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Abstract

Rapid advancement of artificial intelligence (AI) and deep learning has driven the need for

efficient hardware accelerators that are capable of handling complex convolutional neural

network (CNN) computations. Though conventional processors like CPUs and GPUs are

widely used, they are not ideally suited for the deployment of edge applications due to limi-

tations in energy efficiency, data movement, and processing throughput. In this doctoral the-

sis, these challenges are addressed by presenting custom very-large scale-integration (VLSI)

architectures tailored for CNN acceleration, optimized for both inference and training in

resource-constrained environments. The proposed adaptive convolution mapping technique

achieves a 1.71× improvement in the computation per multiply-accumulate (MAC) unit over

the state-of-the-art designs. In addition, an uninterrupted processing strategy, leveraging a

random-access line-buffer (RALB), delivers 2.55× higher throughput by eliminating mem-

ory stalls and maintaining a continuous dataflow. On further optimizing the energy effi-

ciency, the suggested designs emphasize extensive local data reuse across all the CNN layers,

leading to a 3.4× improvement in energy efficiency over state-of-the-art works. Furthermore,

an unified CNN-accelerator design is presented in this thesis that supports both training and

inference on a single architectural platform. It is incorporated with the optimized forward

and backward passes, efficient data reuse, and scalable kernel mapping strategies to support

a broad range of CNN workloads. Therefore, such unified CNN accelerator achieves 1.36×

higher energy efficiency compared to reported training accelerators. The hardware architec-

tures are implemented and evaluated on field-programmable gate-array (FPGA) platforms,

confirming their ability to deliver high throughput, low power consumption, and scalability

across a variety of CNN models.

Keywords: CNN Accelerator, Deep Learning Hardware, FPGA Implementation, Energy-

Efficient AI, Convolution Mapping, Data Reuse, VLSI Architecture, Inference and Training,

Edge AI, Memory Optimization, Low-Power Computing, AI Hardware, Hardware Accelera-

tion, Real-Time AI Processing.
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Chapter 1

Introduction

1.1 Artificial Intelligence

Artificial intelligence (AI) is a transformative field of computer science that focuses

on developing systems capable of simulating human intelligence. These systems are de-

signed to perform cognitive tasks such as learning, reasoning, problem-solving, perception,

decision-making, and language understanding. Over the past few decades, AI has progressed

from theoretical concepts to real-world applications, shaping various industries and redefin-

ing technological possibilities [1].

The origins of AI can be traced back to the mid 20th century, with early concepts emerg-

ing from philosophy, mathematics, and neuroscience. Alan Turing’s foundational work on

computation and intelligence laid the groundwork for the field, proposing the idea that ma-

chines could mimic human cognitive functions [2]. The development of symbolic AI in the

1950s and 1960s introduced rule-based systems designed to simulate logical reasoning [2].

However, these early AI systems were limited by their reliance on manually coded knowl-

edge, which restricted their adaptability to complex real-world scenarios [3].

The evolution of AI has been heavily influenced by advances in computational power,

data availability, and algorithmic improvements. The late 20th century witnessed the rise of

machine learning (ML), shifting the focus from hand-crafted rules to data-driven learning

techniques [4]. This transition enabled AI systems to learn patterns from large datasets and

improve performance over time without explicit programming. The advent of deep learn-
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ing (DL) in the early 21st century further revolutionized AI, enabling models with multiple

layers of artificial neurons to achieve unprecedented accuracy for image and speech recog-

nition [5].

In present time, AI has been deeply embedded in everyday life, powering applications

such as virtual assistants, recommendation systems, autonomous vehicles, healthcare diag-

nostics and many more. The field continues to evolve with advancements in reinforcement

learning, natural language processing, and computer vision [6].

Fig. 1.1: An overview of used cases for AI in different applications [5] .

1.2 Applications and Impact of AI

AI has become a key driver of innovation, reshaping industries and everyday life by pro-

cessing massive datasets, recognizing patterns, and supporting intelligent decision-making.

Its applications span healthcare, finance, commerce, manufacturing, transportation, educa-

tion, agriculture, and cybersecurity, where it continues to enhance efficiency, accuracy, and

automation across diverse domains [6, 7].

In healthcare, AI enhances personalized medicine by analyzing genetic profiles and clin-

ical data to tailor treatments for individual patients. Predictive analytics assist doctors in
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identifying high-risk patients, monitoring vital signs, and detecting anomalies. It also sup-

ports medical imaging analysis, accelerates drug discovery, and enables remote patient mon-

itoring, thereby improving clinical outcomes while reducing costs [8, 9].

In finance, AI does real-time fraud prevention by meticulously analyzing streams of

transactional data to detect and block suspicious activities before they escalate. It also

powers algorithmic trading, ensuring rapid order execution and the dynamic optimization

of investment portfolios. In addition, AI can improve credit scoring, risk assessment, and

personalized financial advisory services, making financial systems more secure and effi-

cient [10, 11].

AI also plays a transformative role in retail and e-commerce, where it powers recommen-

dation systems, demand forecasting, and inventory optimization. By predicting customer

behavior and enabling dynamic pricing, it enhances supply chain efficiency while creating

highly personalized shopping experiences [12, 13].

In manufacturing, AI enhances productivity through intelligent robotics, predictive main-

tenance, and adaptive process control. Automated quality inspection ensures consistency,

while advanced decision-making systems reduce downtime and operational costs, making

industries more flexible and resilient [5, 14].

Transportation and logistics are being reshaped by AI. Self-driving cars utilize AI-powered

sensors, computer vision, and deep learning models to perceive their surroundings, make

decisions, and navigate safely [15]. AI-based advanced driver-assistance systems (ADAS)

improve road safety, while route optimization and intelligent traffic management enhance

efficiency in logistics and urban mobility [16, 17].

Another major area is natural language processing (NLP), where AI enables real-time

translation, chatbots, and sentiment analysis. These applications improve accessibility and

customer service, while also allowing organizations to extract insights from vast collections

of unstructured text [18].

Also, in education, AI can personalize learning experiences through adaptive learning

platforms and intelligent tutoring systems that respond to student needs. Automated grading

reduces routine workload for teachers, enabling them to focus on more impactful educational

tasks [4].
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AI is equally important in agriculture, where precision farming techniques rely on AI

to monitor crop health, predict yields, and optimize the use of water and fertilizers. These

innovations improve productivity and contribute to sustainable agricultural practices [19].

Another critical domain is cybersecurity, where AI enhances protection against cyber

threats by detecting anomalies, predicting attack patterns, and automating incident responses.

These systems provide stronger defense mechanisms for safeguarding sensitive data and crit-

ical infrastructures in real time [20].

Beyond these, AI is finding applications in areas such as surveillance, defense, creative

industries, and many emerging fields that are still unfolding. The breadth of its impact

illustrates how AI continues to reshape societies by enhancing decision-making, automating

complex tasks, and unlocking new opportunities for innovation [1, 21].

Despite their diversity, these applications are ultimately grounded in a set of core AI

components like machine learning (ML), neural networks (NN), deep learning (DL), natu-

ral language processing (NLP), reinforcement learning (RL), etc., that collectively provide

the foundation for intelligent behavior. A closer look at these key components will help

clarify how AI systems achieve such versatility, which has been discussed in the following

section.

Fig. 1.2: Hierarchical relationship between artificial intelligence, machine learning, neural networks,
and deep learning. Each inner circle represents a subset of the outer concept, with examples of models
and methods associated at each level.
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1.3 Key Components of AI

The relationship among AI, ML, NN, and DL can be better understood through a layered

view, as illustrated in Fig. 1.2. This nested structure clarifies how different models and

techniques are interrelated across levels of abstraction and complexity. AI is built on a set

of interrelated components that collectively enable machines to learn, reason, perceive, and

act in ways similar to human intelligence. Among these, ML forms the foundation, allowing

systems to identify patterns and make predictions from data [4]. As illustrated in Fig. 1.2,

ML encompasses various paradigms such as supervised, unsupervised, and reinforcement

learning, each enabling automated knowledge extraction from different types of datasets.

DL, a specialized subset of ML, employs multi-layered neural networks to achieve su-

perior performance in complex tasks such as image recognition, speech processing, and

natural language understanding [3, 5]. At the core of DL are NNs, computational mod-

els inspired by the human brains interconnected neurons. NNs are particularly effective at

learning non-linear relationships, with architectures ranging from feedforward multilayer

perceptrons to recurrent, convolutional, and graph-based variants. Convolutional Neural

Networks (CNNs), in particular, have revolutionized computer vision applications by auto-

matically extracting spatial features from raw data, making them highly effective for image

classification, object detection, and segmentation [22].

Beyond ML and DL, other AI components provide complementary capabilities. NLP en-

ables machines to interpret and generate human language [18], while RL focuses on agents

that learn optimal strategies by interacting with dynamic environments [21]. Computer vi-

sion (CV) interprets visual information for recognition and perception tasks, and expert

systems encode domain-specific rules for automated decision-making [23].

As AI continues to advance, the demand for efficient computational resources grows,

leading to the development of specialized hardware accelerators. The next sections will ex-

plore the role of hardware in AI, particularly in the optimization of deep learning workloads

and the design of efficient CNN accelerators.
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1.4 Motivation for CNN-Centric Hardware Acceleration

Within the diverse spectrum of AI techniques, several models have played central roles

at different stages of development. Early approaches such as expert systems and rule-based

reasoning demonstrated how symbolic logic could capture human expertise, yet they lacked

scalability and adaptability in handling unstructured data [23]. Feedforward multilayer per-

ceptrons improved upon this by learning patterns directly from data, but their fully connected

nature led to a prohibitive number of parameters and limited capacity to exploit structural

correlations.

Recurrent Neural Networks (RNNs) and their variants extended learning to sequential

data, showing notable success in speech and language processing. However, their training

suffers from vanishing gradients, long convergence times, and limited parallelization [3],

constraining their scalability for modern large-scale applications. Similarly, the reinforce-

ment learning has been proven to be powerful for decision-making tasks but is less effective

in perception-heavy domains without integration with deep architectures.

By contrast, CNNs introduced two critical architectural advances: local connectivity

and weight sharing, that drastically reduce parameter counts while preserving the ability to

capture hierarchical features. This design enables CNNs to efficiently learn from spatial and

temporal correlations in data, making them uniquely suited for image recognition, object de-

tection, medical imaging, and other perception-driven applications [5,22,24]. Their layered

feature hierarchy mirrors aspects of human perception, progressing from edges and textures

to higher-level semantic features, which has driven their dominance in computer vision and

beyond.

CNNs have also demonstrated versatility, extending beyond vision to speech recognition,

natural language processing, and bioinformatics, underscoring their robustness across AI

domains [3]. While newer architectures such as transformers are gaining prominence, CNNs

remain indispensable due to their computational efficiency, scalability, and the maturity of

the supporting ecosystem. For these reasons, CNNs are chosen as the focal point of this

thesis, with a particular emphasis on designing hardware-efficient solutions to address their

computational challenges.
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1.5 Convolutional Neural Networks: From Intuition to Im-

plementation

1.5.1 Human’s Object Identification versus CNN Working Mechanism:

An Analogy

To design an effective CNN accelerator, we first need to understand the way a CNN

model works. Fig. 1.3 provides an analogy between the way humans identify objects and

the functioning of a CNN. When humans identify an object, such as a dog, we rely on

recognizing distinct features ears, eyes, nose, tail, and legs and their relative positions. If

these features match our internal concept of a dog, we classify the object accordingly.

Now, imagine a system with specialized “filters” designed to detect each of these fea-

tures. For example, one filter might look for ears, another for eyes, and another for the nose,

and so on as shown in Fig. 1.3. Some filters might even focus on combinations of features

like ears, eyes, and nose to detect the head while others could detect the body, such as the

legs and tail. This hierarchical approach mirrors the following step by step workings of a

CNN model.

1. Feature Extraction through Filters (Convolutional Layers):

• CNNs apply small, learnable filters (kernels) across the image to detect low-

level patterns like edges, textures, and simple shapes, similar to how we check

for features like ears, eyes, and nose.

• In the initial layers, filters capture basic visual elements without forming an un-

derstanding of the entire object.

2. Building Higher-Level Representations (Deeper Convolutional Layers):

• When we combine features (ears, eyes, nose) to identify the head of a dog, deeper

layers of the CNN combine low-level patterns to form more complex structures.

• Intermediate layers might detect partial structures (like a dog’s head or body),

which later layers use to recognize the full object.
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3. Object Classification (Fully Connected Layers & Decision Making):

• Once the CNN layers have identified key features and their arrangements, the

network assigns confidence scores to different possible objects.

• Similar to how humans make a decision based on the overall arrangement of

features, CNNs classify the object based on learned patterns.

This process closely mimics human analysis of visual information. However, unlike

humans, CNNs learn which features to detect from large datasets, automatically discovering

the most useful filters and patterns for distinguishing among different objects.

Convolution
&

ReLU

Max Pool

Convolution
&

ReLU

Flatt
en

0.1

0.7

0.2
Dog

Cat

Bear

Softmax
Activation

Fully Connected Layers

Fig. 1.4: Computations contributed by different kernel sizes in CNN models.

1.5.2 Understanding CNNs: A Hierarchical Approach to Image Recog-

nition

A CNN processes images in a hierarchical fashion, progressively extracting features at

various levels of abstraction. This approach is analogous to human object recognition, where

individual features are first identified, then combined to form a complete understanding of

the object. Fig. 1.4 provides a visual representation of one such CNN model.

The process starts at the input layer, where an image is represented as a three-dimensional

tensor with dimensions Hi ×Wi × Ci, where Hi, Wi, and Ci represent image-height, image-

width and number of channels, respectively, three for an RGB image.
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1.5.2.1 Feature Extraction: Convolutional Layers

CNNs utilize convolutional layers to extract spatial features. Small filters (kernels) of

size k × k slide over the input image, computing dot products between filter values and

local image regions. This operation generates feature maps, highlighting significant image

structures. Early layers capture low-level features like edges and textures, while deeper

layers extract higher-level representations, such as object parts (eyes, nose, ears for a dog).

In the convolution (Conv) layer of CNN, each element of the output feature map is com-

puted as

ACx,y,z,δ =

α∑
a=1

β∑
b=1

γ∑
c=1

(
Wa,b,c,δ×Ixx,yy,zz

)
+Bδ. (1.1)

In the above expression, AC, W, I, and B denote output activation, filter weight, input

feature-map, and bias values, respectively. Likewise, x, y, z and δ represent the positions of

current value of output feature map over its four different dimensions. In addition, xx, yy, and

zz are three dimensional positions of the current value of input feature map which is being

processed. These values are computed as xx = (s×x + a) ; yy = (s×y + b) ; zz = (s×z + c)

where s denotes the stride size. Furthermore, α, β, γ and δ are the sizes of four different

dimensions of filters of a layer. Thus, α = β = 3 for 3×3 convolution and α = β = 5 for 5×5

convolution.

1.5.2.2 Non-Linearity: Activation Function

After convolution, an activation function, typically the rectified-linear-unit (ReLU), is

applied to introduce non-linearity. ReLU is defined as:

ACx,y,z = max
{
0, Ix,y,z

}
(1.2)

This non-linearity allows the network to learn complex patterns by discarding negative

values and retaining positive feature responses.

On the other hand, some CNN models with lower bit precision [25] use a special type

of ReLU called ReLU6 wherein, network discards negative values and retaining positive
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feature responses. However, if the numerical value of the positive feature responses is more

than 6, they are clipped to 6. Operation of such ReLU6 operation can be expresses as:

ACx,y,z = min
{
max

{
0, Ix,y,z

}
, 6

}
(1.3)

1.5.2.3 Dimensionality Reduction: Pooling Layers

To enhance computational efficiency and robustness, CNNs employ pooling layers. The

most common method is maxpool, which selects the maximum value from non-overlapping

regions of size α × β, where α and β are the dimensions (height and width, respectively)

of the pool kernel. This reduces spatial dimensions while preserving the most important

features, helping achieve translation invariance and enabling CNNs to recognize objects

despite minor shifts or variations in the image. Max-pooling is mathematically expressed

as:

ACx,y,z = max
{
I(x : α, y : β, z)

}
(1.4)

where max
{
I(x : α, y : β, z)

}
denotes the extraction of largest element from the α×β matrix

window with an origin at (x, y) inside the zth channel of I.

Some models [25], [26] also use average pooling (avgpool) wherein, the average of all

elements of the α × β region is taken, instead of taking only the maximum value. Such

avgpool operation can be expressed as :

ACx,y,z =

+α∑
x

+β∑
y

Ix,y,z

α × β
(1.5)

1.5.2.4 Higher-Level Feature Representation

As the network progresses through deeper convolutional and pooling layers, feature

maps are further refined to detect more abstract structures, such as the overall shape of

an object. This enables the network to develop a hierarchical understanding of the image,

similar to how humans combine individual components to recognize an object.
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1.5.2.5 Classification: Fully Connected Layers and Output

Once feature extraction is complete, the feature maps are flattened into a one-dimensional

vector and passed to fully connected (FC) layers. For FC layers, each element of AC is the

weighted sum of all elements of I and their corresponding biases. This operation is mathe-

matically expressed as

ACx =

N∑
n=1

In ×Wn,x + Bx. (1.6)

These FC layers learn relationships between the extracted features, with the final output layer

using a softmax activation function to produce a probability distribution across different

object classes:

Pri =
eCS i∑N
j eCS j

(1.7)

Here, CS i network’s score for class i. AC from the last FC (FClast) layer is given to softmax

function as the class score (CS). Pri represents the network’s score and probability for class

i, respectively. The class with highest probability is then selected as the predicted label.

CNNs follow a structured approach for object recognition, starting with simple feature

detection and progressing to complex pattern recognition. Such hierarchical method mirrors

human perception, where objects are identified by combining distinct features. By automat-

ing the feature extraction and classification process, CNNs achieve profound accuracy in

image recognition tasks.
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Fig. 1.5: ImageNet classification accuracy versus network depth for major CNN architectures.

1.6 Accuracy and Complexity Trade-offs in AI Models

In recent years, AI models especially deep-convolutional neural networks have demon-

strated remarkable improvements in accuracy and generalization, making them highly suit-

able for the deployment of high-stakes domains such as healthcare, autonomous vehicles,

and surveillance systems [5], [27]. These models have evolved from relatively shallow ar-

chitectures, like AlexNet [28] in 2012-13, to extremely deep and sophisticated designs such

as ResNet [29] and SENet [30], which incorporate over 150 layers to extract hierarchical

features from data. As depicted in Fig. 1.5, CNN models have not only improved consis-

tently in performance but, in some cases, have surpassed human-level accuracy in visual

recognition tasks [31]. This trend underscores the increasing reliability of AI in percep-

tion tasks. However, it also reflects a growing complexity in model architecture, which

presents challenges in terms of computational cost, energy efficiency, and interpretability.

The trade-off between performance and complexity remains a central concern in the design

and application of modern AI systems. [32], [33], [28], [34], [26], [ [29], resnet22], [ [29],

resnet152], [35], [30], [31]
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Fig. 1.6: An overview of a distributed deep learning framework showing the flow of data from
terminal devices to the cloud, where computation-intensive tasks are executed.

With the increasing complexity, modern deep learning models, especially deep neural

networks, have become increasingly computationally intensive, requiring substantial pro-

cessing power and memory. These requirements often exceed the capabilities of mobile or

embedded devices. To address this limitation, intelligent systems are now commonly de-

ployed in a distributed architecture involving three main layers: terminals, edge, and cloud.

