128 archetypes per class-
specific archetypal dictionary are used. In DCR, three layers
of DAA are used. The order of factorization at each layer
is 128. A random forest with 100 trees is used to classify
convex representations obtained in DCR. In SKM, a spherical
K-means with K=256 is used for feature learning and a random

forest with 250 trees is used for both birds and frog species
classification. The trade-off parameter, C in the SVM and
the width parameter of the Gaussian kernel are empirically
chosen. All the aforementioned parameters are fine-tuned on
the validation datasets. Libsvm7 is used for building all SVM
based classifiers. SPAMS8 toolbox is used for learning AA
and DAA dictionaries.

IV. RESULTS AND DISCUSSION

In this section, the classification performances of the pro-
posed AA/DAA-IMK on four bioacoustic tasks are presented.
Apart from that, the effect of increasing depth on the DAA
atoms is also discussed here.

A. Classification performance

Species Classification: Box-plots depicting the perfor-
mances of AA/DAA-IMK and other comparative methods for
bird and frog species classification tasks are illustrated in
Fig. 5a and Fig. 5b respectively. The performance trends of all
classifiers including the proposed AA/DAA-IMK are similar
between the two datasets. The following can be observed from
the analysis of these figures:
• The proposed AA-IMK and DAA-IMK provide better clas-

sification than the traditional kernels such as IMK and PSK
across all three folds on both the datasets. The AA-IMK
shows a relative improvement of 4.37% and 5.2% over the
average classification accuracy achieved by IMK and PSK
on the bird dataset. Similarly, relative improvements of 6.6%
and 7.1% are shown by DAA-IMK over IMK and PSK
respectively. It can be concluded that the introduction of AA
and DAA in the kernel method framework led to a better
performance.

• AA-IMK shows a relative improvement of 1.85% and 2.27%
in average classification accuracy over CCSE on birds and
frog dataset respectively. Also, the performances of DAA-
IMK is better than DCR by 1.21% and 0.77% on bird and
frog dataset respectively. This justifies the hypothesis that
the introduction of kernel methods in matrix factorization
frameworks can lead to better classification.
7https://www.csie.ntu.edu.tw/∼cjlin/libsvm/
8http://spams-devel.gforge.inria.fr/



1932-4553 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2019.2906465, IEEE Journal
of Selected Topics in Signal Processing

9

79.4

84.6
83.9

86.7

89.2
89.7

86.9

88.3

89.4

90.2

91.6

  Nearest 
Neighbour

      Simplex
Decomposition

(a)

82.4

87.6 87.7

92.5

95.6 95.5 

89.9 

94.6
95.2

96.3 
97.1 

  Nearest
Neighbour

     Simplex
Decomposition

(b)

Fig. 5: Box plots depicting the classification performances of Gaussian mixture models (GMM), intermediate matching kernel
(IMK), probabilistic sequence kernel (PSK), compressed convex spectral embeddings (CCSE), deep convex representations
(DCR), deep neural network (NN), spherical K-means (SKM), AA-IMK and DAA-IMK on (a) 50 bird species and (b) 10 frog
species (across three folds). Box-plots in red represent the performances of simplex-projection based variant of the proposed
AA/DAA-IMK. The number next to each box-plot represents the average classification accuracy across three folds.

• The performance of DAA-IMK is better than all the other
methods including AA-IMK on both the datasets. The better
performance of DAA-IMK over AA-IMK can be attributed
to the better data modeling capabilities of DAA atoms. As
discussed earlier, DAA atoms can model both extremal and
prototypical behaviour of the data. Thus, unlike AA-IMK
or the classical IMK, DAA-IMK utilizes information about
the whole data in learning the kernels.

• The simplex projection based DAA-IMK exhibits the best
classification performance (across both datasets) among the
methods chosen in this study. The simplex-projection based
variants of DAA-IMK and AA-IMK (shown in red box-

plots in Fig. 5a and Fig. 5b) show a relative improvement of
1.55% and 1.25% over the nearest neighbour variants on the
bird dataset. Similarly, relative improvements of 0.83% and
0.63% are observed on the frog dataset. These improvements
are small and the classification performances of both these
variant are similar.

