• Instructor: Parimala Kancharla: (office: A17.03.06, email: parimala@iitmandi.ac.in)
  • Office Hours: (or by appointment)
  • Discussion Forum: piazza code-cs683 ,To Join
  • Class Venue:
  • Syllabus ,Syllabus
  • Class Timings: Wednesday 2 to 3:30 and Friday 2 to 3:30
  • TAs: Reshu Bansal(d23032@students.iitmandi.ac.in), Abhishek Tandon, s22002@students.iitmandi.ac.in
  • Evaluation

  • Assignments - 25%
  • Quizzes - 25%
  • Course Project - 50%
  • Resources

    < < <
    S.N Topic Slides External References
    1. Introduction Slides ..
    2. Backpropagation and Regularization methods for Deep Models
    1. Notes -1
    2. Notes-2
    Backpropagation
    3. Variational Autoencoder
    1. Notes
    VAE- Tutorial
    4. Variational Autoencoder-II
    1. Lowerbound derivation-Notes
    2. Recorded Lecture
    1. VAE-PPT
    2. VAE-PPT-II
    5. Introduction to GANs
    1. Standard GAN Loss function formulation
    2. Slides
    3. Recorded Lecture
    1. GAN Standard Paper by Ian Goodfellow
    2. GAN-Tutorial
    6. GAN theory and WGAN - Motivation
    1. Standard GAN theory
    2. Slides
    3. Recorded Lecture
    1. Slides - TOWARDS PRINCIPLED METHODS FOR TRAINING GENERATIVE ADVERSARIAL NETWORKS
    2. TOWARDS PRINCIPLED METHODS FOR TRAINING GENERATIVE ADVERSARIAL NETWORKS Paper
    3. Wasserstein GAN
    7. WGAN-GP, SNGAN and PGGAN (Variants of GAN frameworks)
    1. Notes
    2. Slides
    3. Recorded Lecture
    1. Nice blog - SNGAN
    2. Nice blog - WGAN-GP
    3. WGAN vs WGAN-GP
    4. WGAN-GP Paper
    5. SNGAN Paper
    6. Nice blog - PGGAN
    7. PGGAN Paper
    8. Evaluation Metrics - FID score and Inception Score
    1. -
    1. FID and Inception Score
    9. Cycle GAN - Image to Image Translations
    1. Notes
    1. CycleGAN
    10. Introduction to Graphs and Graph Neural Networks
    1. Slides
    1. GNN
    11. GCN and GAT
    1. Slides
    2. Notes
    1. GCN and GAT
    12. GCN and GAT - II
    1. Notes
    1. GCN and GAT
    13. GraphRNN
    1. Graph RNN Slides, credits:CS224w
    2. Graph RNN blog
    15. Image Captioning Before "Attention is all you need" and DRAW Model
    1. Slides from NPTEL - Credits to Prof. Vineeth Balasubramaniam, IITH Link
    15. Transformer - Self attention and Multi-head attention
    1. Slides from NPTEL - Credits to Prof. Vineeth Balasubramaniam, IITH Link
    2. Encoder Explained Clearly- Blogpost Link
    16. Decoder - Transformer
    1. Slides from NPTEL - Credits to Prof. Vineeth Balasubramaniam, IITHlink
    2. Decoder Explained clearly - Masked Attention link
    17. BERT Model
    1. BERT Model Vs Word2Veclink
    2. External Reference Link
    3. External Reference -II Link
    18. GPT
    1. What is GPT Model (very nice blog)
    2. BERT and GPT Model
    19.
    1. LLAMA
    2. Multi Head Attention Vs Multi Query Attention
    3. Cache Aware Memory Access
    1. LLAMA2_slides
    2. MultiQueryAttention vs MHA
    20. CLIP Model and Multimodal Pre-training
    1. Vision-Language Models (upto 13th slide)
    2. CLIP
    21. Diffusion Models
    1. Diffusion Models
    21. Stable Diffusion
    1. To be updated

    Assignments

    S.N Assignmnet Release Date Submission Date
    1. Assignment-1 14/08/2024 31/08/2024
    2. Assignment-2 11/09/2024 29/09/2024

    Text books