User-end devices such as smartphones and IoT sensors (terminals) are primarily responsible

for data collection and interface tasks. The data is then transmitted to more capable cloud

servers via intermediate edge devices such as routers or base stations. In the cloud, large-

scale computational resources perform the main inference and analysis operations. The

results are subsequently returned to the terminal for real-time interaction. Fig. 1.6 shows an

overview of such distributed deep learning framework depicting the flow of data from ter-

minal devices (e.g., mobile phones, sensors) through edge infrastructure to the cloud, where

computation-intensive tasks are executed. Such model enables services like voice assistants

(e.g., Siri or Alexa) and smart applications (e.g., Google Lens) to operate efficiently despite

hardware constraints at the user level. However, this distribution of computation introduces

new challenges related to latency, bandwidth usage, and data privacy, which have become

critical considerations in system design [36], [37], [38].
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1.7 CNN Hardware Accelerators: Addressing Computa-

tional Challenges in AI

The rapid advancement of AI, particularly in deep learning, has led to an increasing de-

mand for high-performance computation. CNNs are widely used in image processing, com-

puter vision, and various other AI applications, require significant computational resources

due to their reliance on large-scale matrix operations, convolutional computations, and iter-

ative optimization techniques. General-purpose processors are often inefficient in handling

these tasks due to their sequential processing nature and limited parallelism. While graph-

ics processing units (GPUs) offer substantial parallelism, however, they face limitations in

power efficiency and flexibility, making the need of dedicated AI accelerators more press-

ing [22, 39].

The inefficiencies of traditional architectures stem from their inability to efficiently ex-

ecute the massive parallel computations required for CNN training and inference. Many

AI workloads, particularly those deployed in real-time applications and edge devices, op-

erate under strict power and thermal constraints. Conventional computing architectures

struggle with balancing performance and energy efficiency, necessitating the development

of specialized hardware solutions on application-specific integrated circuits (ASICs) and

field-programmable gate arrays (FPGAs) platforms [40]. These accelerators improve perfor-

mance by minimizing redundant computations, optimizing data movement, and leveraging

hardware parallelism.

CNN accelerators are designed to optimize key operations commonly found in deep

learning models:

• Matrix Multiplication and Convolutions: CNNs heavily rely on these operations,

which can be significantly accelerated using dedicated hardware architectures [41].

• Quantization and Sparsity Exploitation: Specialized AI accelerators incorporate

techniques such as reduced precision computation like 8 or 16 bit fixed point repre-

sentation instead of 32 bit floating point representation of numbers, and sparsity-aware

processing to enhance efficiency while maintaining accuracy [42].

15



• Memory Hierarchy Optimization: AI accelerators implement optimized memory

hierarchies, including high-bandwidth on-chip caches and dataflow architectures, to

minimize latency and improve computational throughput [43].

Additionally, real-time AI applications, such as autonomous vehicles, robotics, and med-

ical diagnostics, demand ultra-low latency processing. Traditional processors struggle to

meet these stringent timing constraints, making dedicated CNN hardware accelerators es-

sential. These accelerators employ efficient pipeline architectures and memory optimiza-

tions to ensure high-speed computation [5].

Furthermore, scalability is another critical factor in AI acceleration. As deep learn-

ing models grow in complexity, conventional architectures face bottlenecks due to memory

bandwidth limitations and inefficient resource utilization. AI hardware accelerators address

these challenges by offering:

• Scalable Architectures: AI-optimized hardware, including tensor processing units

(TPUs) and advanced FPGAs, enables efficient multi-chip scalability, allowing large-

scale CNN training and inference [44].

• Reconfigurability: FPGAs provide adaptable hardware implementations, making it

possible to support different CNN models and applications without requiring costly

new chip fabrication [45].

On the other hand, the economic viability of large-scale AI deployment depends on cost-

effective and energy-efficient hardware solutions. General-purpose computing clusters incur

high operational costs due to inefficiencies in power consumption and hardware utilization.

AI accelerators improve cost efficiency by enhancing processing throughput and reducing

power consumption, making large-scale CNN applications more practical and accessible

[46].

Given the growing complexity of CNN models and the increasing need for efficient,

real-time processing, the development of specialized hardware accelerators is essential. By

addressing the limitations of traditional processors, CNN accelerators significantly enhance

computational efficiency, scalability, and power optimization. This motivation underpins the
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necessity of designing CNN hardware accelerators to meet the ever-evolving demands of AI

applications across cloud computing, edge devices, and real-time processing environments.

1.8 Literature Review and Research Gaps

1.8.1 Early Developments in CNN Acceleration

The evolution of CNN accelerators has been driven by the need to balance accuracy,

throughput, and energy efficiency across diverse applications. Early efforts primarily relied

on GPUs. While GPUs provided massive parallelism, they consumed hundreds of watts,

which made them unsuitable for embedded and edge devices where energy and area are

critical constraints [47,48]. Early CPU and GPU-based acceleration platforms demonstrated

the potential of parallel architectures but highlighted the unsustainable overhead of general-

purpose designs in power and latency-sensitive domains.

To address these issues, dedicated hardware accelerators such as DianNao [47] and Eye-

riss [48] introduced domain-specific architectures. These designs exploited local data reuse,

optimized on-chip buffers, and specialized interconnects, demonstrating that data move-

ment, rather than arithmetic computation, dominates energy cost in CNN execution. Subse-

quent surveys and tutorials reinforced this finding, emphasizing the need for accelerator ar-

chitectures that minimize memory traffic while sustaining high throughput. Several designs

later built upon these foundations, employing systolic arrays, tiled matrix multiplication,

and FPGA overlays to enhance scalability and throughput [39, 49].

1.8.2 Adaptive Kernel Mapping

A recurring challenge in CNN accelerators lies in handling diverse convolutional kernels.

While many CNN models rely heavily on 3×3 convolutions, kernels such as 1×1 (e.g., in

GoogleNet and ResNet bottlenecks) and larger 5×5 kernels are also widely used. Fixed

datapaths tuned only for 3×3 kernels often underutilize hardware resources when processing

other sizes.

To mitigate this, several accelerators introduced flexible kernel mapping schemes. Zhang
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et al. [49] demonstrated FPGA-based approaches for configurable convolution blocks, while

Li et al. proposed SmartShard, a hardware-aware adaptive kernel mapping method that dy-

namically adjusts datapath utilization [50]. These designs improved utilization but typically

incurred control and routing overheads, limiting scalability for deeper models. Thus, achiev-

ing both high utilization and efficient adaptability across varying kernels remains a partially

unsolved problem.

1.8.3 Uninterrupted Processing and Dataflow Techniques

Memory latency continues to be a dominant bottleneck. Simple buffering schemes result

in frequent stalls, reducing throughput. Double-buffering or ping-pong buffering techniques

[51, 52] partially addressed this by overlapping computation and memory access. However,

these still suffer from idle cycles when switching between contexts or loading new data.

More advanced solutions employ hierarchical buffers, random-access line buffers, or

asynchronous data streaming [53]. While effective in convolution layers, many of these

approaches do not extend to other operations such as pooling, normalization, and activation

functions. Consequently, interruptions occur when transitioning between different stages of

the model, undercutting the potential benefits of continuous pipelining.

1.8.4 Full-Model Data Reuse

Most accelerators emphasize data reuse within convolutional layers, particularly exploit-

ing spatial and temporal reuse of activations and weights [48, 54]. While this substantially

reduces memory traffic, other layers such as pooling, fully connected layers, and even non-

linear activation functions have received comparatively less attention.

Han et al. introduced compression techniques that reduced parameter storage through

pruning, quantization, and Huffman coding [55], primarily targeting fully connected layers.

Similarly, EIE [54] showed efficiency gains on compressed networks but did not address

pooling or normalization layers. Holistic reuse across all CNN components remains rare.

Without such strategies, redundant memory transfers persist, leading to suboptimal perfor-

mance for complete inference pipelines.
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1.8.5 Training Accelerators

While inference dominates current accelerator research, training CNNs is equally impor-

tant, especially for enabling continuous learning at the edge. Training requires both forward

and backward passes, weight updates, and storage of intermediate activations, which drasti-

cally increases memory and compute demand compared to inference.

Googles TPU [39] was initially optimized for inference, with training support added later

through larger-scale datacenter deployments. FPGA-based frameworks such as Toolflow

[56] and FlexFlow [57] demonstrated partial training capabilities but lacked fine-grained

reuse strategies for activations and gradients. Some ASIC prototypes [58] explored reduced-

precision training accelerators, highlighting mixed-precision arithmetic as a potential path

to efficiency. Nevertheless, these approaches were either limited to small-scale models or

focused only on convolutional layers.

A persistent limitation of most training accelerators is the under-utilization of reuse op-

portunities in training. Gradients, weights, and activations are often redundantly transferred

between on-chip and off-chip memory, resulting in significant energy overheads. Moreover,

most designs fail to unify training and inference efficiently, requiring separate architectures

or modes of operation.

1.8.6 Research Gaps

Despite significant progress in CNN accelerator design, the reviewed literature suggests

four critical gaps:

1. Adaptive kernel mapping that achieves high utilization across diverse convolution

types without incurring excessive overhead.

2. Uninterrupted processing architectures that maintain continuous pipelining across all

CNN Layers.

3. Full-model local data reuse, ensuring efficient reuse in pooling, normalization, acti-

vation, and fully connected layers in addition to convolution.
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4. Unified training and inference acceleration, enabling efficient gradient computation,

fine-grained reuse across passes, and scalable deployment for edge learning.

To maintain a focused discussion in this introductory chapter, only a consolidated overview

of the major research gaps has been provided here. A more detailed literature review corre-

sponding to each of these four gaps is presented in the subsequent chapters: Chapter 2 dis-

cusses adaptive kernel mapping, Chapter 3 examines uninterrupted processing techniques,

Chapter 4 focuses on full-model data reuse, and Chapter 5 reviews works on unified training

and inference acceleration. These chapter-specific reviews provide an in-depth background

for the proposed methodologies.

1.9 Contributions of the Thesis

Motivated by the aforementioned gaps, this thesis presents hardware-efficient and high-

throughput CNN architectures that unify inference and training within a single platform. By

leveraging adaptive kernel mapping, uninterrupted processing, and extensive full-model data

reuse, the proposed designs address the limitations of existing works and establish a scalable

foundation for real-time, edge-deployed deep learning systems. The key contributions of this

thesis are summarized as follows:

• A CNN hardware accelerator is designed to efficiently support multiple convolution

filter sizes, optimizing resource utilization through an adaptive convolution mapping

technique. Larger convolution kernels are mapped onto smaller processing units, sig-

nificantly enhancing parallelism and computational efficiency. A novel input feature

buffer architecture is introduced to maximize data reuse and reduce redundant mem-

ory access, improving computational efficiency. A multi-stage parallel multiply-&-

add unit is developed to efficiently process various filter sizes, enhancing the hard-

ware efficiency. The proposed memory hierarchy reduces energy consumption while

maintaining high throughput, making the accelerator highly efficient for real-time AI

applications.

• An uninterrupted processing technique has been introduced to eliminate memory stalls
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and ensure continuous data flow, improving CNN processing speed and reducing la-

tency bottlenecks. A random-access line-buffer architecture is developed to enhance

local data reuse, avoiding unnecessary data shifts and significantly reducing redundant

memory accesses. The proposed design is implemented on an FPGA-based CNN ac-

celerator, showcasing high-speed performance and energy efficiency. The accelerator

is tested on edge AI applications, proving its scalability across different CNN models

and real-time deployment scenarios.

• A novel low-complexity classification unit is designed to optimize the computations

of classification layer, significantly reducing computation cost while maintaining high

classification accuracy. This optimization minimizes power consumption and compu-

tational overhead, making it adequate for resource-constrained edge devices requiring

real-time decision-making.

• The accelerator design is optimized for maximum energy efficiency by exploiting lo-

cal data reuse across all CNN operations, including convolution, ReLU activation,

maxpool, and fully connected layers. By minimizing external memory access and

reusing feature maps, weights, and activations, the accelerator achieves low power

consumption while maintaining high processing throughput. The accelerator is syn-

thesized on FPGA hardware-platform, demonstrating superior energy efficiency and

hardware utilization. The accelerator is tested in edge AI applications, proving its

adaptability to different CNN workloads.

• A unified CNN accelerator architecture is developed that supports both inference and

training on the same hardware, significantly reducing design complexity and hardware

costs. This proposed architecture exploits data reuse to compute weight and activa-

tion gradients efficiently, reducing computational overhead during backpropagation.

It also maximizes data reuse during the forward pass and introduces an innovative

computation-mapping strategy to handle large kernel sizes efficiently. The unified ar-

chitecture is implemented on FPGA, demonstrating efficient real-time inference and

training capabilities. The accelerator is validated in real-world AI applications, prov-

ing its scalability for on-device training and adaptive deep learning models.
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These contributions collectively improve CNN accelerator performance, energy effi-

ciency, and adaptability for both inference and training, making it well-suited for real-time,

low-power, and scalable AI applications.
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Chapter 2

Hardware-Efficient CNN Accelerator

with Adaptive Convolution Mapping

2.1 Introduction

Superior accuracy of CNN models has spiked the development of modern AI appli-

cations, as discussed in Chapter 1. To improve the accuracy of CNN models, their sizes

(i.e. depth and/or width) can be increased, provided large amount of labeled data is avail-

able for training such expanded-CNN models [59]. Otherwise, they become prone to over-

fitting, as large number of parameters downshifts the performance curve from the expected

projection [59]. Furthermore, small increase in the number of filters between two con-

secutive convolution-layers in CNN model, quadratically increases the numbers of com-

putations [59]. As the computational budget is always finite, an efficient distribution of

computing resources is preferred to an indiscriminate increase of size, even when the main

objective is to enhance the quality of performance [26]. Standard models like AlexNet [28]

and VGG-16 [34] perform inference on RGB images using 61 million and 138 million pa-

rameters, respectively, consuming more than 500 MB of memory for storing only weights.

Requirements of such sophisticated and massive computations that consume huge power

for CNN models incur severe bottleneck in the widespread deployment of such applications

on edge devices [60]. There are several reported works in the literature that aim to reduce

the parameter size and computation complexity by pruning and compressing the parameters
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and reducing the precision [42], [61] to achieve more hardware and energy efficiencies. The

work presented in [62] has adopted approaches to increase the energy efficiency by opti-

mizing the data movement and optimizing reuse of local data in the accelerator. However,

as mentioned earlier, to improve the accuracy of CNN models, their computation complex-

ities are increased. Hence, it necessitates the development of high-throughput and energy-

efficient processing units for the implementation of such CNN applications. By using multi-

ple processing elements (PEs) in parallel, CNN inference engines for these AI applications

can achieve remarkable surge in speed [63]. CNN accelerator like [39, 40, 64–67], showed

significant boost in the computation speed of CNN inference.

Chapter 1 provided an overview of the computational challenges associated with deep

learning workloads and highlighted the importance of hardware accelerators in address-

ing these challenges. This chapter builds upon those discussions by proposing a high-

performance CNN accelerator that optimally supports multiple convolution while maximiz-

ing hardware utilization. Highlights of our contributions in this chapter are as follows:

1. We identified inefficiencies in existing CNN accelerators, particularly in hardware

utilization for different convolution filter sizes. To address this, we developed a CNN

hardware accelerator that is optimized for multiple convolution-filter sizes, ensuring

efficient hardware utilization and adaptability to evolving deep-learning architectures.

2. We proposed a novel data feeding and processing approach that mapped larger convo-

lution filters (7×7 and 5×5) onto smaller 3×3 processing units, increasing parallelism

and resource utilization. Additionally, we designed an efficient input feature buffer (I

Buffer) architecture to maximize data reuse and minimize redundant memory access

by introducing a new line-buffer mechanism.

3. To further improve efficiency, we implemented a multi-stage PMAU that effectively

processed multiple filter sizes. Instead of using a single large convolution unit, we

combined multiple smaller convolution units to enhance throughput.

4. For hardware validation, we synthesized the proposed accelerator on a Virtex-7 VC709

FPGA using 16-bit brain float (BF16) format and compared hardware efficiency with

prior FPGA-based CNN accelerators.
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Table 2.1: Brief Summary of Contemporary CNN models.

Models AlexNet [28] VGG16 [34] ResNet -152 [29] GoogleNet [26] MobileNet [25] EfficientNet-B7 [68]
Top 5 Error ( %) 16.4 7.4 5.3 6.7 10.1 2.9

Conv Layers 5 16 59 21 28 812
Total Weights 61 138 25.5 6 4.2 66
Total MACs 724 M 15.5 G 39G 1.43 G 0.57 G 37

0

10

20

30

40

50

C
o
m
p
u
ta
tio
n
(G
)

Accuracy

#MACs

83.6%

92.6%

94.7%

93.3%

89.9%

97.1%

AlexNet VGG-16 ResNet-152 GoogleNet MobileNet EfficientNet

65

70

75

80

85

90

95

A
cc
u
ra
cy
(%
)

Fig. 2.1: Computation cost and accuracy of the state-of-the-art CNN models.

2.2 Hardware Inefficiency in Conventional CNN Accelera-

tors

To achieve higher state-of-the-art accuracy, the number of CNN layers with different

shapes and millions of weights are being prolifically adopted by wide range of contempo-

rary applications [62]. Therefore, we analyzed some of the contemporary CNN models to

understand the amount of computations that are contributed by different types of kernels

in the CNN model. Table 2.1 summarizes the computation cost MACs (number of MAC

operations), number of conv layers, number of filter weights, and the Top-5 error of some

of the contemporary CNN models. Fig. 2.1 visualizes the computation costs and accuracies

of such models. Summary of computation shares contributed by different filters in five most
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Table 2.2: Contribution of Different Filters in Total Computation of Various CNN Models

Cαβ Values of Filters for Different CNN Models.
CNN Model 1×1 3×3 5×5 7×7 11×11

AlexNet - 42% 47% - 11%
VGG-16 - 100% - - -

GoogLeNet 22% 63% 8% 7% -
MobileNet 10% 90% - - -

EfficientNet 2.2% 63.9% 33.9 - -

AlexNet VGG-16 GoogLeNet MobileNet EfficientNet
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Fig. 2.2: Computations contributed by different kernel sizes in CNN models.

popular CNN-models have been presented in Table 2.2. Fig. 2.2 visualizes the same for ease

fo understanding. Here, the computation share contributed by each filter of size α × β is

calculated as Cαβ =
(
Mαβ/Mtot

)
×100 % whereMαβ andMtot represent number of MACs

contributed by single filter (of size α × β) and all the filters, respectively. As presented

in Table 2.2, majority of computations in the state-of-the-art CNN models are dominated

by smaller filters, mostly 3×3 sized filter, rather than large filters with the size like 7×7 or

11×11.

As we know, the computation throughput (ΘT ) determines overall processing perfor-

mance of a CNN accelerator, because ΘT is directly proportional to the inference rate. The

computation throughput is ΘT ∝ NPE×Ω where NPE is the number of PEs in CNN accelera-
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(a) (b) (c) (d)

Fig. 2.3: Schematic representations of (a) a convolution processing unit for 7×7 kernels, (b) mapping
5×5 convolution, (b) mapping 3×3 convolution, and (c) mapping 1×1 convolution on 7×7 convolu-
tion processing units.

tor and Ω represents the PE efficiency which is given by Ω = NPE−util./NPE such that NPE−util.

denotes the number of PEs utilized. To achieve higher PE efficiency that maximizes the ΘT

value, PE array in the accelerator must be compatible with the filter shape of CNN model.

On the other hand, conventional CNN accelerators do support only small set of filter sizes,

for example, [40] supports only 3 × 3 kernel, [39], [66] support 1 × 1 and 3 × 3 kernel,

and [65] and [67] do support 3 × 3 and 5 × 5 kernel. However, a CNN accelerator should

support various filter sizes to efficiently handle different network architectures, maximize

hardware utilization, adapt to evolving deep-learning models, and optimize computational

performance across diverse convolutional operations [69]. The reason being, a CNN ac-

celerator designed for a specific kernel size faces severe inefficiency when the computation

of filter with different sizes are mapped on it. For better understanding, Fig. 2.3 shows a

conventional way of processing smaller convolution tasks by fitting them as a part of larger

convolution unit and filling rest of the portions with zeroes. Hence, such processing of 5×5,

3×3, and 1×1 convolutions using a convolution unit which is designed for 7×7 convolu-

tion has been illustrated in Fig. 2.3 (b), (c) and (d), respectively. It is evident from such

processing that significant portions of the architecture are unutilized (around 49 %, 82%,

and 98% of PE area would be wasted for processing 5×5, 3×3, and 1×1 convolutional task,

respectively with 7×7 PE) that diminishes the benefit of hardware acceleration.
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2.3 Proposed Architectures

To address the problem of inefficient mapping of convolution tasks to PE arrays of con-

ventional CNN accelerator, this chapter presents a new hardware-architectural approach of

efficiently mapping different types of filters in a PE array. Since this work focuses to develop

a robust CNN accelerator that support as many filter sizes as possible, we have considered

GoogleNet [26] as the target model. This is because, the GoogleNet requires four different

types of kernels, as shown in Fig. 2.2. Therefore, the proposed architecture of hardware

accelerator has been refereed as ‘hardware accelerator for GoogLeNet CNN’.