Bird Activity Detection: Table II depicts the classification
performances of different frameworks for the task of bird
activity detection. The following inference can be drawn from
the analysis of Table II.
• As expected, deep neural network based frameworks such as

RCNN and Bulbul outperforms all other frameworks. How-
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TABLE II: Classification performance of different methods
for the task of bird activity detection on BAD 2017 challenge
dataset.

Framework AUC (%)
Probabilistic Sequence Kernel (PSK) [8] 83.2

Masked-NMF [37] 84.25
Recurrent-convolutional neural network (RCNN) [11] 88.2

Bulbul [12] 88.91
AA based convex sequence kernel (AA-CSK) [27] 84.1

Intermediate Matching Kernel (IMK) 83.5
AA-IMK 85.1

AA-IMK with simplex projections 85.9
DAA-IMK 86.3

DAA-IMK with simplex projections 86.95

TABLE III: Performance of various comparative methods on
song phrase classification task.

Method Accuracy
(%)

Sparse Representation based Classifier (SR) 92.7
Dynamic Time Warping (DTW) 93.6

DTW-SR-2Pass 96.9
AA-IMK 93.1

AA-IMK with simplex projections 93.15
DAA-IMK 94.5

DAA-IMK with simplex projections 94.52

ever, the performances of DAA-IMK and DAA-IMK with
simplex projections are comparable to RCNN and Bulbul.
RCNN shows a relative improvement of 2.15% and 1.42%
in AUC scores over DAA-IMK and its simplex projection
variant respectively. Similarly Bulbul also shows a relative
improvement of 2.92% and 2.1% in AUC scores over DAA-
IMK and its simplex projection variant respectively.

• AA/DAA-IMK outperforms PSK, AA-CSK, IMK and
Masked-NMF. AA-IMK shows a relative improvement of
2.24%, 1.18%, 1.88% and 1% over PSK, AA-CSK, IMK
and Masked-NMF in AUC scores respectively. While DAA-
IMK shows a relative improvement of 3.59%, 2.55%, 3.24%
and 2.35% over PSK, AA-CSK, IMK and Masked-NMF
respectively.

• Simplex projection variants of AA/DAA-IMK exhibit a
small improvement in AUC scores over nearest local vector
variants. AA-IMK with simplex projections shows a relative
improvement of 0.94% over AA-IMK while DAA-IMK
with simplex projections exhibits a relative improvement of
0.75% over DAA-IMK.

Song Phrase Classification: The performances of
AA/DAA-IMK and other comparative methods are
documented in Table III. The analysis of this table highlights
the following:
• An effective phrase classification is shown by AA/DAA-

IMK. However, both these frameworks are outperformed
by DTW-SR-2Pass. This can be attributed to the genera-
tive nature of AA/DAA. Although, the data requirements
for AA/DAA are significantly lesser than deep learning
frameworks, they still require a sufficient number of
examples to provide effective generalization.

• DTW-SR-2Pass performs better than DTW and SR. This
shows that combining the properties of template matching

(DTW) and exemplar based generative modelling (SR) re-
sults in better phrase classification under limited training
data conditions (5 examples per class).

• No statistically significant difference is observed in the
simplex projection and nearest neighbour variants of
AA/DAA-IMK.

The analysis of results obtained from all four experiments
highlights the significance of AA/DAA-IMK. It is strongly
suggestive that the classification performance of AA/DAA-
IMK is better than the existing formulations of IMK. These
results also demonstrate the power of matrix factorization
combined with kernel methods.
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Fig. 6: Classification accuracy of DAA-IMK, on the validation
sets, as a function of the number of layers of DAA framework.

B. Effect of depth on classification performance

To choose the number of layers in DAA-IMK framework,
the classification accuracy as a function of the number of
layers was observed on the validation datasets for bird and
frog species classification. This observation is illustrated in
Fig. 6. The analysis of this figure shows that the classification
accuracy improved as the number of layers are increased from
one to three. However, using more than three layers does not
account in any increment in the classification performance
and up to nine layers the classification performance is almost
constant. This behaviour can be attributed to the reasoning
that there are small changes in modelling capabilities of
DAA dictionary atoms after third layer and these changes
do not effect the classification performance of DAA-IMK. To
corroborate this claim, we chose a 2-dimensional randomly
sampled dataset and factorized it up to nine layers to obtain
the DAA dictionaries. The number of dictionary atoms i.e.
20 is kept same at all layers. Fig. 7 depicts the behaviour of
DAA dictionaries obtained at first, third, sixth and ninth layer.
This figure shows that though there are small differences in
modeling capabilities of sixth and ninth layer dictionary atoms,
both these dictionaries are modeling the average and extremal
behaviour effectively. In an IMK framework, these small
differences may or not have any effect on the classification
performance. Hence, it can be inferred that after a partic-
ular depth, the modeling capabilities of deeper dictionaries
start stagnating and going further deep may not improve the
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Fig. 7: Behaviour of DAA dictionary atoms obtained at (A) first layer, (B) third layer, (C) sixth layer and (D) ninth layer.