2.3.1 High-Level Architecture of Hardware Accelerator

In this chapter, we have proposed an approach for mapping larger convolutions (7×7 and

5×5) to smaller convolution (3×3) processing unit. It has been primarily carried out by using

a new data feeding approach. To achieve maximum data reuse during every stride, this work

presented a new I Buffer architecture. The proposed hardware accelerator architecture for

GoogLeNet CNN has been shown in Fig. 2.4 (b). Its datapath includes a parallel multiply-

&-add unit (PMAU), two local memories: (1) I Buffer that stores few lines of input feature-

maps from one channel for 7×7 convolution and two or six different channels for 5×5 and

3×3 convolutions, respectively; (2) Filter Buffer for active filters (only one filter for 7×7

convolution and bank of 2 and 6 filters for 5×5 & 3×3 convolutions, respectively). A 1:2

de-multiplexer (DeMUX1) routes 128 bit (which is concatenated eight-parallel input data

of 16 bit each) data from host controller to I Buffers or Filter Buffers, depending on the

value of I/W control signal, as shown in Fig. 2.4 (b). It also shows that another 1-bit 1:2

de-multiplexer (DeMUX2) routes the write activation signal (wract) from the host controller

to I or Filter Buffers for writing eight data in every clock cycle.

Here, I Buffer comprises of nine different memory-arrays/line-buffers and each of them

stores upto 232 different elements of input feature matrix that enables I buffer to store nine

rows of input feature matrix (I). As illustrated in Fig. 2.4 (b), host controller generates three

configuration signals: conv-type, I-shape, and s to indicate convolution type, I size (height

and width), and sizes of both horizontal & vertical strides, respectively. Therefore, after
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Fig. 2.4: (a) Schematic illustration of convolution process, and (b) proposed high-level of hardware
accelerator to efficiently map different types of filters.

29



finishing horizontal stride on active rows (i.e. when reading finishes for first row), one

vertical stride is carried out. Subsequently, I Buffer generates an interrupt (IF-intr signal)

to host controller for sending new lines from I (i.e. one new-line for stride = 1 and two

new-lines for stride = 2) and rest of the lines are reused from the I Buffer itself.

Subsequently, PMAU architecture of the proposed accelerator performs 54 parallel mul-

tiplications and adds their products to generate single output. As discussed earlier, the most

commonly used CNN filters are 1×1, 3×3, 5×5, 7×7, and the proposed GoogLeNet ac-

celerator requires all of them. Rather than implementing separate architectures for these

convolutions or mapping 5×5 and 3×3 convolutions to single 7×7 convolution, we propose

to split the larger convolutions to multiple 3×3 convolution units to perform convolutions

and to sum-up their results to realize the outcome of larger convolution. Hence for 7×7, 5×5

and 3×3 convolutions, we perform convolutions to one (γ = 1), two (γ = 2) and three (γ =

3) channels, respectively, to enhance the hardware utilization. In the PMAU, there are nine

multipliers and eight adders for single 3×3 convolution unit. Three such units are combined

for realizing 5×5 convolution unit which is replicated twice to realize 7×7 convolution unit.

2.3.2 Proposed I-Buffer Architecture

Detailed VLSI architecture of I Buffer for the proposed hardware accelerator is shown

in Fig. 2.5 where 128-bit data bus and three configuration signals (conv-type, I-shape, and

s) are the primary inputs to each of the line-buffers. The write-activation (wract) signal from

host controller is fed to I-valid port of I Buffer, indicating there are valid data for this I

Buffer in the 128-bit input data-bus. Subsequently, the current write-line-select controller

(CWC) activates write enable port for one of the line-buffers where data writing takes place.

Thereafter, such line-buffer activates write-done (wr-dn) signal and transfers to CWC, which

then deactivates the write enable (WE) port of current line-buffer and activates WE port of

next line-buffer for writing the remaining data, as shown in Fig. 2.5. Thus, such process

continues until the host controller deactivates wract signal.

In order to start reading the I data for feeding PMAU in the accelerator architecture,

there must be sufficient number of such values stored in the I Buffer. Hence, I read-state

controller (IRC) keeps track of the number-lines written in I Buffer and once n number
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of lines (n represents the size of convolution filter where n = 3 and 7 for 3×3 and 7×7

convolutions, respectively) are written in I Buffer, it activates read ready (rd-rdy) signal

that initiates read operation, as shown in Fig. 2.5. It can be seen that rd-rdy signal has been

connected to the current read-line-select controller (CRC) to indicate whether read operation

should start or not. This rd-rdy signal is also tapped out from I Buffer architecture and it is

connected to I-Data Valid port of PMAU for indicating that the valid I matrix is being fed to

it. Furthermore, when rd-rdy signal from IRC sets high then CRC enables n−1 consecutive

line-buffers. Thereby, once the read enable (RE) port of line-buffer is activated, all the

line-buffers generate three different types of I-matrix based on the value of conv-type signal.

For 7×7 convolution, an active line-buffer generates seven I Data in each clock cycle.

Similarly for 5×5 convolution, line-buffer generates total of 18 I Data per cycle. At every

clock cycle, outputs from multiple (3, 5, and 7 lines for 3×3, 5×5, and 7×7 convolutions, re-

spectively) such active line-buffers are aggregated to generate the final I-matrix. Therefore,

our design uses three different collectors for accumulating 49, 50 and 54 different I data for

7×7, 5×5, and 3×3 convolutions, respectively. On the other side, PMAU architecture has

been designed using 54 parallel multiply-and-add units which requires 54 different I data

from I Buffer. Hence, we need to feed zero-values to some multipliers to avoid corrupting

the computed output feature-map value that is also referred as activation value. To accom-

plish this, we incorporated I-collector in I Buffer architecture that collects the I data from

preceding three I-collectors and adds extra zeroes to make them equivalent to 54 different I

data for further processing in PMAU, as shown in Fig. 2.5. Based on the value of conv-type

signal (indicating the convolution size), one of three busses from I collectors gets routed to

the output bus (I-Data) of I Buffer that is fed to PMAU in our accelerator.

2.3.2.1 Micro-architecture of Line Buffer

The suggested micro-architecture of line-buffer that has been used in the design of I

Buffer is presented in Fig. 2.6. Here, until the write-enable (WE) signal remains high, the

128-bit input data are routed to 232×16-bit memory array via de-multiplexer. Its each 128-

bit output has been segregated into eight 16-bit values which are stored in memory array

in every clock cycle. These values are written to the pointed location (i.e. represented as
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wr-ptr) of the memory array that is generated by the write pointer, as shown in Fig. 2.6.

Once the wr-ptr ≥ its maximum allowed value (i.e. decided by the size of original I matrix),
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Fig. 2.6: Micro-architecture of line-buffer for the proposed I Buffer design.

wr-ptr resets and wr-dn signal is activated for one clock cycle that causes CWC of I Buffer

to deactivate the WE signal of current line-buffer and the writing process switches to next

line-buffer. On the other side, if read-enable (RE) signal of line-buffer is high then 7/10/18

parallel data (depending on the magnitude of conv-type signal) from the location pointed by

rd-ptr are readout from the memory array in every clock cycle, as shown in Fig. 2.6. During

this reading phase, rd-ptr value is incremented in every clock cycle by the stride size (i.e.

1 or 2). When rd-ptr value becomes ≥ its peak value (decided by the size of the original I

matrix and the convolution size), the rd-ptr resets to zero and rd-rdy becomes high for single

clock cycle that causes CRC in I Buffer to deactivate the RE signal of current line-buffer.

2.3.3 Suggested VLSI-Architectures for Filter Buffer and PMAU

The proposed filter-buffer architecture shown in Fig. 2.7 (a) comprises of a memory

array for storing 56 different elements of filter matrix. Once the wract input-signal (from

the host controller) is activated then the Filter Buffer stores eight filter-elements from 128
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bit input-data bus in every clock cycle and wr-ptr value is incremented by eight. When the

Filter Buffer stores sufficient data (i.e. 54 values), the read operation starts and the W-Data

Valid signal is made high, indicating that the output W-Data is valid, as shown in Fig. 2.7

(a). Subsequently, the outputs from I and Filter Buffers are processed by PMAU in our

accelerator and its VLSI architecture is shown in Fig. 2.7 (b). It shows that 7×7 PMAU has

been designed using two 5×5 PMAUs where each consists of three 3×3 PMAUs (i.e. PMAU

has total of six 3×3 PMAUs). Each 3×3 PMAU comprises of nine parallel multipliers and

eight adders. The 3×3 PMAU processes nine I-Data and nine W-Data values from I and

Filter Buffers, respectively. Similarly, 5×5 PMAU generates AC-Data value from 27 I-Data

and 27 W-Data values. Furthermore, 7×7 PMAU generates AC-Data value from total 54

I-Data and 54 W-Data values. Therefore, while performing 3×3 convolution, six such 3×3

I and filter matrices from six different channels of I matrix and filter matrix are mapped to

these six 3×3 PMAUs. For 5×5 convolution, 25 values of I and filter matrices from each of

the two channels are mapped to these two 5×5 PMAUs, and two ports of each of them are fed

with null values. Finally, while executing 7×7 convolution, 49 values of I and filter matrices

are mapped to 49 ports of 7×7 PMAU and remaining five ports are fed with null values.

For 1×1 convolution, it uses the same procedure of 3×3 convolution except, the I-Data and

W-Data values are read using channel parallel approach, thus mapping 9 numbers of 1×1

convolution in a 3×3 PMAU. Hence, rest of the process for 3×3 and 1×1 convolutions are

identical.

2.4 Experimental Results & Comparison

In this chapter, performance analysis of the proposed CNN accelerator has been carried

out using Vivado 2018.2 RTL-simulator. To begin with, functional validation of our design is

performed with the aid of simulation in MATLAB R2019a on a Windows operating-system

based host computer with a Quad Core, 8 thread Intel i5-9300H CPU, 24 GB DDR4 RAM

and NVIDIA GTX1650 GPU using FP32 representation. Subsequently, different types of

convolution filter matrices and corresponding I matrices for different test images have been

exported to two different groups of binary files. For the hardware validation, a Verilog
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hardware-description-language (HDL) coded test-bench has been designed to act as an ex-

ternal host controller to the accelerator. As discussed earlier, the proposed CNN accelerator

has been designed using BF16 format. These binary files for filters and I matrix have been

read and converted to BF16 representation. The output waveforms of accelerator are val-

idated from the simulation and at the same time, output values have been stored back to

another binary file for analyzing the result in MATLAB.

Table 2.3: Comparison with prior works.

[70] [71] [72] [73] Proposed Implementations
FPGA Kintex-7 ZC706 VC709 VC707 Kintex-7 ZC706 VC709 VC707

Precision (bit) FP8 FP16 FP8 1 bit BF16 BF16 BF16 BF16
fclk (MHz) 200 150 200 200 200 150 200 200

Memory Utilization (%) 37 89 60 80.8 0.44 0.41 0.21 0.30
LUTs Utilization (%) 46.5 84 78 76.4 6.71 6.26 3.16 4.51
DSP Utilization (%). 61.4 8 80 84 0 0 0 0

Throughput (ΘT ) 342.18z 137z 137z 2100z 21.6♣ 16.2♣ 21.6♣ 21.6♣
NPE 1024 780 5754 9216 54 54 54 54

ηPE (MOPS/PE) 334.2 175.5 313.8 227.83 400 300 400 400
Accuracy Loss∗∗ (%) 3–6 0.3–0.5 3–6 12–30 '0 '0 '0 '0

♣ : GFLOPS,z : GOPS, ∗∗ : Compared to FP32 implementation

The proposed accelerator has been synthesized and post-route implemented on the Virtex-

7 VC709 FPGA and the results are presented in Table. 2.3. It has also been implemented

on FPGA board used by compared works, and the results are presented in Table. 2.3. It

shows the comparison of our accelerator results with the reported implementations of dif-

ferent approaches which are used for improving the efficiency of hardware utilization for

CNN accelerators. Since our work focuses towards area-efficient design that uses limited

hardware resources of only 54 multipliers, the entire accelerator design has been accommo-

dated within 13.7k LUTs. It delivers lesser throughput compared to the reported designs in

Table. 2.3. However, throughput density of our design that is calculated as ηPE = ΘT /NPE is

better compared to reported approaches. Where, ΘT , NPE, and fclk stand for the computation

throughput, number of PE, and the operating clock frequency, respectively.

The improved results of the proposed design can be intuitively explained as follows.

The architecture employs adaptive convolution mapping, which ensures efficient utilization

of processing elements across varying kernel sizes. Earlier designs often left hardware un-

derutilized when handling non-standard kernels, leading to wasted resources. Moreover, it
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uses BFP16 format which maintains the full dynamic range of FP32 and has been proven to

achieve accuracy comparable to FP32 models. Such innovations enable the architecture to

achieve superior throughput density while maintaining FP32-level accuracy, outperforming

prior accelerators that relied on narrower precisions at the cost of accuracy loss. Neverthe-

less, if the area budget of the design is higher then the proposed accelerator can be scaled up

to enhance the throughput.

2.5 Summary

This chapter presented a versatile CNN accelerator designed to efficiently process four

fundamental convolution tasks: 1×1, 3×3, 5×5, and 7×7 with optimized hardware resource

utilization. The proposed architecture introduced a novel mapping approach where a 5×5

convolution was executed using three 3×3 convolution units, and a 7×7 convolution was

implemented using two 5×5 processing units (equivalent to six 3×3 units). Moreover, nine

1×1 was implemented using one 3×3 convolution units This hierarchical decomposition

enhanced the computational efficiency and flexibility.

To further optimize performance, we developed an efficient I and Filter Buffer architec-

tures that maximized local data reuse, reducing memory access overhead. The accelerator

design was implemented on the Virtex-7 VC709 FPGA board using a 16-bit brain-float

(BF16) representation, consuming only 13.7k LUTs while achieving a throughput of 21.6

GFLOPS at 200 MHz. The proposed architecture demonstrates a balance between com-

putational efficiency, and resource utilization, making it well-suited for edge computing

applications requiring efficient CNN processing.

However, as mentioned in Section-2.4, our proposed accelerator delivered lesser through-

put compared to the reported designs. Therefore, following chapter of this thesis will empha-

size on improving the throughput of CNN accelerator with the help of efficient uninterrupted

processing technique and suitable hardware scaling approach.
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Chapter 3

Design of High-Throughput and

Energy-Efficient CNN Accelerator:

Techniques and Architectures

3.1 Introduction

As discussed extensively in chapter 1 and chapter 2, CNN has steered many of the

modern AI applications. Superior performance of CNN is calibrated based on the way

of recognizing the text or object or audio-key-frame in the input image or audio data by

searching for the presence of millions to several billions of trained feature parameters [74].

The CNN carries out such feature search by sweeping and performing arithmetic operations

(like multiplication and addition) with different filter weights that are associated with var-

ious features across the input data [75]. A detailed discussion on the working of CNN for

image classification, and an analogy with human’s object classification has been presented

in Chapter 1. Nonetheless, the superior recognition accuracy of CNN can be achieved at

the cost of extremely high computational-complexity and massive data movements, incur-

ring performance degradation and surge in energy consumption, respectively [74, 75]. Such

adverse consequences refrain CNN from its efficient hardware implementation for battery

operated devices which are extensively used in contemporary edge applications like internet

of thing, autonomous electric vehicle, and implanted biomedical devices [76]. Furthermore,
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such contemporary applications demand higher computation throughput at lower power con-

sumption [75]. Based on aforementioned discussion, substantial throughput and profound

energy efficiency have become key requirements for the hardware implementation of CNN

accelerators [77], [78]. On the other hand, when power hungry engine like graphic process-

ing unit (GPU) is used as a core hardware for CNN processing [74], attempts are being made

to accelerate CNN in an energy efficient way [79]. Similarly, dedicated parallel-processing

platforms like mobile GPU [80], tensor processing unit (TPU) [81], field programmable gate

arrays (FPGAs) [76, 79, 82, 83], application specific integrated circuit (ASIC) [62], and in-

memory computation (iMC) [84] are used to efficiently process the computations in CNN.

Note that GPUs and TPUs consume hundreds of watts which make them unfit for any edge

applications. Subsequently, iMC and ASIC deliver highest energy efficiency; however, they

have poor compatibility and scalability with the rapidly evolving CNN models due to the

lack of re-programmability. In contrast, FPGA implementation of CNN accelerator offers

re-programmability, and if its hardware architecture is well designed then it delivers ade-

quate energy efficiency [75]. On the one side, GPU, TPU, ASIC and iMC implementations

refrain from as a stand-alone system for any application, as they are instead required to be

interfaced with an external computer/controller. On the other side, contemporary FPGA

boards with on-board computer and logic elements (like Zynq-7000 SoC and Zynq Ultra-

scale+ MPSoC series of FPGA boards) can be implemented as complete stand-alone systems

for various contemporary applications.

Energy efficiency of high-throughput parallel-computing CNN accelerator can be en-

hanced by extensively re-using the local data and minimizing the expensive read/write op-

erations to and from the external memory. In addition, low precision computation can also

be used to significantly increase the energy efficiency. In the reported work from [62],

row-stationary data flow based architecture of CNN accelerator delivers promising energy

efficiency by reducing the amount of off-chip memory access that requires a large number of

shift registers to aid the local data re-use. However, such design is not a convenient choice

for FPGA based applications [75]. In [85], Nguyen et al. could achieve higher energy effi-

ciency by using lower precision at the cost of degradation in accuracy. Later in [86], authors

have improved such accuracy by using the layer specific optimization for mixed data flow,
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using the multiple precision. Similarly, [76] presents software-based reconfigurability by

using dual-loop arithmetic module at the cost of throughput and energy efficiency, due to

un-optimized data movement. In [75], the energy efficiency has been enhanced by reducing

the off-chip memory access with the aid of kernel partitioning technique. However, it re-

quires extra pre and post processings on the input and the output data. Furthermore, despite

the presence of parallel computing, real world yield in computational throughput of most

CNN accelerators falls below the theoretically estimated throughput due to under utiliza-

tion of available resources and underlying problem of interrupted data supply [74]. Recent

contribution from [87] showed that, in the worst case scenarios, a state-of-the-art complex

model like GoogleNet utilizes only 6.6% of processing elements in an accelerator. In Chap-

ter 2, a hardware-efficient CNN accelerator was introduced with an adaptive convolution

mapping technique and an optimized buffer hierarchy. While these optimizations improved

computational efficiency; however, performance bottlenecks still arise due to memory stalls

and inefficient data movement, limiting overall throughput and energy efficiency. Hence,

further enhancements are required to address memory stalls and inefficient data movement.

Therefore to circumvents the aforementioned issues and challenges, this chapter presents

an energy as well as hardware efficient, high throughput, and reconfigurable FPGA-based

CNN accelerator for object recognition application.

Our main contributions in this chapter are as follows.

• A new uninterrupted processing technique has been proposed to reduce the latency of

CNN accelerator that enhances its throughput and energy efficiency.

• We suggest a new data-reusability process to achieve maximum reuse of local data

without data shifting in CNN accelerator in order to suppress the data movement that

eventually reduces its energy consumption.

• Furthermore, this chapter presented a new random-access line-buffer (RALB)-based

hardware architecture of kernel processing unit (KPU) for CNN accelerator to realize

the above proposed techniques.

• Following that, the proposed CNN accelerator has been hardware implemented in
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various FPGA platforms and their results are compared with the state-of-the-art im-

plementations.

• Eventually, hardware prototype of our CNN accelerator in Zynq-UltraScale+ MPSoC-

ZCU102 FPGA-board has been functionally validated in real-world test-setup that

classifies object from an input image with the aid of GoogLeNet CNN model.

This chapter has been organized as follows. In section 3.2, overall system level under-

standing of our work has been presented, along with brief mathematical background. It

also comprehensively discusses the research challenges that are addressed in this chapter.

Furthermore, section 3.3 presents the proposed technique and new VLSI architectures for

the CNN accelerator. Following that, implementation results, discussion, comparison and

validation are included in section 3.4. Eventually, section 3.5 summarizes this chapter.

3.2 Prerequisite and Research Challanges

3.2.1 System Model

An overview of the hardware-based system for an object detection application has been

schematically shown in Fig. 3.1. It comprises of four major hardware components: (1)

camera, (2) FPGA board (Zynq MPSoC evaluation-board), (3) external memory (secure

digital (SD) card), and (4) display. Here, FPGA board consists of on-board computer that

can run software programs, written in high-level language. Specifically, it has an ARM

processor with six cores, DDR4 random-access-memory (RAM); and various peripheral

controllers like USB controller (that interfaces camera with FPGA board), external SD-

card controller, and display controller, as shown in Fig. 3.1. It also shows that the CNN

accelerator is implemented using configurable logic blocks, multipliers, embedded block-

RAMs of core FPGA chip on the board. Further, SD card contains the pre-trained model

parameters and additional software programs. As illustrated in Fig. 3.1, the CNN accelerator

has been designed using a global buffer cum control unit (GBCU) and a kernel processing

unit (KPU). Here, GBCU manages the data flow between the on-board computer and KPU

as well as manages the operation of KPU based on configuration signals from the on-board
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Fig. 3.1: Schematic representation of the hardware level system using FPGA board and other sup-
porting peripherals.

computer. KPU is primarily made of an array of processing elements (PEs). Each of these

PEs comprises of a multiply-&-accumulate (MAC) unit and a comparator unit. A CNN

accelerator may have more than one KPU. Thus, the operation of such KPU is also locally

managed by one kernel processing controller (KPC). It manages the operations of PE array

and accordingly moderates the data flow between GBCU and KPU in the proposed CNN

accelerator. Its operation is iteratively carried out via closed loop data-flow between KPC

and PE-array. In every iteration, PE array receives the input feature matrix (I) and other

parameters like filter weights (W) as well as biases (B) from KPC. Subsequently, PE array

produces the output feature matrix (AC) that is passed back to KPC. In such iterative process,

AC from one operation is re-used as I for the computation in subsequent layer. This process

continues until the operations for all the layers are accomplished, as discussed further in

section 3.2.1. As shown in Fig. 3.1, the CNN accelerator has been interfaced with on-

board computer via high-performance AXI buses. Here, I for the first layer of CNN is the

input image, and AC for the last layer of CNN is the computed probability of each class

in the model. To begin with object detection process, when the system initially boots up,

the on-board computer of FPGA transfers the model information along with trained W and
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b parameters to configure the CNN accelerator. Thereafter, once the accelerator is fully

configured with the model specification, on-board computer begins the processing of input

images from external source (i.e. camera) and starts feeding/off-loading them to the CNN

accelerator. Subsequently, it performs a number of operations on the images for all Conv and

FC layers to search for different class features. Thus, it classifies the object that is present

in the input image and computes its probability.

3.2.2 Research Challenges

3.2.2.1 Energy-Efficient Data Flow

The number of operations required by equations (1.1)−(1.7), in their corresponding hard-

ware architectures, vary over a wide range that proliferates the computational complexity.

From an implementation aspect, CNN accelerator must process such computationally com-

plex operations in high speed and energy efficient manners by mapping them over a large

array of PEs. Thus, it exploits high degree of parallelism and extensive reusability of local

data within the periphery of PE array to achieve higher computation throughput and lower

energy consumption, respectively. Both these performance factors are primarily dependent

on the availability of data locally within the array of PEs. In [62], Chen et al. have achieved

high energy efficiency from their implemented architecture with the aid of row stationary

approach. Here, W, I, and Psums are reused in horizontal, diagonal, and vertical direc-

tions, respectively, in the PE array of CNN accelerator. It showed that the row stationary

approach achieves better energy efficiency in comparison to the weight or output station-

ary approach [88, 89]. However, the row stationary data-flow requires continuous shifting

of data over a large number of shift registers in all directions. The work reported in [75]

demonstrated that the design with such a large number of shift registers is infeasible to be

implemented on the FPGA platform. Thereby, [75] proposed a kernel partition technique

that down-scaled the number of memory accesses to achieve adequate energy efficiency in

FPGA-based re-configurable architecture, at the cost of highly complex pre and post opera-

tions. Furthermore, [86] showed that by proper optimization of data precision over different

layers, all weights of CNN model can be stored in the BRAM of FPGA to avoid of-chip
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DRAM access for an better energy efficiency. However, it requires to redesign the hard-

ware architectures from extremely low level for each of the different CNN models and it

must retrain the model to preserve accuracy. Therefore, our work presents RALB-based

modified row-stationary data flow where both I and W values are maximally reused without

shifting them from one PE to another PE that reduces the latency as well as conserves the

energy. Hence, detailed working of the RALB based data flow has been clearly discussed in

section 3.3.2.2.

3.2.2.2 Throughput Reduction due to Interruption

To directly map (1.1)−(1.7) equations on hardware, it requires enormous size of PE array

in CNN accelerator. However, such mapping is not feasible due to various design-constraint

limitations like memory bandwidth, area and power budgets. Therefore, computations in the

CNN accelerator hardware takes place in phased manner over a number of processing itera-

tions [62,74]. During each iteration, the PE array of CNN accelerator computes partial sum

(Psum) which is a portion of the output feature map that is later combined with other partial

sums to generate final output feature map AC for equations (1.1)−(1.7) based on the con-

figuration information from KPC, as shown in Fig. 3.1. In energy efficient data flow based

conventional CNN accelerator like [62, 88, 89], between every two consecutive-iterations

when the data is being fetched from the KPC to the local storage inside each PE, the PE

array cannot operate and remains idle that consequents in frequent throttling. As a result, it

increases the latency, and eventually degrades the achievable throughput of CNN accelera-

tor. There have been various attempts to reduce the latency, for example, [90] uses pin-pong

approach to reduce the latency. However, it does not support local reuse of data, incurring

higher memory bandwidth. Consequently, result it is unable to completely minimize the idle

time for small-sized filters due to bandwidth limitations. Furthermore, [91] combined a fine-

grained column-based pipeline approach with ping-pong architecture-based filter storage to

reduce the latency for filter loading. However it does not minimize the latency incurred for

loading I and also refrains from supporting the re-use of local data. Moreover, ping-pong

approach demands double the amount of required memory (for example, 2×ki kernel storage

for ki kernel groups in [91] and two buffers for W, I, and Psums/AC in [90]). Hence, this
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chapter proposes new technique and hardware architecture for an energy-efficient CNN ac-

celerator that mitigate such frequent throttling issue of PE array by efficiently optimizing the

way data is fetched from KPC and stored within the periphery of PE array. Thus, enhancing

throughput and energy efficiency of the proposed CNN accelerator.

3.3 Proposed Technique and Architecture

3.3.1 Uninterrupted-Processing Technique

As discussed in section 3.2.2, if t fi represents the data fetching time between KPC and

local storage of PE in ith iteration then Fig. 3.2 (a) and (b) shows the timing diagrams for con-

ventional and proposed CNN accelerators, respectively. Here, tci denotes data computation

time of PE array in ith iteration where each of these iterations consumes the time duration

of titri . In the ith iteration of conventional CNN accelerator, a process (denoted by Pi) in PE

array that computes Psums begins only after completing the data fetching event (Fi) from

KPC to PE array, as shown in Fig. 3.2 (a). During this t fi time of Fi, the PE array remains

idle. Thus, effective duration of every ith iteration is titri = t fi+tci . On the other hand,

Algorithm 1 Proposed Uninterrupted-Processing Technique for CNN Accelerator
1: Determine n and r; . n denotes number of required iterations and r denotes the

minimum number of data required to begin Pi process.
2: Initialization: i=0 and j=0; . i and j count the number of processed iteration and the

number of data that has been fetched, respectively.
3: Begin Fi=1; . Start pre-fetching of data for itri=1.
4: for i ≤ n do
5: if j ≤ r then . Adequate data has not been fetched yet.
6: Continue Fi=1; . Fetching continues for itri=1.
7: j = j+1; . Count the number of data pre-fetched for itri=1.
8: Return to Step 13; . Fetching continues for itri=1.
9: else . Adequate data fetched to begin computation.

10: i = i+1;
11: Begin Pi; . Computation begins for itri.
12: if Fi is Complete then
13: Begin Fi+1; . Begin pre-fetching data for itri+1.
14: else
15: Continue Fi;
16: if Pi is Complete then
17: Return to Step 10. . Begin computation for for itri+1.
18: else
19: Continue Pi.
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Fig. 3.2: Timing diagrams for (a) conventional and (b) proposed techniques.

the proposed uninterrupted-processing technique mitigates this t fi time and hence reduces

the latency which consequently enhances the throughput of our CNN accelerator. Various

steps of this technique have been hierarchically presented in Algorithm 1 and its primary

notion is schematically illustrated in Fig. 3.2 (b). Its key idea is to concurrently perform

both Fi and Pi, rather than processing them in sequential manner. To elaborate further, the

computation of Pi can start once the minimum number of data, say r, has been fetched from

KPC to PE array (referring lines 5−11 in Algorithm-1) that requires a pre-fetch duration of

tp fi , as shown in Fig. 3.2 (b). This tp fi is a part of total fetch duration t fi of ith iteration and

note that tp fi<<
(
t fi/2

)
. Subsequently, remaining data is fetched during the computation of

ith iteration, referring lines 12−15 in Algorithm-1.

Here, t fi is shorter duration than tci and thereby, Fi finishes much earlier than the end of

operation Pi. Thereby, we propose to start the pre-fetch for next (i + 1)th iteration before

the Pi operation ends, referring line no. 13 in Algorithm-1 and schematically represented

in Fig. 3.2 (b). Since the minimum r data has been already pre-fetched for (i + 1)th it-

eration during Pi of ith iteration, Pi+1 commences instantaneously at the end of Pi. Such

phenomenon effectively mitigates the idle time of PE array during Fi+1 (i.e. t fi is mitigated,
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as shown in Fig. 3.2). As a result, the effective duration for each iteration becomes approx-

imately equal to the computation time required by Pi (i.e. titri ≈ tci). Hence for the CNN

model that requires n iterations, the effective latency reduces from λc =
∑n

i=1(t fi + tci) to

λp =
(∑n

i=1tci

)
+ tp f 1 where λc and λp represent latencies of conventional and proposed CNN

accelerators, respectively; thus, conserving the time duration of ≈
∑n

i=1(t fi).

3.3.2 Proposed Hardware Architectures

3.3.2.1 Low-Latency CNN-Accelerator Architecture

Referring to Fig. 3.2 (b), the PE array of CNN accelerator must simultaneously perform

two operations: (1) store the new data fetched from KPC, and (2) supply data to the com-

putation unit of PEs. Moreover, the proposed architecture for CNN accelerator needs to

achieve reuse of local data without using large number of shift registers to conserve both

energy and hardware resources. To incorporate these features in the suggested CNN accel-

erator, this work presents new architecture for locally storing and reusing the data within

the periphery of PE array. Hence, the proposed generic architecture of CNN accelerator that

supports m×n-sized PE-array is shown in Fig. 3.3 (a). In conventional CNN accelerators

like [62,83] where both filter-weights and I values are stored in each of the PEs using single

port SRAM. As a result, which the PE of such conventional design is incapable of operating

when the data is being fetched. Unlike, our work changes the W storage inside the PE to

dual port memory to achieve simultaneous read as well as write (for W pre-fetch) feature

and changes the I storage by introducing RALB-based approach to achieve simultaneous

read-write feature along with local data reuse without shifting I from one PE to another.

Schematic representation of the RALB-based approach in the proposed CNN accelerator

is depicted in Fig. 3.3 (a). It shows that each RALB is connected to a single or multiple

row(s) of PEs, at any instance of time, to store their I values. Further, the suggested micro-

architecture of RALB is presented in Fig. 3.3 (b) that incorporates steering logics and an

M×k sized memory. It is capable of writing k bit of data to any of these M memory loca-

tions pointed by j write address that is steered via WA generator (i.e. address decoder), as

illustrated in Fig. 3.3 (b). Once the value of j write address exceeds the magnitude of r (i.e.
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minimum number of data), RALB provides n number of k bit data to the computation units

of n PEs, corresponding to the row with which RALB is connected to begin the Pi process,

referring line 11 from Algorithm 1. Furthermore, RALB continues to store new data from

outside the PE array, while simultaneously providing the data to n PEs. Thus, aforemen-

tioned process enables the proposed architecture to concurrently perform the operations of

both Fi and Pi. In addition, it avoids the possible problem of read-before-write due to the

fact that read rate (i.e. frequency at which read-address increases) is z× smaller than write-

rate (rate at which write-address increases). The reason being, each element of I fed to PE

is reused z× for MAC operation with z filter-weights that are stored inside the PE, as shown

in Fig. 3.3 (c).

Since RALB stores M/A rows of I values and A+r is less than M, RALB can pre-fetch

M−A number of data for the next iterations (i.e. Fi+1 begins), referring line 13 in Algorithm

1. Note that A denotes width of each row of I. As the data is pre-fetched, Pi+1 computation
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for the next iteration can start once the Pi ends, under the condition that filter-weights are

pre-fetched and stored in the filter storage of PE, as presented in Fig. 3.3 (c). It consists

of a small z×k-sized memory for storing z number of filter weights and a computation unit

that can be configured for MAC or max operation. With the aid of bus-selection control

signal to PE, its computation unit is routed with I values from the respective RALB which is

connected with the PE, as shown in Fig. 3.3 (a) and (c). For performing MAC operations in

PE, partial sum is fed as Psumi to PE architecture. Following that, MAC module is activated

for computing Psumo, as shown in Fig. 3.3 (c). Since both W and I are pre-fetched, Pi+1

process instantaneously commences after the Pi process ends and hence incurring the time

duration for an iteration to be titri ≈ tci , referring Fig. 3.2 (b).

3.3.2.2 Technique for Efficient Data Reuse and High-Throughput Computation

By using vertical routing bus-network in PE array from Fig. 3.3 (a) and bus-selection

control signal for PEs in Fig. 3.3 (c), any row of PEs in the PE array can be connected

to any RALB within its periphery. This allows the proposed CNN accelerator architecture

to exploit the local reuse of I values throughout the period of horizontal strides in a row.

Such I values stored in a RALB remains stationary while KPC increases the read address

of RALB by s (note that s denotes the stride size, as discussed earlier in section II-A), from

where the data is fed to PEs. Thus, horizontally reusing the I values without moving them

from one PE to another. For vertical reuse of I values, let us assume xth RALB is connected

to ith row of PE array and (x + 1)th RALB is connected to (i + 1)th row of PE array, and

the remaining rows of PE array are connected in the similar fashion. Now, during each

vertical strides, x index increments by s and hence (x + s)th RALB connects to ith row of PE

array and the same pattern is followed by rest of the rows in PE array. Since the number of

RALBs is limited, x periodically resets to zero after it exceeds the maximum RALB count

and such cycle continues till the end of all iterations. Note that during each of the vertical

strides, KPC resets the read addresses of RALBs (whose data are to be reused by another

row of PE array) to the new address where it was at the beginning of previous vertical stride.

Furthermore, KPC increases the read addresses of those RALBs which contain the new lines

of I for current vertical stride. Therefore, each I value is reused z(α− s)2 times and hence if z
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is large enough to fit all the values of a filter weights in a layer then each I value needs to be

fetched only once from the KPC. Moreover, the filter weights stored in local storage inside

PE remains stationary throughout the period of all horizontal and vertical strides. Thus, each

of these filter weights has been reused for (A − s)2 times. Thereby, aforementioned process

enables the proposed CNN accelerator to conserve its energy and latency.

PE

(1,1)

PE

(1,2)

PE

(1,3)

RALB-1Prefetching
row-4 Holding row-1

PE

(2,1)

PE

(2,2)

PE

(2,3)

Holding row-2

Holding row-3

PE

(3,1)

PE

(3,2)

PE

(3,3)

PE

(1,1)

PE

(1,2)

PE

(1,3)

Prefetching
row-5

Holding row-2

PE

(2,1)

PE

(2,2)

PE

(2,3)

Holding row-4

Holding row-3

PE

(3,1)

PE

(3,2)

PE

(3,3)

row-1

row-2

row-A

row-3

row-4

row-5

Prefetching

Input data (I) in 

GBCU/DRAM

row-1

row-2

row-A

row-3

row-4

row-5Prefetching

(a) (b)

PE ArrayPE Array

Being processed Unprocessed rows. Processed rows. Data being used

for the last time
Unprocessed data

Rows of Input Data (I) in GBCU/DRAM Status of RALB

Input data (I) in 

GBCU/DRAM

Processed data

RALB-2

RALB-3

RALB-1

RALB-2

RALB-3

Fig. 3.4: Schematic representation of the suggested data-reusability process for 3×3 PE array in
CNN accelerator.

For the better visualization of this technique, 3×3 PE array has been considered with

three RALBs and a stride size s = 1 on an input feature map I of size A×A, as presented by

Fig. 3.4. It shows the process of reusing the data during vertical stride, and pre-fetching of

data to perform uninterrupted computation.

Consider each vertical stride as an iteration (itri). Fig. 3.4 (a) shows that initially at itri=1

iteration, RALB-0, RALB-1 and RALB-2 are connected with 1st, 2nd and 3rd rows of PE

array, respectively. Referring Fig. 3.4 (a), three RALBs viz. RALB-1, RALB-2 and RALB-

3 are holding row-1, row-2, and row-3, respectively, of the input feature map I. Since the
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row-1 data fetched from RALB-1 is being used for the last time during the current vertical

stride, initial r number of data in RALB-1 is not required anymore once the architecture

performs r number of horizontal strides. Thus, this architecture pre-fetches initial r number

of data item from row-4 of I to those initial r locations of RALB-1 (referring line nos. 12−13

from Algorithm 1). In second vertical stride (itri=2), now the computation is to be performed

on row-2, row-3, and row-4 of I. Since row-2 and row-3 are already there in RALB-2

and RALB-3, and also enough r number of data from row-4 is pre-fetched in RALB-1,

computation for second vertical stride can immediately start after the computation of first

vertical stride. Furthermore, Fig. 3.4 (b) shows the suggested process of reusing the data of

RALB-2 and RALB-3 by row-1 & row-2, and row-3, respectively, using new data of row-4

of I. Here, line-selection control signal of PEs in row-1, row-2 and row-3 changes their

connections from I1, I2, and I3 to I2, I3, and I1, respectively, as shown in Fig. 3.4 (b). Thus,

during each vertical stride, our PE array reuses the data of α−s RALBs and fetches data from

external memory to other s RALBs. Therefore, data stored in a line memory is reused for

α−s number of vertical strides. As discussed above, between every two consecutive vertical

strides, data values are reused maximum of z(α−s)×. Thus, each of the data items stored in

line memory has been used by up-to z(α−s)2 number of MAC operations, and each of the

filter values is used for (A−s)2 number of MAC operations.

3.4 Implementation Results, Comparisons and Hardware

Validation

3.4.1 FPGA Implementation Results

In the proposed architecture of m×n PE-array, m determines three imperative factors: (1)

length of vertical routing network, (2) size of bus selection multiplexer in PE, and (3) data

movement latency between single RALB and PE that belongs to the farthest PE row (i.e.

RALB-0 to mth PE row). Similarly, n determines the width of vertical routing network. The

computation throughput is given as ΘT = (2×NPE× fclk×σ×Ω) GOPs where NPE is the num-

ber of PEs in CNN accelerator (i.e. NPE = m×n) and Ω represents the PE efficiency which
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is given by Ω = NPE−util./NPE such that NPE−util. denotes the number of PEs utilized. fclk de-

notes the operating clock frequency of CNN accelerator, and GOPs refers to giga operations

per second, and σ is the time efficiency of PEs that is given by the ratio of time duration

when PEs are active and total time duration required for the computation (σ=tci/titri) [92].