performance of DAA-IMK. This observation is in accordance
with the constant classification performances observed after
the third layer on the validation datasets (in Fig. 6).

Note that the optimum depth of DAA in the IMK framework
is dependent on the geometric properties of data and can only
be determined experimentally.

C. Nearest neighbour search vs simplex decomposition

In Section II, two possible methods to select pairs of the
local feature vectors are discussed. From the analysis of classi-
fication performances obtained for species classification, bird
activity detection and phrase classification, it can be inferred
that both nearest neighbour and simplex projection variants
exhibit similar performance (less than 1% difference in all
tasks.) This implies that mostly same local feature vector pairs
are selected for kernel computation in both these variants. It
can be attributed to the reason that in most cases, both nearest
neighbour and simplex decomposition variants behave in a
similar way. The contribution of an atom in representing a data
point (by convex combination) is maximum if this data point
exhibits maximum spatial proximity to the dictionary atom. As
a result, the simplex decomposition coefficient exhibiting the
highest value corresponds to the atom that lie at the minimum
distance from the data point.

The difference in nature of nearest neighbour and simplex
decomposition is highlighted when more than one vector
exhibit the same minimum distance from a dictionary atom.
In the nearest neighbour variant, any one of these nearest
vectors can be selected with respect to the dictionary atom.
However, depending on the ideal convex combination (solution
of Equation 10), the simplex coefficients corresponding to
this dictionary atom can be different in the convex-sparse
representations obtained for these vectors. As a result, there
can be a difference in local feature pairs selected using nearest
neighbour and simplex decomposition. The small performance
gain observed for the simplex decomposition in our experi-
ments can be ascribed to selection of the local vector pairs
that provided better discrimination.

It is worth mentioning that in many cases, multiple solutions
are available for the simplex decomposition problem (Equation
10). In such cases, the local feature vector pairs selected

for calculating IMK are dependent on the implementation of
simplex decomposition.

D. Amount of training data vs classification performance

To analyze the effect of training data on the proposed
AA/DAA-IMK and other comparative methods, we conducted
the bird activity detection (BAD) experiment with varying
amount i.e. 10%, 25%, 50% and 75% of the training data.
All the parameters and feature representations described in
Section III-D are used here. The results of this experiment
are depicted in Fig. 8. The analysis of this figure highlights
the fact that deep learning frameworks i.e. RCNN and Bulbul
significantly outperforms other methods when 50% and 75%
of the data is used for training. However, as expected, their
performaces significantly deteriorate at 10% and 25% training
data configurations. The classification performances of DAA-
IMK is better than other methods at 10% and 25% training
data configurations. This shows that as desired, the proposed
DAA-IMK can provide effective classification in low-training
data conditions.

V. CONCLUSION

In this paper, we introduced a new classification framework
that combines properties of deep matrix factorization with
kernel methods. The modeling capabilities of deep archetypal
analysis (DAA) are analyzed to propose a variant of the
traditional intermediate matching kernel (IMK). The proposed
kernel utilizes DAA, a deep matrix factorization framework,
for choosing pairs of local feature vectors for learning the base
kernels. The nature of DAA helps in choosing local feature
vector pairs which lie on or around the class boundaries, in
addition to those in the interior. The utilization of these confus-
ing pairs in training process helps in learning a better classifier.
Experimental results on four different bioacoustic tasks show
that the proposed AA/DAA-IMK outperforms the traditional
IMK and matrix factorization based classification frameworks.
Future work may include introducing DAA frameworks in
other kernels such as PSK and AA-CSK.
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Fig. 8: Bar plots depicting the classification performances of probabilistic sequence kernels (PSK), masked NMF, recurrent
convolutional neural network (RCNN), Bulbul, AA based convex sequence kernel (AA-CSK), intermediate matching kernel
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