Since each PE performs two operations: multiplication and addition in each clock cycle,

referring Fig. 3.3 (c), a factor of 2 has also been incorporated in the aforementioned ΘT

expression [83], [93]. Since ΘT ∝ Ω, hence, to achieve higher PE efficiency that maximizes

the ΘT value, both m and n must be compatible with the filter shape of CNN model. As

presented in Table 2.2, majority of computations in the state-of-the-art CNN models are

dominated by smaller filters, mostly 3×3-sized filter, rather than larger filters with the size

like 7×7 or 11×11.

Since a CNN accelerator can not be 100% efficient for all the filter shapes, m must be

chosen in a way that it emphasizes only those filters which contribute highest computations,

along with aforementioned hardware aspects. Hence, the proposed CNN accelerator con-

sists of a dynamically configurable 36×24-sized PE array that is segregated into 16 smaller

clusters to keep the effective value of m and n smaller. Each of these clusters comprises of

a 9×6-sized PE array along with nine RALBs. Every single RALB can store 1024 pixels

of I and thus effective values are m=9 and n=6 for these clusters. They are individually

controlled by the KPC and each of them can simultaneously perform convolution operations

for six 3×3-sized filters that delivers 100% of PE efficiency (Ω=1) or two 5×5-sized filters

with 92% of PE efficiency (Ω=0.92) or 54 1×1-sized filters with 100% PE efficiency (Ω=1)

or only one 7×7-sized filter with 91% PE efficiency (Ω=0.91).

Therefore, the proposed VLSI-architecture of RALB-based CNN accelerator has been

hardware implemented on FPGA evaluation board (Xilinx Zynq-UltraScale+ MPSoC-ZCU102

board). Furthermore, gate-level synthesis and static-timing-analysis of suggested CNN ac-

celerator indicate that its critical path lies in the PE micro-architecture and hence the longest-

path delay includes two multiplexers, one adder and one multiplier delays, as shown in

Fig. 3.3 (c). Thus, the proposed CNN accelerator is capable of operating at a maximum

clock frequency of 340 MHz, when implemented on Zynq-UltraScale+ FPGA board. Even-

tually, FPGA hardware-resources consumed by the aforementioned implementation have

54



been presented in Table 3.1.

[76] [79] [83] [62] [75] Proposed [76] [79] [83] [62] [75] Proposed

(a) (b)
Fig. 3.5: Performance gain compared to state-of-the-art works. (a)Throughput ΘT , (b) Throughput
density ηPE

.

3.4.2 Comparison with the State-of-the-Art Implementations

For fair comparison with other reported works in Table 3.1, we have also synthesized

and post-route simulated the proposed CNN accelerator in same FPGA platforms used by

these implementations from the literature. Due to slower block-RAMs (BRAMs) of Xilinx

Virtex-7 (VC709 and VC707) and Xilinx ZYNQ-7000 (ZC706) boards, the proposed CNN

accelerator when implemented on these FPGA platforms could operate at a maximum clock

frequency of 200 MHz. As discussed above, ΘT is an imperative performance metric that

indicates the number of computations performed per second by the CNN accelerator. With

the aid of proposed interrupt-free processing, titri ≈ tci in our CNN accelerator and hence the

value of σ=1.

Furthermore, energy efficiency is expressed as ε = ΘT/W whereW represents average

power consumption that is computed asW = (εc + ψm)/t [62], [74]. Here, εc is the compu-

tation cost for each data which depends on the design logic and its precision. Similarly, ψm

is the energy required to move the data from (or to) storage location, at different hierarchy,

to (or from) the computation unit of PE. In our architecture, ψm can be expressed as ψm =

â×α̂ + b̂×β̂ + ĉ×γ̂ where â is the number of times a data has been loaded from DRAM to
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density (Right) using different sizes of PE-array in the proposed CNN accelerator for VGG-16 and
GoogLeNet CNN models.

GBCU and α̂ is the energy consumption associated with each of these data movement. Sim-

ilarly, b̂ and ĉ are the number of times the same data has been loaded from GBCU-to-RALB

and RALB-to-PE, respectively, and their respective energy costs are given by β̂ and γ̂. Note

that B and c are inversely proportional to a and B, respectively. Among α̂, β̂, and γ̂, the

smallest value is γ̂; whereas, α̂ ≈ 200×γ̂, and β̂ = 6×γ̂ [62]. Since the magnitude of ψm is

higher than εc, it is necessary to minimize the costly data movements which reduces â and b̂

values that can be compensated by increasing the ĉ value. In the proposed CNN accelerator,

each I value is reused z(α− s)2 times and each of the filter weight is reused (A− s)2 times, as

discussed earlier in section 3.3.2.2. Thereby for I value, B is z(α − s)2 times smaller than c,

and a is (number of filters)/z times smaller than B. Similarly for filter weights, both a and B

are (A − s)2 times smaller than c. Hence, the proposed RALB-based CNN accelerator con-

sumes an average total power of 4.109 W while operating at a peak clock frequency of 340

MHz, when implemented on Zynq-UltraScale+ FPGA board. This total power consumption

of 4.109 W is composed of dynamic and static powers of 3.383 W (i.e. 82%) and 0.726 W

(i.e. 18%), respectively. Such power consumption of the proposed design is 2.34× lesser

than the state-of-the-art FPGA implementation results from [75]. Based on this total power

consumption, the energy efficiency (i.e. ε = ΘT/W) of our architecture is 140.95 GOPs/W

which is 6.24× higher than the contemporary implementation from [75].

In order to demonstrate the reconfigurability of our design, it has been configured and

implemented for both VGG-16 and GoogLeNet neural networks, as their implementation re-

sults are presented in Table 3.1. By using the proposed uninterrupted processing-technique
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along with the RALB-based PE array mapping, while processing VGG-16 and GoogLeNet

CNN models, 100% (i.e. Ω=1) and 98.16% (i.e. Ω=0.9816) of PEs, respectively, have been

utilized by the proposed CNN accelerator architecture. Therefore, based on aforementioned

quantifications, our design delivers throughput of 576.7 GOPs at a frame-rate of 202 fps and

587.52 GOPs at a frame-rate of 18.9 fps while processing GoogLeNet and VGG-16 neural

networks, respectively, as presented in Table 3.1. This chapter also presents a FOM which is

termed as throughput density (ηPE) that is computed as ηPE=ΘT/NPE. It indicates the num-

ber of operations performed in one second per PE and hence its higher value is desirable.

Among all the relevant reported works [62], [79], [83], [76], [75] in Table 3.1, the state-of-

the-art implementation (using Xilinx Virtex-7 VC709 FPGA-board) of [75] delivers highest

throughput of ΘT =230.1 GOPs and throughput density of ηPE=347 MOPs/PE. Moreover,

with the aid of the suggested uninterrupted-processing technique, the proposed CNN accel-

erator architecture when implemented in the same FPGA platform delivers a throughput of

345.6 GOPs which is 33.42% better than the one reported by [75]. Furthermore, the sug-

gested architecture achieves throughput density of 400 MOPs/PE which is 13.25% better

than the ηPE of [75], as shown in Table 3.1. It also shows that the proposed CNN accelera-

tor, when implemented on Xilinx Zynq-UltraScale+ ZCU102 FPGA-board, delivers highest

throughput and throughput density of 587.52 GOPs and 680 MOPs/PE, respectively. In

terms of hardware utilization, our design requires moderate consumption that is comparable

to the reported implementations, as presented in Table 3.1.

The improvements in performance of the proposed design arises from its emphasis on

uninterrupted processing through efficient buffering and dataflow scheduling. In contrast to

conventional accelerators that suffer idle cycles during memory access or layer transitions,

the design eliminates stalls that usually occur during data loading by using a random-access

line buffer (RALB) that maintains a continuous dataflow. This ensures that the processing

elements remain active instead of idling while waiting for memory. At the same time, local

reuse of intermediate data across both convolutional and non-convolutional layers signifi-

cantly reduces off-chip memory traffic. As a result, every cycle is effectively utilized, which

allows the accelerator to sustain higher throughput and much better energy efficiency than

prior works, while preserving near-FP32 accuracy levels.
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On the other side, the proposed CNN accelerator is a scalable design, as its ΘT increases

with the size of PE array by maintaining nearly constant Ω and ηPE values. To demonstrate

the same, Fig. 3.6 presents the variations of ΘT , Ω, and ηPE with the increasing sizes of PE

array from 7×7 to 36×48 for both VGG-16 and GoogLeNet CNN models. As discussed in

section 3.4.1, following the adaptive convolution mapping from chapter 2, a 9×6 cluster of

PE array with 54 PEs, perform convolution operations for six 3×3-sized filters that delivers

Ω=1 or two 5×5-sized filters with Ω=0.92 or 54 1×1-sized filters with Ω=1 or only one

7×7-sized filter with Ω=0.91, hence achieves an effective Ω = 1 for VGG-16 model and

0.98 for GoogLeNet model. Therefore, as seen in Fig. 3.6, 9×12, 18×12 18×24, 36×24, and

36×48-sized PE arrays containing 2, 4, 8, 16 and 32 such clusters linearly increase the ΘT

while maintaining constant Ω and ηPE. On the other hand, PE arrays like 7×7, 8×8, and 9×9

gets affected due to inefficiency convolution mapping for different filter sizes. Hence, the

value of both Ω and ηPE for such arrays remain lesser compared to earlier mentioned ones.

3.4.3 Peak Throughput Issues due to DRAM Bandwidth Limitation

Majority of the CNN accelerators like [90,94,95] face difficulties in achieving their peak

throughput due to limitation in the sustainable DRAM bandwidth of the FPGA boards. For

example, [95] requires to transfer more than 64 byte parallel data from external memory

to achieve its peak throughput. On the other hand, reported architecture from [94] com-

promises the performance due to bandwidth limitation and even using 8 bit quantization.

Further, the reported work from [90] is unable to hide all the external communication time

under the computation time due to bandwidth limitations. As a result of extensive reuse of

local data, as discussed earlier in section 3.3.2.2, the proposed CNN accelerator requires

to transfer a maximum of 16-byte parallel data to/from the external memory (i.e. DRAM)

at its peak throughput for the tested 16-bit precision. Therefore, the maximum required

bandwidth of the proposed accelerator is significantly lesser than the sustainable DRAM

bandwidth of the FPGA board that has been used for the implementation.
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3.4.4 Compatibility with State-of-the-Art CNN Models

As discussed in section 3.4.1, the proposed architecture natively supports different filter

sizes like 1×1, 3×3, 5×5, and 7×7. Thus, it can be used for state-of-the-art CNN models

like MobileNet-V1, MobileNet-V2, EfficentNet and many more. Based on our earlier dis-

cussion, the proposed CNN accelerator architecture consists of 16 clusters of 9×6 PE array.

Hence for state-of-the-art models, some of the clusters can be configured for depth-wise sep-

arable convolution (DWC) with larger filter like 3×3 or 5×5, while the remaining clusters

can be configured for point-wise convolution (PWC) with 1×1 kernels. These clusters can

also be configured to work in a pipelined manner to directly perform PWC on the output of

DWC to reduce off-chip data access. Further, the residual connection can be achieved by

sending I through the Psumi port.

3.4.5 Hardware Validation of the Proposed CNN Accelerator

3.4.5.1 Hardware Test Setup and Validation Method

Schematic and real-world views of the test setup for validating the hardware prototype

of the proposed CNN accelerator are shown in Fig. 3.7 (a) and (b), respectively. They

comprise of three major components: (1) host computer, (2) Zynq-UltraScale+ MPSoC-

ZCU102 FPGA-board, and (3) external SD memory-card. The host computer has been

installed with high-end tools like MATLABr R2019a, Xilinxr Vivado 2018.2 and Xilinxr

SDK 2018.2. To begin the validation process, a CNN model has been initially imported in

the MATLABr environment that is followed by extraction of model parameters like filter

weights and biases for different layers of the CNN model. Thereafter, these parameters are

converted into 16-bit fixed-point (FP16) format and are stored in the external SD memory-

card, as multiple binary files. Similarly, pixel data of the input image is also converted to

FP16 format and stored in the SD memory-card. Consecutively, this SD card is unplugged

from the host computer and reconnected to the FPGA board, as shown in Fig. 3.7.

With the aid of Vivado 2018.2 tool, the Verilog HDL code of the proposed CNN accel-

erator is packed as an AXI-compatible IP. It is then interfaced with direct-memory-access

(DMA) controller which is further connected with the AXI-HP port of onboard computer of
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the FPGA board (for high-speed data transfer from onboard-DRAM to CNN accelerator),

as illustrated earlier in Fig. 3.1. It also shows that the configuration and handshake signals

between onboard-computer and CNN accelerator has been established using AXI-peripheral

registers which are connected with the AXI-lite port of the onboard computer. Furthermore,

an interrupt signal informs the onboard computer whether the GBCU is ready to receive new

data from onboard-DRAM or it requires to offload the AC data to this DRAM, as shown in

Fig. 3.1.
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Fig. 3.7: (a) Schematic representation, and (b) real-world snapshot of the test setup for validating the
proposed CNN accelerator prototype.

On the other hand, synthesized hardware information along with bit-stream of CNN

accelerator is exported to Xilinxr SDK 2018.2 tool, as shown in Fig. 3.7 (a). Here, a stand-

alone software application has been written in high-level C-language which loads the input

image and model parameters from the SD memory-card to the onboard-DRAM of FPGA

board. Following that, it sends input image and model parameters of a layer to the KPC

of CNN accelerator using the HP port, as shown in Fig. 3.1. Simultaneously, it sets the

configuration bits according to layer specification. Further, this application software off-

loads the AC data of the layer from KPC to onboard-DRAM and returns them I during the

processing of subsequent layer. Additionally, it stores a part of AC for each layer and full
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AC of the last FC layer in SD memory-card. Thereafter, the SD memory-card is unplugged

from the FPGA board and plugged back to the host computer, in order to visualize the results

in MATLABr environment.

3.4.5.2 Experimental Results
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Fig. 3.8: Schematic representation of layer-wise processing of an image in the proposed CNN accel-
erator for GoogleNet model.

This chapter presents layer-wise output data for a red green blue (RGB) color image of

the dimension 224×224×3 (this dimension has been specified by GoogLeNet CNN-model

[26]) that is processed by the proposed CNN accelerator to classify the object from input

image by using GoogLeNet CNN-model, as illustrated in Fig. 3.8. In the first layer, Conv

operation has been performed with 64 different filters of dimension 7×7×3 (3 for three

different R, G and B channels of input image) with strides s=2. Such operation enables to

search and extract the score for 64 different high-level features in the form of AC, containing
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64 feature score matrix of height×width dimension of 112×112. Here, both these height and

width are scaled to (input-height)/s and (input-width)/s, respectively. Since 112×112×64

dimension of AC is extremely large to visualize here as a matrix, we have plotted one out of

these 64 channels as an 112×112 image, mapping each value of the feature scores in AC as

an image pixel. Thereafter, ReLU and max-pooling with s=2 have been applied on it that

further reduces the dimension to 56×56×64, which is then fed back to the CNN accelerator

for processing layer-2. In this second layer, 64 different filters of dimension 3×3×64 (64

for 64 different channels of I) with s=1 is applied that produces AC of same dimension, as

shown in Fig. 3.8. In order to visualize the AC, one out of these 64 channels is plotted as

an image. Certain features that have been detected produces bright pixel while dark part

denotes the absence or very low score for the searched feature in that region, as shown in

Fig. 3.8. Thereafter, ReLU activation and maxpool with s=1 is applied on the AC, before

passing it to next layer. As a result, in those layers where s>I for Conv or pool operation,

height and width dimensions of AC reduces from the same value of I by a factor of s. Since

after the layer-12 on-wards, height×width dimension of AC is small enough (7×7 or smaller)

to be shown as a matrix. Hence, we have presented these values in the tabular format and

the exact numerical value of detection scores for a certain feature are also shown in Fig. 3.8.

Eventually, we have applied the soft-max activation on the output of FC layer which contains

the detection score for all the 1000 classes from ImageNet data-set [96] to convert these class

scores into class probabilities. Hence, the probabilities of Top-5 class have been presented

in Fig. 3.8. All of these Top-5 classes are different breeds of dogs or wolf with Top-1 class,

showing the correct breed of object in the input image. Thereby, aforementioned process

validates the correct functionality of the proposed CNN accelerator hardware-prototype.

3.4.6 Accuracy of the Proposed CNN Accelerator

The suggested uninterrupted processing-technique and the corresponding CNN-accelerator

architecture are precision independent. Both of them can be used for any data precision like

floating point or highly quantized fixed-point representation by simply changing the preci-

sion of the computation unit in each PE of our accelerator to the desired precision. Fur-

thermore, throughput of the design also scales up with the reduction in precision. However,
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for evaluating the suggested architecture, we have designed the data path by considering 16

bit precision. As a result, this work uses both BF16 as well as FP16 representations for the

data and filter weights. Even though BF16 representation preserves the accuracy of 32 bit

floating point representation, it requires higher design efforts to realize the PE unit using the

DSP blocks on FPGA and requires extra hardware resources. On the other hand, FP16 rep-

resentation enables to directly map the PE unit into the in-built DSP core blocks of FPGA;

however, it reduces the accuracy of our design by 0.5%.

3.5 Summary

This chapter introduced a novel uninterrupted processing approach for CNN accelerators

aimed at improving both throughput and energy efficiency. The core idea centers on enabling

simultaneous execution of PE computations and data fetching, which significantly reduces

processing latency and boosts the achievable throughput. To facilitate this, a low-latency

VLSI architecture was proposed, featuring a PE array that is based on a new RALB structure.

Such RALB-enabled design ensured continuous data flow and higher throughput density

without interruption.

To further optimize performance, the architecture leverages enhanced local data-reuse

within the PE array. This exploitation of data locality incurred considerable improvement in

energy conservation. Nonetheless, the current design focused solely on accelerating convo-

lution operations within CNNs. On the other hand, there remains a substantial opportunity

to expand the architecture’s efficiency by extending local data reuse techniques to support a

broader range of CNN operations.

The hardware implementation of the proposed accelerator was carried out on the Zynq

UltraScale+ MPSoC ZCU102 FPGA platform. The system operated at a maximum fre-

quency of 340 MHz and consumed a total power of 4.11 W. With an array of 864 PEs,

the design achieved a peak throughput of 587.52 GOPs and an energy efficiency of 142.95

GOPs/W. Comparative analysis with existing state-of-the-art designs revealed that the pro-

posed accelerator delivered a 33.42% increase in throughput and 6.24× improvement in

per-PE energy efficiency.
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The functional correctness and practical utility of the proposed design were validated

through a real-world test scenario, involving object detection using the GoogLeNet CNN

model, confirming the accelerator’s capability to efficiently handle practical inference tasks.
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Chapter 4

Efficient CNN Inference-Engine with

Classify Unit based on New

Memory-Sharing and Data-Reusing

Techniques

4.1 Introduction

Though superior accuracy of CNN models has spiked the development of modern AI

applications, requirements of sophisticated and massive computations that consume huge

power for CNN models incur severe bottleneck in the widespread deployment of such ap-

plications on edge devices [60]. This necessitates the development of high-throughput and

energy-efficient processing units for the implementation of such CNN applications. By us-

ing multiple PEs in parallel, CNN accelerators for these AI applications can achieve remark-

able surge in speed. However, inefficient mapping of CNN kernels in PE array significantly

affect the achievable throughput. Moreover, parallel processing using multiple PEs is re-

stricted due to limited bandwidth of off-chip DRAM [90, 94, 95]. As a result, PEs in large

array frequently starve for the data that often causes interruption in their processing and

hence, limits the capability of sustaining peak throughput of CNN inference engine [93,94].

Therefore, chapter 2 presented an optimized mapping technique to efficiently map different
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CNN kernels of different sizes while chapter 3 presented uninterrupted processing based

techniques and architectures for high throughput CNN accelerator.

However, conventionally, with the increase in the number of PEs, their energy consump-

tion also increases which is still a major concern from an implementation aspect. Recent

study [62], [74] has shown that significant portion of total power consumption in CNN

computation is largely contributed due to frequent and massive movement of data between

off-chip DRAM and processing unit. Such power dissipation is rather more than the power

required by the computational processing units. Thus, chapter 3 also presented techniques

and architecture to maximize reuse of local data to enhance the energy efficiency of pro-

cessing Conv layer, hence presenting design of high-throughput and energy-efficient CNN

accelerator. Several reported works in the literature also proposed various hardware archi-

tectures to perform computation for CNN models with higher throughput as well as better

energy-efficiency [62], [74], [97]. These reported implementations mostly exploited the

reuse of local data, at the expense of extra hardware requirements for complex routing and

additional memory blocks. Moreover, alike chapter 3, these designs also mainly focused on

the architectural optimization for the computation of Conv operation in feature extraction

layers.

Since, energy consumption is significantly contributed by data movements, optimizing

both processing and data-movement of other computations in the feature extraction layer,

like ReLU, maxpool and avgpool, are equally important. Thus, it is necessary to minimize

the data movement for the computation of all layers in CNN model to scale-up the energy

efficiency of any CNN-based applications. Therefore, this chapter caters such needs by

proposing reconfigurable PE-architecture that performs all types of computations in the fea-

ture extraction layers for the state-of-the-art CNN models, that enables to reuse the local data

for all the computations of feature extraction layers. On the other hand, conventional energy-

efficient architecture of CNN inference engine like [74, 90, 94, 95] utilizes large amount of

hardware for memory as well as routing-network to reuse the local data and such CNN ac-

celerator often encounters interruptions in their computation which is periodically halted

during data movement in the PE array. This further affects the sustainable throughput of

CNN inference engine. To circumvent such problems, this chapter extends the RALB based
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architecture from chapter 3 to design a new line-memory based KPU to achieve the reuse

of local data and uninterrupted processing while utilizing lesser memory and computational

hardware resources.

On the other hand, conventional softmax-based classification layer [98, 99] implement-

ing computation of (1.7) apparently requires N number of complex exponential and the

same number of divisive operations to compute the probability of each class for an N-class

model. Thus, while majority of CNN inference engines [99] rely on off-chip processor

for the computation of classification layer, various attempts have been made to accelerate

the computation of classification layer by using dedicated hardware. However, these works

use coordinate-rotations digital-computer (CORDIC) based method [100] or look-up table

(LUT)-based powers-2 approximation [87, 98, 99, 101, 102] to realize exponential and di-

visive computations. Nonetheless, such implementations still require significant amount of

hardware resources, and these hardware designs are not integrated with CNN accelerator to

deliver complete on-chip solution [103]. Based on analysis towards the working of clas-

sification layer and empirical realizations, we propose a simplified classification approach

and hardware efficient classify unit where the computation of classification layer has been

carried out using only comparators and multiplexers. Thus, this design excludes the require-

ment of any complex hardware for exponential and divisive computations. In addition, the

suggested classify unit has been integrated with the kernel processing unit of CNN accel-

erator to build a complete on-chip CNN inference engine (CNN accelerator for inference).

Highlights of all the contributions presented in this chapter are enumerated as follows.

• A dynamically reconfigurable hardware-friendly and high-speed VLSI-algorithm for

the complete CNN inference-engine has been proposed in this chapter. It especially

includes memory-efficient uninterrupted processing and all computations of feature-

extraction as well as classification layers.

• A new multi-purpose hardware-architecture for PE has been suggested here. It is

capable of performing all types of computations for the feature extraction layers of the

state-of-the-art CNN models. In addition, this chapter also presents hardware-efficient

architecture of the line-memory for achieving efficient data-reuse and uninterrupted
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processing in CNN inference engine.

• Using the aforementioned PE and line-memory architectures, we have presented high-

throughput and energy-efficient architecture of kernel processing unit. Subsequently,

hardware efficient design of classify unit has been suggested here that is integrated

with kernel processing unit to realize complete design of efficient CNN inference-

engine.

• Comprehensive analyses of accuracy (using standard data-sets) and hardware resources

for both the proposed algorithm and architectures, respectively, are carried out. Fi-

nally, we presented FPGA implementation of the proposed CNN inference engine and

its functional validation, using real-world test setup. It is also ASIC synthesized and

post-layout simulated in 28 nm fully depleted silicon-on-insulator (FD-SOI) technol-

ogy node.
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4.2 System Model and Proposed Algorithm

4.2.1 System Model

While the hardware level system for object detection application presented in Fig. 3.1 of

chapter 3 is purely from the perspective of FPGA implementation, a generic overview of the

proposed object-classification system is shown in Fig. 4.1, consisting of three major parts:

an on/off-chip processor, an off-chip DRAM, and a CNN inference engine. As discussed

in chapter 3, the primary role of on/off-chip processor is to handle the software-based tasks

like loading model parameters from off-chip non-volatile memory, input the image data

from external source like camera as well as store them using off-chip DRAM, and provide

configuration signals to the inference engine, as presented in Fig. 4.1. It also shows that

inference engine and on/off-chip processor are interfaced via high data-rate links like CXL

or PCle or AXI buses for transferring data between off-chip DRAM and inference engine.

The key role of inference engine is to perform dedicated high-speed computations for the

CNN model. Since such computation types and processing requirements for different layers

of CNN model vary over a wide range, the inference engine has been designed with three

major blocks: updated KPU, updated GBCU, and classify unit (CU), as shown in Fig. 4.1.

Here, GBCU communicates with on/off-chip processor, KPU, and CU, in order to configure

and manage the flow of data like I, W, Psumi, B, AC, class number of detected class (CN-

DC) and many more signals. Furthermore, GBCU is responsible for managing the data flow

between inference engine and off-chip DRAM, as illustrated in Fig. 4.1.

To begin with, GBCU first configures both KPU and CU with the layer information of

CNN model, and also provides input image as I along with W as well as B of the active

layer of model to KPU. Similar to chapter 3, depending on the size of PE array in KPU and

parameter size of the current layer, here also KPU either generates the final AC value of

the layer or only a portion of AC, (i.e. Psumo). These partial sums are used in successive

iterations of computation to generate the final AC and eventually, output from KPU is fed to

CU. If the current layer (l) is the last fully-connected layer (i.e. l=FClast) of the CNN model

then CU starts the computation of classification layer. Finally, either CU returns the class
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number (CN) of the object detected in the input image back to GBCU or CU directly returns

the output AC from KPU back to GBCU in the form of Psumo or AC, as shown in Fig. 4.1.

Here, GBCU reuses these values during successive iterations of computation for the same

or next layer. Comprehensive discussion on the proposed efficient architectures of KPU and

CU are presented in sections 4.3.1 and 4.3.2, respectively.

4.2.2 Proposed Algorithm

The proposed implementation-friendly algorithm for complete CNN inference-engine

has been presented in Algorithm 2. Its salient features are to dynamically configure the in-

ference engine based on the layer information, to uninterruptedly perform the computations,

and to classify the object in CNN inference engine itself while processing the last FC layer.

To begin with, values must be provided for three input parameters: (1) layer number of the

FClast layer, (2) number of iterations required for a layer (nl), and (3) minimum number of

data items that are required to begin the processing of that layer (rl), as presented in line

numbers 2-3 of Algorithm 2. Subsequently, selection of computation type that is required

by the layer is performed in line number 4 of Algorithm 2. As discussed earlier, W, I, B, and

AC denote filter weight, input feature map, bias value, and output activation, respectively.

In addition, xx, yy, and zz represent the current position(s) in one, two, and three dimen-

sional spaces of the data, respectively, that is being processed during current stride. Here,

α×β×γ×δ is the size of a multi-dimensional filter, referring line number 4 in Algorithm 2,

where width, height and depth of a filter are represented by α, β and γ, respectively. Further,

δ denotes the number of filters.

To achieve uninterrupted processing, similar to Algorithm 1 of chapter 3, the partial

fetching of rl data is first completed and thereafter, the computation begins simultaneously

with the fetching of remaining data, as presented in line numbers 5-15 of Algorithm 2. Once

the data loading is over for the current iteration, pre-fetching of data commences for the

subsequent iteration, even in the case of layer switching, as shown in line numbers 14-23

of Algorithm 2. After the processing completes for iteration, next iteration immediately

starts. A visual illustration of such processing timeline, in comparison with conventional

architectures, was presented earlier in Fig. 3.2 of Chapter 3. Here, if the processing of
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Algorithm 2 Proposed Implementation-Friendly Algorithm for Inference Engine
1: Initialization: i=1, j=0, l=0, AC-Max=0, & CN-DC=0; . i, j, and l count the number of processed

iteration, the number of data that has been fetched, and the number of processed layer, respectively.
2: Determine FClast; . FClast is layer number of the last FC layer.
3: Determine nl and rl; . nl, and rl are number of iterations required for Layerl & minimum number of data

required to begin the computation of Layerl.
4: Determine Computation (Pl) as:

Pl⇒AC=



α∑
a=1

β∑
b=1

γ∑
c=1

(
Wa,b,c,δ×Ixx,yy,zz

)
+Bδ, Layerl = Conv

N∑
x=1

In ×Wn,x + Bx, Layerl = FC

max
{
I(x:α, y:β, z)

}
, Layerl = maxpool

+α∑
x

+β∑
y

Ix,y,z

2Logbα×βc2
, Layerl = avgpool

max
{
0, Ix,y,z

}
, Layerl = ReLU

min
{
max

{
0, Ix,y,z

}
, 6

}
, Layerl = ReLU6

5: Begin F l
i=1; . Start pre-fetching of data for itrl

i=1.
6: while i ≤ nl do
7: if j ≤ rl then . Adequate data has not been fetched yet.
8: Continue F l

i=1; . Fetching continues for itrl
i=1.

9: j = j+1; . Count the number of data pre-fetched for itrl
i=1.

10: Return to Step 13; . Fetching continues for itrl
i=1.

11: else . Adequate data fetched to begin computation.
12: Process Pl

i; . Compute ACi.
13: if F l

i is not complete then
14: Continue F l

i ;
15: else
16: if i < nl then
17: Begin F l

i+1; . Start pre-fetching data for itrl
i+1.

18: else
19: set j = 0
20: Begin F l+1

i=0 ; . Start pre-fetching data for itrl+1
i=0.

21: if Pl
i is Complete then

22: if l = FClast then

23: ACMaxi =
{

ACi , ACi > ACMaxi−1 ;
ACMaxi−1 , ACi ≤ ACMaxi−1 ;

24: CN-DCi =
{

CN-DCi−1 , ACi < ACmaxi−1 ;
CNi, ACi ≥ ACMaxi−1 ; ;

25: Output =


ACi , l , FClast;
0 , l = FClast & i , nl;
CN-DCi , l = FClast & i=nl;

26: l =


l + 1 , i=nl & l , FClast;
0 , i=nl & l = FClast;
l , i < nl;

27: if i = nl then
28: Set i = 0;
29: Return to Step 9. . Start processing the next layer.
30: else
31: Set i = i + 1
32: Return to Step 18. . Start computation for itrl

i+1.
33: else
34: Return to Step 18 . Continue Pl

i.
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current layer (in a given iteration) is the last FC layer (i.e. l=FClast) then the computation

for classification layer is performed in pipeline where the ACi is fed as input and eventually,

returns the class number (CN) of the detected class as an output, referring line numbers

24-28 from Algorithm 2. On the other side, if l,FClast then ACi is returned as output that

is recycled during the computation of subsequent layer, as illustrated by line number 28 of

Algorithm 2.
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Fig. 4.2: Comparative accuracy and performance analyses of the proposed implementation-friendly
algorithm for CNN inference engine.

To perform the computation of average pooling layer, the denominator of division has

been replace from α×β to 2logbα×βc2 that enables to perform the division operation using simple

bit shifting, rather than using complex hardware for division operation. Since all values of

the activation are scaled at same ratio, no degradation has been noticed in the classification

accuracy of the model. Furthermore, for the computation of classification layer, proposed

algorithm employs a simplified classification technique wherein it generates the classifica-

tion result directly from the activation of last FC layer, and avoids all complex exponential

and divisive computations that are used in conventional softmax-based classification layer

processor. This new approach is based on an analysis towards the working of classifica-

tion layer and empirical realizations. As a result, it is found that the probability Pri of an

object class is maximum when the magnitude of activation ACi, associated with that class

from the last FC layer, is at its peak. This method processes N (i.e. N=nFClast) number of

ACi and it subsequently searches as well as determines the largest activation (ACMax) and

its associated CN, as presented in line numbers 25-29 of Algorithm 2. Finally, it returns

the CN associated with ACMax as the detected class, referring line number 26-28 in Algo-

rithm 2. Aforementioned proposed technique uses simple comparison and sorting method.
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Thereby, its corresponding hardware architecture (i.e. classify unit from Fig. 4.1) requires

only comparator and multiplexer.

Comparative performance analysis of both the proposed and the conventional techniques

are presented in Fig. 4.2. It shows the comparison of classification accuracy in Fig. 4.2 (a),

and computation frame rate in Fig. 4.2 (b) of three different CNN models for both conven-

tional and proposed approaches. Here, three CNN models have been developed for three

different datasets. Furthermore, Fig. 4.2 (c) shows the size of dataset used for training

these models and their parameter size. Referring Fig. 4.2, unlike parameter and dataset

size, choosing proposed hardware-friendly approach over the conventional approach refrains

from causing noticeable impact on the classification accuracy. Moreover, it significantly im-

proves the processing speed and the classification frame rate.

4.3 Proposed Hardware Architectures, Implementation Re-

sults and Comparisons

Based on the proposed Algorithm 2, this section presents efficient hardware architectures

of an updated KPU and CU for the complete CNN inference-engine, as discussed earlier

in section 4.2 with the aid of Fig. 4.1. In addition, their implementation results are also

presented and compared with the state-of-the-art works.

4.3.1 Energy and Memory Efficient Architecture of KPU

As discussed earlier in chapter 3 as well as in section 4.1, an energy-efficient and high-

speed inference engine must have the capability to minimize the costly off-chip memory

access by maximizing the efficient reuse of local data within the chip to reduce power con-

sumption and mitigate interruptions in the data processing to sustain the peak achievable

throughput. For such processing, the proposed KPU architecture shown in Fig. 4.3 has been

designed by extending the RALB-based line-stationary approach from chapter 3. Unlike,

the proposed approach in this chapter focuses on further enhancing the hardware efficiency

of CNN inference engine by using a specially designed line-memory to store I data within
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Fig. 4.3: Proposed hardware architecture of energy and memory efficient KPU.
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the PE array, and W value inside the PE. As shown in Fig. 4.3, this suggested KPU also

consists of m×n PE matrix similar to chapter 3, wherein m line-memory units are used for

three key purposes: (1) to store the incoming data, (2) for providing data to PEs, and (3) to

reuse the data within the PE array. In order to efficiently configure the PE array, for different

filter shapes, and achieve efficient data-reuse, the routing of data between line memories

and PEs has been controlled with the aid of KPC, as presented in Fig. 4.3. At a given time

instance, any PE in the array can be dynamically routed to and fetch the data from any of the

m line memories in the proposed design. At a time, one line-memory can provide data to n

different PEs. Thus, suggested KPU architecture that contains PE array and line memories

can perform MAC and pool operations for varying filter sizes, ranging from 1×1 to m×n,

at different level of parallelism. Comprehensive discussion on the proposed architectures of

PE and line-memory are carried out in the following sections 4.3.1.1 and 4.3.1.2, respec-

tively. The techniques which allow the proposed KPU to achieve energy-efficient data reuse

is similar to one that has been discussed earlier in section 3.3.2.2 of chapter 3. Further-

more, detailed explanation of the techniques which allow this KPU to achieve chapter 3 like

uninterrupted processing is presented in sections 4.3.1.3 of this chapter.

4.3.1.1 Multipurpose PE Architecture

Referring line number 4 of Algorithm 2, the inference engine must dynamically config-

ure itself for different types of computations viz. Conv, FC, maxpool, avgpool, ReLu, and

ReLu6, which are required by various layers of the CNN model. Therefore, KPU of CNN

inference engine requires a PE which supports all these computation types. Hence, Fig. 4.4

shows the proposed micro-architecture of such PE that consists of MAC unit for processing

both Conv and FC layers; a MAX module to performs the maxpool operation. As illustrated

in Fig. 4.4, depending upon the value of MAC/MAX select signal, one of either MAC or

maxpool operation is selected. In order to perform ReLu activation on Il (i.e. Al−1) as well as

to conserve energy for null values, the suggested PE also consists of sign-and-zero detector

(SZD). On detecting a negative or null value of I, SZD turns off the MAC unit and produces

a null value at the output. In this way, it performs ReLu activation on Al−1 and conserves

energy by avoiding unnecessary switching of MAC unit for such input values. This plays
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a significant role in energy conservation, as the major portion of I values are zeros towards

the later layers of CNN models [63]. Moreover, SZD is overridden by the S-Ovd signal for

first layer of the model to allow I1, irrespective of their polarity. Furthermore, to perform

Relu6 on the outgoing activation, a MIN module is used which clips the output activation

below 6 when required. To perform avgpool operation, multiplier in the MAC unit acts as a

pass-through buffer, thus MAC unit performs as an adder only. The accumulated results are

bit shifted to achieve the division without using a real hardware for divider (referring line

number 4 of Algorithm 2). As discussed in section 4.3.1, the proposed PE can fetch data

from any of the m different line memories. Data from the desired line-memory is selected

by using the Ln.Sc signal, as shown in Fig. 4.4.
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Fig. 4.4: Proposed architecture of multipurpose PE that is used in the design of PE-array for KPU.

Since CNN models apply several filters on the same input data, the proposed PE archi-

tecture also incorporates a z×k-sized kernel memory, which stores z filter weights of k-bit

each, in order to minimize the off-chip data access and maximize the local data reuse. Here,

read and write operations are enabled with the aid of two independent address-generation

units (AGUs) for read and write address ports: RA and WA ports, as shown in Fig. 4.4.

However, read operation is supervised by the input data monitor (IDM) module which dis-
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ables the read operation until r number of filter weights are not stored in the memory. Here,

each of the I values that is fed to PE is reused upto z× by z different filter weights. As a

result, rather than fetching a new I data in each clock cycle, the proposed PE uses stride

request-based mechanism. Once in every δ clock cycles when AGU reads the last address

of the filter memory, comparator C2 in the proposed PE architecture sends the stride request

signal (i.e. Str.Req) to KPC module for the next I data, as well as activates input data register

to store the incoming data and holds it for next δ clock cycles, as shown in Fig. 4.3 and 4.4.

4.3.1.2 Hardware-Efficient Line-Memory Architecture

As discussed comprehensively in chapter 3, conventional energy-efficient designs of

CNN accelerators [62], [74] use large memories inside the PE to store W, I as well as Psums

and continuously move these data in all directions for their local reuse. Such implementa-

tion requires significant hardware and energy overheads for storage and routing purposes. It

also faces frequent interruptions in the processing while moving the data in and out of PEs.

Chapter 3 introduced RALB-based KPU to address this challenges. In every clock cycle

such RALB was able produce n parallel data. Due to the feature of pure random parallel

read mechanism in it’s architecture, all M locations of RALB were ready to produce data in

each clock cycle. However, as discussed in section 3.3.2.2 and 4.3.1.1, due to extensive reuse

of local data, PE architecture of the proposed KPU in this chapter requires n numbers of data

after every δ clock cycles. Among them, only s numbers of I data are new, and n-s num-

ber of data from previous read cycle can be reused using some local output buffer. Hence,

this chapter uses a new design of line buffer which has been referred as line-memory that

requires significantly reduced number of resources for the line buffer. Detailed discussion

of the new line-memory is as follows:

As discussed in section 4.3.1, proposed KPU architecture uses the line stationary ap-

proach that simultaneously shares single line-memory with n different PEs, as presented in

Fig. 4.3. The proposed architecture of a line-memory is shown in Fig. 4.5. It comprises of

k×A-sized memory which is adequate for storing at least A number of input data where A

represents the size of a single row of the input feature map I. Here, read and write opera-

tions in such line-memory are independently governed by two different control signals from
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the KPC module: Rd.S and Wt.S, as shown in Fig. 4.5. These signals decide whether the

line-memory stores the incoming data or provides the data to PEs. In addition, they locally

manage read and write addresses of the memory by controlling two different address gener-

ator units: write address generator (WAG) and read address generator (RAG), as shown in

Fig. 4.5. Furthermore, read operation is supervised by IDM which ensures such operation

is being performed only when the adequate number of data (i.e. r) has been fetched from

the memory (referring line numbers 7-13 of Algorithm 2). Whenever the Wt.S signal se-

lects a line-memory for writing the incoming data, WAG sequentially generates a new write

address in every clock cycle to store each of the incoming data items. During every stride,

line-memory receives two different read pointers (RdPtr): RA-r and RA-n from the KPC

module of KPU to denote reading locations for reused and new data, respectively. Hence, if

the data stored in the line-memory is being reused during a vertical stride then it uses RA-

r (to indicate read address for reuse) as the read pointer, that follows the same addressing

scheme which was adopted in the previous vertical stride. Otherwise, it uses RA-n as the

read pointer if the data of line-memory is being used for the first time. Here, the Rs.S signal

from KPC module has been generated to indicate whether the line-memory is selected for

reused or fresh data. When a line-memory is selected for read operation and if IDM indi-

cates that sufficient data has been written into the memory, then every time RAG receives a
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Nxt.S trigger-signal, it generates n/s consecutive read addresses that start from the address

pointed by RdPtr, over the next n/s clock cycles.

In addition, line-memory has an output buffer that comprises of n k-bit registers and the

same number of n:1 multiplexers, as shown in Fig. 4.5. Apart from generating read addresses

for the k×A memory, RAG also generates write address for the registers of this output buffer,

and select line bits for the multiplexers. When read operation is being performed in the line-

memory, during each clock cycle, address decoder module decodes these write addresses

and activates one of the n registers to store the output of k×A memory, as shown in Fig. 4.5.

In this way, every time there is a trigger in the Nxt.S signal, n/s number of new data items

from n/s different locations of k×A memory are buffered in n registers of the output buffer.

Thus, between every two horizontal strides, output buffer holds n−s number of old data for

reuse and s number of new data. Here, select-line bits for the multiplexer also increments

by s to switch connection of output ports. As discussed earlier in section 4.3.1 and shown

in Fig. 4.3 as well as Fig. 4.4, n parallel outputs (O0 to On−1) from n registers of the output

buffer of a single line-memory is connected to any one of the m different Ix ports of n

different PEs. Note that Ix port is represented as the concatenation of I1, I2, I3 · · · Im (each

of k bit-width) which are fed to m:1 multiplexer in the proposed PE architecture in Fig. 4.4.

Here, outputs from m line-memories are connected to every PE via such Ix port, as shown in

Fig. 4.3. Referring Fig. 4.4, every time there is a stride request (once in every δ clock cycles),

data from O port of line-memory is transferred to the input register of the PE (via Ix port

and m:1 multiplexer of PE architecture). Thus, registers of output buffer in the line-memory

can again store the data which are required in the next stride. Therefore, the proposed line-

memory architecture uses only single k×A-sized memory for n number of PEs, compared to

n number of such memories in conventional architectures from [74].

4.3.1.3 Technique for High-Throughput Computation

Computation in the conventional inference engine stops while moving the data within

an array of PEs and when the data are loaded from external memory [62], [74]. Since the

data movements in inference engine takes place as frequently as the computations, achiev-

able peak throughput of accelerator is adversely affected due to such frequent interruptions
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in the computation process that are mitigated by the proposed technique, as presented in

Algorithm 2. Referring line numbers 7−13 in this Algorithm 2, instead of waiting for all

the data for a vertical stride to be fetched in the line-memory, suggested technique starts

the computation after a partial fetching where a minimum r number of data are fetched and

the remaining data will be fetched during the computation run time, referring line numbers

14−15 from Algorithm 2. This process is realized in the hardware architecture of KPU with

the aid of suggested architectures of PE and line-memory, as presented in section 4.3.1.1

and 4.3.1.2.

Here, the proposed design of PE requires new data only once in every δ clock cycles,

and the proposed line-memory needs s clock cycles to generate the new data for s number

of PEs. Therefore, it uses the remaining duration of δ−s clock cycles to fetch the remain-

ing data from external memory. Thus, the proposed KPU performs both data fetching and

computation, simultaneously. Furthermore, as discussed in section 3.3.2.2, suggested KPU

architecture also pre-fetches the minimum number of data, required for subsequent verti-

cal stride, and it immediately starts the computation of next vertical stride at the end of

current vertical stride, without any interruption. Therefore, the proposed KPU architecture

performs computation with higher throughput and sustains this peak throughput during the

entire computation period.

4.3.1.4 KPU Implementation Results and Comparison

The proposed KPU architecture has been hardware implemented on FPGA platform (us-

ing AMD-Xilinx Zynq-Ultrascale+ ZCU102 MPSoC board). Detail implementation results

of the proposed KPU are presented in Table 4.1. For fair comparison, proposed KPU archi-

tecture has been additionally implemented in other FPGA platforms (viz. ZC706, VC707

and VC709) which are adopted by the reported state-of-the-art implementations. Note that

the fixed-point bit-quantization representation (Qn.m) of 16 bit has been used in all the afore-

mentioned implementations.

Static timing analysis of the our KPU architecture indicates that it’s critical path lies in

the PE and such path includes a single multiplier. Thus, the proposed KPU implementation

operates at a peak clock frequency of 360 MHz when implemented in aforementioned AMD-
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Xilinx Zynq-Ultrascale+ ZCU102 MPSoC FPGA-board. As shown in Table 4.1, suggested

KPU can operates at 1.79×, 1.91×, 1.91×, and 1.06× higher clock frequency compared to the

reported implementations from [79], [75], [97], and [93], respectively, when implemented

in their respective FPGA boards. As discussed earlier in section 4.3.1.3, the proposed KPU

architecture performs uninterrupted computations. Thus, PEs in the proposed KPU archi-

tecture are never idle and carries out their computations with 100% of time efficiency (i.e.

σ=1). Thus, the proposed KPU architecture is capable of delivering a throughput that is

3.39×, 2.87×, 1.6×, and 1.06× higher than the throughput achieved by [79], [75], [97],

and [93] reported implementations, respectively, on their respective FPGA board, as illus-

trated in Table 4.1. On the other hand, throughput density ηPE is an important figure-of-merit

that determines the hardware efficiency of inference engine and it is given by the number of

operations performed by a single PE per unit time (i.e. OPs/PE). Improvements in Ω, σ and

fclk values of the proposed KPU are responsible for enhancing the ηPE value which is 2.26×,

2.20×, 2.3875× and 1.06× higher than the ηPE values of [79], [75], [97], and [93] reported

implementations, respectively, as presented in Table 4.1.
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Fig. 4.6: Gains (a) throughput, (b) throughput density, and (c) energy efficiency of the proposed
KPU compared to state-of-the-art works

As discussed in section 4.1, memory footprint of inference engine mainly determines its

overall power consumption. Hence, it is desirable to have an architecture with reduced mem-

ory footprint and efficient reuse of local data to reduce the power requirement. Referring to

section 4.3.1 where it is described that the proposed KPU architecture simultaneously shares

a single line-memory with n numbers of PEs as well as it reuses each input data for z(α−s)2×

and filters the values for (A−s)2×. As a result, the suggested KPU architecture significantly

reduces the memory footprint in the form of BRAM usage in the FPGA. It uses a total of 64
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BRAMs where each of them has a size of 36 kb and such memory utilization is 7.59×, 7.29×,

6× and 10× lesser than the utilizations reported by [83], [75], [97] and [93], respectively,

as presented in Table 4.1. It also shows that the energy efficiency (i.e. number of computa-

tions performed per watt of total power consumed) of the proposed KPU is 21.79×, 15.09×,

5.09×, and 1.49× higher compared to the reported works from [83], [75], [97] and [93], re-

spectively. Furthermore, suggested KPU consumes significantly lesser LUTs and flip-flops

compared to the reported works, with an exception of flip-flop usage of [93] where the pro-

posed KPU utilizes slightly more flip-flops in comparison to [93]. However, the proposed

KPU has a notably lesser utilization of area-expensive BRAMs and LUTs compared to [93],

as presented in Table 4.1.

4.3.2 Proposed Hardware-Efficient Architecture of Classify Unit

As discussed earlier in section 4.2, to determine the class number of detected object in

the input image, computation of classification layer from the proposed Algorithm 2 involves

searching and finding the largest activation value (i.e. ACMax) from the FClast layer, and CN

associated with ACMax. Hence, the hardware design for such activation search operation can

be carried out by adopting either parallel or resource-shared approach. For a CNN model

with N classes, the former parallel approach can be beneficial, provided all N different ac-

tivation values from the FClast layer of the CNN model are simultaneously available. Such

approach requires an array of N−1 comparators as well as 2(N−1) number of 2:1 multiplex-

ers in order to perform the search operation, and a highly-complex class number generator

(CNG) to produce N parallel CNs. However, for a CNN model with M̆ neurons in the FClast

layer, it would require M̆ number of PEs in the KPU to compute one AC item per clock cy-

cle. In addition, a model with N classes typically comprises of N neurons in the FClast layer.

Thus, it requires N×M̆ number of PEs in the PE-array of KPU for computing all N number

of AC values. The proposed KPU architecture in this chapter has been designed using 864

PEs. Hence, this KPU is incapable of generating more than one AC value per clock cycle

for a 1000 class image-classification models like VGG, GoogleNet and MobileNet, while

computing the FClast layer. Such adverse incapability is also present in the contemporary

implementations of KPU architecture, reported in the literature [75,76,79,83,93]. Therefore,
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rather adopting the parallel approach, this chapter focusses on the resource-shared approach

for designing CU architecture, as shown in Fig. 4.7. It represents the proposed hardware-

efficient micro-architecture of CU for the suggested simplified classification-technique, re-

ferring Algorithm 2. Major submodules of this architecture are data-&-signal router (DSR),

classify unit controller (CUC), CNG and activation searching unit (ACSU). Instead of using

the approximated hardware for complex exponential and divisive operations [87,98,99,102],

the proposed CU architecture has been designed using only comparators and steering logics

(i.e. multiplexers). Suggested micro-architectures of the aforementioned submodules are

comprehensively presented in the remaining portion of this subsection.

4.3.2.1 Micro-architecture for DSR

Based on the discussion from section 4.2, KPU output has been directly fed to CU,

irrespective of the layer being processed. In the proposed CU architecture, the key role

of DSR is to collect both output (AC/Psumo) and validation (valid) signals from PE-array

and KPC of KPU, respectively. Here, if the current layer is FClast layer of CNN model

(i.e. l = FClast) then DSR routes them as ACi activation-value to ACSU through multiplexer

MUX1 and input-valid port of the CUC (referring line number 25 of Algorithm 2), as shown

in Fig. 4.7. It also shows that DSR collects the CN-DC, as the final classification result

from ACSU, and the output validation signal from CUC that are routed through MUX2 and

MUX3, respectively, to GBCU of the inference engine. On the other hand, if l,FClast then it

directly returns the incoming output and validation signals from KPU to GBCU via MUX2

and MUX3, respectively, referring line number 28 of Algorithm 2.

4.3.2.2 CUC and CNG Micro-architectures

The suggested CU architecture operates only when the KPU is processing FClast layer

of CNN model; otherwise, DSR directly returns activation or Psumo to GBCU, and all other

modules of CU remain idle. Here, CUC manages the operations of two modules: CNG and

ACSU by continuously monitoring the layer information, validity of activation from KPU,

and the status of CNG. Such CUC architecture has been designed with a subtractor-based

comparator and a 2:1 multiplexer, as shown in Fig. 4.7. When DSR indicates (using the
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valid signal) that KPU is processing FClast layer by producing a valid activation ACi value

to CU and subsequently, the output of MUX4 in CUC activates the ACSU to process such

ACi value. In parallel, CUC also activates CNG to generate a CN value for the same input

ACi value. Further, comparator of CUC continuously compares the count of CN passed

from CNG to ACSU with the total number of classes (i.e. N) in the CNN model that is

derived from the layer information. Once CUC detects that all N classes have been covered,

it deactivates both ACSU and CNG, as well as resets these modules to prepare them for

subsequent inference task.

While processing the FClast layer, KPU is configured in a way that it computes ACi

values in the same order of classes as in the ImageNet dataset that is used in this chapter.

Thus, as presented in Fig. 4.7, CNG has been designed using a synchronous up-counter,

wherein it linearly generates a CN i for each of the ACi values from FClast layer.

4.3.2.3 ACSU Architecture

Referring the discussion from section 4.2, the computation of classification layer in Al-

gorithm 2 involves searching and finding the ACMax value, from the FClast layer, and CN

value associated with ACMax. Here, the suggested ACSU architecture has been designed to

generate CN value of the detected object in input image. Our ACSU micro-architecture com-

prises of a comparator (realized using subtractor), three 2:1 multiplexers (MUX5, MUX6

and MUX7), and two feedback registers: REG1 and REG2, as shown in Fig. 4.7. To begin

with, both REG1 and REG2 are reset to null value that initializes both ACMax and CN-DC

values to zero, referring line number 1 of Algorithm 2. While KPU architecture is pro-

cessing the FClast layer, if ACSU receives a valid ACi then it is fed to both MUX5 and

comparator. At the same time, CNG produces a class number (CNi) associated with the

ACi and is fed to MUX6, as presented in Fig. 4.7. In addition, the values of ACMaxi−1 , and

CN-DCi−1 from REG1 and REG2 are also fed to other terminals of MUX5 and MUX6, re-

spectively. If the comparator finds current ACi value is higher than the earlier largest value

of activation ACMaxi−1 , then comparator output drives MUX5 and MUX6 to store ACi and

CN i in REG1 and REG2 as the largest found-value of ACMaxi−1 and the class number associ-

ated with largest activation (i.e. CN-DC), respectively. On the other hand, if the comparator
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Fig. 4.7: Proposed micro-architecture of classify unit for the proposed CNN inference engine.

determines new activation value to be smaller than previously found largest activation value

(i.e. ACi<ACMaxi−1), then it retains the previous value of REG1 and REG2, respectively, re-

ferring line numbers 25-26 of Algorithm 2. This process continues until CUC stops ACSU

at the end of comparing all N activation values that are being fed from KPU. Eventually, it

returns the CN associated with the largest activation to the DSR, which produces it as the

classification result (i.e. class number of the detected object CN-DC) and routes to GBCU

of the proposed inference engine. In the aforementioned way, the proposed CU architec-

ture classifies the object from the activation of FClast layer without requiring any complex

exponential and divisive computations.

4.3.3 Hardware Resources and Latency Analysis

FPGA implementation results of the proposed CU architecture and their comparison with

the state-of-the-art works are presented in Table 4.2. As discussed earlier in section 4.2.2,

the complexity of classification layer surges with the number of classes (i.e. N) in the

model. Thus, in the conventional state-of-the-art designs of CU for such classification layer
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Table 4.2: Comparison of Proposed Classify Unit with Relevant State-of-the-Art FPGA based Works.

Work
FPGA Prec.

N
Clock Freq. ΘT Resource LUTs

ᾰ
Board (bit) (MHz) (MIPs) LUTs, FFs +FFs

[99] ZC706 16
10

500 500
128, 97 225 2.22

(1000) (561, 111)z (672) (0.74)z

[102] KC705 16 10 154 154 2229, 224 2453 0.06
[98] ZC706 16 8 500 500 395, 498 893 0.56

[87] Zynq-7 16 10 - -
1746,

3180 -
1386

Prop.
ZCU102

16
1250 1250

59, 49 108
11.57

ZC706 2–1000 389 389 3.6
KC705 381 381 3.53

ᾰ=ΘT /{LUTs + FFs} MIPS/Resource where ΘT : Computation Throughput.
z: Quantifications of Hardware Resources and Throughput Density (ᾰ) for N=1000.
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Fig. 4.8: Comparison analysis plots of (a) hardware resources and (b) latency, consumed by proposed
and state-of-the-art CU architectures for different values of N.

[87, 98, 101, 102], both hardware-complexity and latency gradually increases with the N

value. Hence, most of these reported works have fixed the magnitude of N between 8 to

10. Nevertheless, only [99] has reported the implementation results for N values of 10 and

1000, as listed in Table 4.2. Therefore, comparison plots of the proposed CU architecture

with respect to this state-of-the-art work from [99] has been presented in Fig. 4.8. It shows

the comparison analysis in terms of latency and hardware consumption for different values

of N.

Since the proposed CU architecture from Fig. 4.7 is independent of N, its hardware

resources remain unchanged until N exceeds 2k where k denotes the bit precision. Unlike, for

state-of-the-art work [99], hardware consumption increases from 225 units for N=10 to 672

units for N=1000 (i.e. 2.99× surge), as shown in Fig. 4.8 (a). As a result, throughput density

(i.e. ᾰ) falls from 2.22 to 0.74. Moreover, ᾰ value of the proposed CU architecture is 38.33%
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and 79.44% higher than ᾰ values of [99] for N=10 and N=1000, respectively, as presented

in Table 4.2. However, classification latency of the proposed architecture increases linearly

with N, as shown in Fig. 4.8 (b). Since the ACSU of the proposed CU architecture contains

single comparator, this resource-shared architecture demands a classification latency of N+1

clock cycles and it is still comparable to the latency of N+3 clock cycles, which is delivered

by [99], as shown in Fig. 4.8 (b). Even though, there is such linear dependency of latency

with N, the proposed architecture classifies images at the frame rate of 1.25×106 fps when

N=1000 that is 41670× faster than the conventional video frame-rate of 30 fps.

4.3.4 ASIC Design and Comparison

This part of the thesis presents the comparison of ASIC design (synthesized and post-

layout simulated) results of the proposed classify unit with the state-of-the-art works on

classifier layer. The proposed classify unit architecture has been synthesized and post-layout

simulated using the standard electronics-design-automation (EDA) tools in 28 nm-FDSOI

technology node. Specifically, Verilog HDL-code of the proposed design is functionally

verified, gate-level synthesized, and timing analyzed, using the NCSim EDA-tool from

Cadence. Furthermore, the gate level netlist, obtained from the Genus tool, is imported

in Cadence Innovus EDA-tool, using the library exchange format (LEF) files of 28 nm-

FDSOI technology. In this platform, physical design of the proposed classify-unit netlist

has been carried out, that includes floor-planning, placement, power planning-&-routing,

clock tree synthesis, timing verification and signal routing of the proposed digital-circuit

layout. Hence, the final chip-layout (using 5 metal layers) of the proposed classify unit is

presented in Fig. 4.9. Furthermore, these results and their comparison with the state-of-the-

art implementation results are presented in Table 4.3. It shows that proposed design delivers

a maximum throughput (ΘT ) of 2.5 GIPS, occupying a core area of 236 µm2 with a hardware

efficiency (η̂) of 5.05 GIPS/mw/mm2 that is 12.54× better compared to the state-of-the-art

work from [101]. In addition, the proposed classify unit occupies 24.1× lesser area and con-

sumes 83.9% lower power, compared to [101], when implemented on a same technology

node. Referring Table 4.3, it seems that the proposed classify unit delivers comparatively

lower throughput. However, while operating at the maximum clock frequency of 2.5 GHz,
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Fig. 4.9: Core ASIC layout (with 5 metal layers) of the proposed classify unit in 28 nm-FDSOI
technology node.

the suggested classify unit processes the information at a frame rate of 2.5×106 frames per

second, provided KPU generates single class score in every clock cycle. As discussed earlier

in section 4.3, major bottleneck is due to KPU because an accelerator with 1026 PEs can

only generate one class score per clock cycle (when it is processing the last FC layer).

4.4 Hardware Development and Validation of Proposed CNN-

Inference Engine

Referring to Fig. 4.1, the proposed efficient hardware-architectures of KPU and CU from

section 4.3 are aggregated into a complete CNN inference-engine which is implemented on

FPGA board, and ASIC synthesized as well as post-layout simulated in 28 nm FD-SOI

technology node. Here, fixed-point bit-quantization of Qn.m=16 bit has been used for both

ASIC and FPGA implementations. Table 4.4 presents the quantifications of various design

parameters of the proposed CNN inference-engine in both FPGA and ASIC platforms. On
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Table 4.3: Comparison of Proposed Classify Unit with Relevant State-of-the-Art Works where all
these Implementations are carried out in 28 nm-FDSOI Technology Node with 16 bits of Data Preci-
sion.

Works No. of Classes (N) Clock Frequency (GHz) Throughput ΘT (GIPS) Area (µm2) Total Power (mW) η̂ (GIPS/(mW·mm2))

[98] 8 2.78 22.24 10081 - -
[101] 10 3 30 5676 13.12 402.85
[104] 8 2.8 22.4 15000 51.6 28.94
[87] 10 0.58 - 3818 1.528 -

Proposed 2–1000 2.5 2.5 236 2.1 5.05 k

Hardware Efficiency (η̂) = ΘT /{Total Power × Area} GIPS/(mW·mm2).

Table 4.4: Implementation Results of the Complete Inference Engine in FPGA and ASIC platforms.

ZCU102 FPGA (16 nm FinFET Technology) ASIC (28 nm FD-SOI Technology)
Clock Frequency 360 MHz Clock Frequency 3.85 GHz
NPE 864 NPE 864
ΘT 622.08 GOPS ΘT 6.65 TOPS
LUT Count 97589 Cell Count 9964573
FF Count 27790 Core Area 9.5146 mm2

BRAM Count 64 Core Dimension 3.084×3.085 mm
Total Power 2.99W Total Power 19.748 W
ηPE 720 MOPS/PE ηPE 7.7 GOPS/PE
Energy Efficiency 208.05 GOPs/W Energy Efficiency 336.74 GOPs/W

observing Table 4.4, three major modules of the proposed inference engine: CU, GBCU

and KPU consume 0.086%, 0.693% and 99.219% of the total hardware requirement, re-

spectively. In addition, ASIC die-layout of the proposed inference engine in 28 nm FD-SOI

technology node is shown in Fig. 4.10. Furthermore, this ASIC chip-layout is capable of

delivering a throughput of 6.65 TOPs, as illustrated in Table 4.4. On the other side, perform-

ing computation with the aid of suggested CU architecture (in the FPGA platform) reduces

operation time for classification layer from 2.05 ms in the ARM Cortex A-53 CPU to 0.8

µs in the CU for a N=1000 class CNN-model, at the expense of 0.086% extra hardware.

Such complete implementation of CNN inference engine that specially includes the hard-

ware version of CU, along with KPU which performs all type of computation for the feature

extraction layers of state-of-the-art CNN models, has been first time reported here. Further-

more, the FPGA prototype of such CNN inference engine is used for the object classification

and validated for its correct functionality.
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Fig. 4.10: ASIC chip-layout of the proposed inference engine for objection detection application in
28 nm FD-SOI technology node.

4.4.1 Real-World Test Setup for Functional Validation

As discussed in section 4.2.1, an object classification system comprises of the proposed

CNN inference engine, on/off-chip processor, and DRAM. For implementing such system,

this chapter adopted the Xilinx ZCU102 MPSoC FPGA-board that has a processing sys-

tem (containing an ARM-cortex processor with six cores), a 4.5 GB DDR4 DRAM, and a

user-programmable FPGA fabric inside the same system-on-chip. Here, Fig. 4.11 (a) and

(b) show a schematic representation of the test setup and a snapshot of the actual proto-

type, respectively. Our test setup contains host computer, SD memory card, FPGA-board,

and Keysight-16861A 32-channels logic-analyzer, along with connecting probe (Keysight

N2140A probe), as shown in Fig. 4.11 (b). Here, the host computer is used for devel-

oping the HDL code for suggested hardware architectures, integrating them, synthesizing
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and generating the bit-stream. It is also used for creating necessary software to program

and operate the FPGA board. Furthermore, host computer imports the CNN model and

provides extracted model parameters as well as input image to the FPGA board. For the

aforementioned purposes, host computer has been installed with two Xilinx tools: Vivado

2018.2 and SDK 2018.2, and a Python tool (JupyterLab 3.0.14), as shown schematically in

Fig. 4.11 (a). Using such Vivado tool, an AXI4-stream compatible IP has been developed

from the Verilog HDL code of the proposed inference engine that is interfaced with an IP

of a memory-mapped AXI DMA module. Such module is interfaced with one of the ac-

celerated cache-coherent AXI-HP ports of the processing system to form a high band-width

link between on-chip processor and inference engine for high speed access of on-board

DDR4 DRAM. Configuration bits and status signals of the inference engine are interfaced

using the general purpose AXI-lite ports of the processing system with the aid of memory-

mapped AXI4 registers. Output of the inference engine, implemented on FPGA board, are

also tapped via its peripheral module interface (PMOD) in order to show the classification

result on the screen of logic analyzer.
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ImagesMobileNet V2

     Model

Images

   Model

Paremeters

Intermediate

    Results

Intermediate

    Results

Display

FPGA

Board

Logic

Analyzer

Class

Number

SD Card

Xilinx Tools

Host Computer

JupyterLab

(a)

Host Computer

Xilinx ZCU102
MPSoC

FPGA-Board

Keysight N2140A Probe

32-Channels

Logic-Analyzer

Keysight-16861A

(b)

Fig. 4.11: Real-world test setup of object detection system for functional validation of the proposed
CNN inference engine.

Furthermore, an interrupt mechanism has been implemented to enable communication

between the processing system and the inference engine, allowing the processor to remain

free instead of being halted during inference computations. Referring Fig. 4.11 (a), syn-

thesized bit stream of inference engine is exported to Xilinx SDK 2018.2 tool in order to
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develop necessary software that programs the FPGA board. Simultaneously, a CNN model

has been imported into the Python environment of JupyterLab 3.0.14 tool that optimizes the

model and extracts the model parameters (like weights and biases), and stores them as binary

files (with ‘.bin’ format) in the SD memory, as presented in Fig. 4.11 (a). Additionally, using

the aforementioned Python environment, pixel information of input images are extracted and

stored as binary files in the same SD memory card, as illustrated in Fig. 4.11 (a). Following

that, such SD memory card is removed from the host computer and installed in the FPGA

board. To read these model parameters and input images from the SD memory card in the

FPGA board, we have developed a stand-alone software for the FPGA board in the Xilinx

SDK tool. When executed in the FPGA board, after reading the data from SD memory card,

this stand-alone software loads them in the DDR4 DRAM of FPGA board and also sets the

configuration bits for inference engine through the memory-mapped AXI4 registers, con-

nected to the AXI4-lite ports. In order to visualize the intermediate results while processing

the computation of a CNN model, instructions have been included in this software to store

some of the activations from intermediate layers of model into the SD memory card. One

such example has been shown in Fig. 4.12 where the intermediate results from a CNN model

are also visualized.

Once the software is ready, FPGA board is connected to the host computer. Subse-

quently, PMODs of FPGA board are connected to the channels of Keysight-16861A 32-

channels logic-analyzer, via Keysight N2140A probe, as shown in Fig. 4.11 (b). With the

aid of Xilinx SDK tool in the host computer, FPGA board has been programmed and the

compiled file (with ‘.elf’ format) of software has been executed on one of the hexa cores

of ARM processor in the processing system of ZCU102 MPSoC FPGA-board. Hence, the

final classification results are displayed on the logic analyzer in the form of class number

of the detected class (i.e. CN-DC). Class labels of the class numbers that are detected for

three of the tested images are presented in the rightmost 3×3 matrix in Fig. 4.12, and the

class labels for all one-thousand different class numbers for 1000-class ImageNet models

are provided here [105]. Furthermore, activations of the intermediate layers are stored in

the SD memory card that are later plotted using Python simulation environment in the host

computer, as shown in Fig. 4.12.
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4.4.2 Model Compatibility

As discussed earlier in section 4.3.1.1, the proposed architecture intrinsically supports

1×1, 3×3, 5×5, and 7×7 kernels, as well as all computations for Conv, FC, maxpool, avg-

pool, ReLu, and ReLu6 layers. Therefore, the proposed architecture can process any state-of-

the-art CNN models that use any combination of these kernel sizes and computation layers.

Models that have been used to validate the proposed inference engine include VGG-16,

ResNet, GoogLeNet, MobileNet, and EfficientNet. Following section discusses the detailed

implementation flows for two of the extremely-complex CNN models: MobileNet-V2 and

ResNet50.

4.4.3 Validation and Implementation Results

4.4.3.1 MobileNet-V2 Implementation Flow

In MobileNet-V2 model architecture, except first convolution, last convolution, average

pool and fully-connected layers, the remaining layers use a Block-based approach with or

without residual connections. Here, each Block consists of a 1×1 expansion layer which is

followed by ReLU6, a 3×3 depth-wise separable layer that is also followed by ReLU6, and a

1×1 projection layer. Here, 1×1 expansion layer expands the number of channels to multiple

fold, before feeding the activation to 3×3 depth-wise separable layer that produces activation

with same number of channels and finally, projection layer compresses the number of chan-

nels. Thus, if the CNN inference engine processes one complete layer at a given time then

it requires massive data movement between off-chip DRAM and on-chip inference engine.

Such data movement is comparatively lesser on processing the entire Block together, as the

number of channels for input and output of a Block is significantly smaller. Since, PE-array

size and memory inside the proposed CNN inference engine is limited to fit all computations

and data of a Block of MobileNet V2 model, we have adopted the pipelined approach where

the PE array is segregated into three groups. Now, a group of PEs has been configured to

perform the computation of 1×1 expansion layer and returns the activations to GBCU of

the proposed inference engine (refer Fig. 4.1) that stores them to the line memories of sec-

ond group in the PE-array of KPU. Simultaneously, such second group of PEs performs the
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computation for 3×3 depth-wise separable layer, while the third group of PEs carries out

computation for 1×1 projection layer. Finally, GBCU stores the activations of that Block,

back to DRAM when all the line memories are occupied. As a result, it significantly reduces

the number of off-chip data movements. The number of PEs allotted to each of these groups

are decided according to the ratio of their computational load. However, such ratio between

these groups varies from Block to Block. Thus, we have also included additional instruc-

tions in software to set the configuration bits for dynamically allotting different number of

PEs to these groups, according to the variations of computation ratios in different Blocks.

To validate the functionality of the proposed CNN inference-engine, several images have

been fed into the FPGA prototype of an object classification system that uses the proposed

CNN inference engine. Three of such input images and their classification results are pre-

sented in Fig. 4.12 (a). As discussed in section 4.4.1, the final classification result has been

displayed on the keysight logic analyzer in the form of CN-DC, while activations of the in-

termediate layers are stored in the SD memory card. However, for better clarity, we have

presented detailed view of these layer-wise results for one image in Fig. 4.12 (a) , and the

snapshot of its final classification result on the screen of logic analyzer in Fig. 4.11. Nev-

ertheless, final classification result for all three images are included in Fig. 4.12 (a). As

discussed in section 4.4.3.1, MobileNet V2 model uses Blocks to combine 1×1 expansion

layer, 3×3 depth-wise separable layer, and 1×1 projection layer. Therefore, Fig. 4.12 (a)

displays the output of only projection layer, as the final output of a Block, rather than dis-

playing for each layer inside the Block. Here, dimension of each channel of the output

activation for Layer-0, Block-0, Block-1, Block-2, and Block-3 are 112×112, 112×112,

56×56, 56×56 and 56×56, respectively. Thus, these activations are too large to visualize as

a matrix in Fig. 4.12 (a). Therefore, we plotted them as a single-channel gray-scale images.

Furthermore, each convolution and expansion layer use ReLU6 at the output to clip the out-

put values below the numerical value of 6. Thereby, we used a scaling factor of 42.5 in the

Python environment to scale up the values before plotting them as grey-scale pixels. Nev-

ertheless, each output channel of Block-13 to Block-16 and the last convolution layer is a

7×7 matrix. Since the dimensions of these channels are small enough to visualize as matrix,

Fig. 4.12 (a) displays their values in the form of a 7×7 matrix. Here, each value in the matrix
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formed by a channel of the output activation denotes the extracted score for the presence of

a feature on the input image that has been searched by a fitter associated with that feature.

The activations of average-pool and fully-connected layers are one dimensional array whose

preview is presented in Fig. 4.12 (a). Therefore, output of the classification layer is a single

value which is the class number of the object that has been detected by the proposed CNN

inference-engine from the input image. Hence, the human readable labels that are associated

with these class numbers are provided with the ImageNet class-1000 dataset [105].

4.4.3.2 ResNet50 Implementation Flow

Except the first convolution layer and the last FC-layer, remaining computations of the

ResNet50 model is distributed over 16 different computational Blocks, with each Block

having a residual connection between its input and output. While majority of the residual

connections simply add the input of a Block with its output. Some residual connections also

have a convolution layer embedded in it (like Blocks 1, 4, 8 and 14). Each of these 16 com-

putational Blocks is made of a 1×1 convolution layer, followed by a 3×3 convolution layer,

which is followed by another 1×1 convolution layer. Computation of each of the convolu-

tion layers (both inside a Block, outside a Block, and in residual connections) is followed by

a normalization and a ReLU operation. While computation of Conv, FC, ReLU and maxpool

operations are handled by dedicated hardware Blocks in the PE array, offset subtraction for

the normalization operation here has been achieved by supplying 2’s complement form of

the offset values through B, Psumi port of the PE array in Fig. 4.3. Here, scaling opera-

tion is performed using the bit shifting approach, similar to the way of average pooling, as

discussed in section 4.2.2.

When processing a Block, significant portion of the output feature map (up to 2.25 Mb) is

reused within PE array for the subsequent layer. Towards the end of computation of a Block,

it adds the output feature map with the output of residual connection. Since the residual

connections require whole output feature map of the previous Block/layer, and the output of

residual connection is used only after the computation of eight different computations in a

Block. Therefore, we copy the final output feature-map of a Block to outside the PE array

and hold it until we need to send them back to the PE array for residual additions. Therefore,
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in Fig. 4.12 (b), output of a complete Block after the residual addition has been presented

rather than showing the output of each layer inside these Blocks.

In the ResNet50 model, dimension of each channel of the output feature map is 112×112

for layer 1. It is 55×55 for Blocks 1−3, 28×28 for Blocks 4−7, 14×14 for Blocks 8−13, and

7×7 for Blocks 14−16. Thus, some channels of the output feature map for layer 1 to Block

16, as a grayscale image, has been shown in Fig. 4.12 (b). Average pool after Block 16

reduces the 7×7 dimension to 1×1. As a result, both input and output feature maps of the FC

layer are one dimensional (1D) arrays. A preview of the same is presented in Fig. 4.12 (b).

Finally, output of the classification layer is a single value, which is the class number of the

object that has been detected by the proposed CNN inference engine from the input image.

Human readable labels that are associated with these class numbers are provided with the

ImageNet class-1000 dataset [105]. For both models, Fig. 4.12 shows that the detected class

numbers of three images along with their object labels. These class numbers produced by

the proposed inference engine correctly depicts the object present in the input image, as

depicted in Fig. 4.12.

4.5 Summary

This chapter presented the development of a complete CNN inference engine/accelerator

that supports all major computational layers typically found in state-of-the-art models, in-

cluding convolution, activation, pooling, and classification operations. While chapters 2 and

3 were restricted to convolutional computations, chapter 2 introduced an adaptive convo-

lution mapping technique for efficient resource utilization, and chapter 3 focused on high-

throughput and energy-efficient architectures for convolution layers. These designs, though

effective, were limited in scope to convolution operations and refrained from supporting

the full computational pipeline of CNN models. This chapter addressed this limitation

by proposing an enhanced and optimized hardware design that enables efficient processing

across all components of CNN inference.

The advantage of the proposed architecture lies in its ability to extend local data reuse

beyond convolutional layers. Prior accelerators primarily exploited reuse in convolution,
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leaving pooling, normalization, activation, and fully connected layers to repeatedly access

off-chip memory. The proposed design incorporates a reuse-aware scheduling strategy that

allows intermediate results from all layers to be retained and reused locally, thereby reducing

memory bandwidth pressure and energy consumption. This holistic reuse approach, com-

bined with lightweight control overhead, explains the significant gains in throughput and

efficiency while ensuring negligible accuracy loss compared to FP32 baselines.

Though chapters 2-4 were tailored exclusively for inference tasks, a major objective of

the next chapter would be to extend our contributions by addressing the training, with a

particular focus on efficient reuse of local data in back propagation. This will lead to a

unified accelerator framework capable of efficiently handling both inference and training

workloads.
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Chapter 5

Unified-CNN Accelerator for Training

and Inference

5.1 Introduction

As discussed extensively in chapter 1–4, highly-reliable accuracy of CNN models has

paved its way to various AI applications. These CNN models work in two different phases:

firstly the training phase where these models learn various statistical parameters which are

required for identifying specific object(s) in the input data. In the second phase of inference,

such trained model uses the learned parameters from the training process to identify objects

in previously unseen data. However, both of these phases require massive and sophisticated

computations. Specially the training phase, as it needs the model to perform forward pass

on millions of input data, determine the loss, back propagate the gradients in order to learn

different statistical features and update them. In addition, it must perform several epochs

of such forward and backward passes to achieve the desired level of accuracy. Due to the

requirement of such gigantic and sophisticated computations, majority of the CNN models

are primarily being trained on extremely power-hungry servers.

On the other side, it is necessary to have high-throughput, hardware-efficient and energy-

efficient training accelerators to achieve high-speed training at the edge devices while re-

ducing the carbon footprint of such AI applications (for both training and inference). While

many applications rely on cloud-based servers for both training and inference. As discussed
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in chapter 2-4, utilizing multiple PEs in parallel allows the CNN accelerator to achieve sig-

nificant amount of improvement in speed for such AI applications. However, this also leads

to increased energy consumption, which remains a critical challenge from an implementa-

tion perspective. As discussed in chapters 3 and 4, substantial portion of the total power

consumption in CNN computation stems from the frequent and large-scale data transfers

between the off-chip DRAM and the processing unit. Notably, such data movement con-

sumes more power than the actual computational operations [74]. Since the data movement

accounts for the majority of power consumption, previous chapters focused on maximizing

energy efficiency for CNN inference by exploiting full-model data reuse across all operation.

Similarly, numerous works from literature have also reported various hardware architectures

that are primarily aimed at improving the throughput and energy efficiency of CNN mod-

els [62, 74, 90, 94, 95, 97]. However, most of the existing approaches focus solely on the

forward-pass inference, limiting their applicability. Nevertheless, it is crucial to develop the

CNN-accelerator hardware architecture that efficiently exploits the local data reuse for both

forward and backward passes during the training phase.

Even though the primary focus on the literature has been around accelerating the infer-

ence operation, attempts have been made to design energy-efficient training accelerators.

For example, [106] presented a detailed performance analysis of convolutional and non-

convolutional operations in CNN training on ASIC accelerators. Furthermore, [107] intro-

duced on-device CNN training with energy-efficient gradient computations using a grouped

PE architecture and masking for activation storage reduction. In addition, [108] introduced a

balanced resource utilization between convolutional and fully connected layers, to improve

training efficiency. The work from [109] implemented a shared MAC unit to improve energy

efficiency of CNN training process. However, such work excluded the full exploitation of

local data reuse to enhance energy efficiency. On the other hand, a recent work from [110]

presented a new architecture that interleaved gradients of both weights and activations for

MLP models to enhance the energy efficiency. This work has been extended in [111] where

it supports the training of CNN models. However, these works did not explore the forward

pass, rather they are limited to gradient computation for backward pass only.

In order to bridge this research gap that circumvents the tradeoff challenge between
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energy efficiency and achievable throughput of CNN accelerator, this chapter presents a

unified-CNN accelerator that maximizes local data reuse in both forward and backward

passes. By efficiently managing data movement, the proposed architecture minimizes inter-

ruptions and ensures to sustain high-throughput. A dedicated gradient compute unit (GCU)

optimizes backward-pass computations by efficiently mapping large kernels and reusing loss

values to enhance gradient filter weight (G.W) and activation gradient (G.I) computations,

reducing redundancy and improving efficiency. The accelerator is implemented on an FPGA

platform and validated using standard CNN models in a real-world test setup, demonstrating

its feasibility and correctness. Key contributions of this chapter are summarized as follows:

• Unified-CNN Accelerator with Maximal Data Reuse: Proposes a novel accelerator

that unifies both forward and backward passes of CNN models while maximizing

local data reuse. This reduces redundant memory access and enhances computational

efficiency.

• Optimized Backward Pass with Efficient Gradient Computation: Introduces a

dedicated GCU architecture to efficiently handle large kernel computations in the

backward pass. Additionally, it enhances the computation of G.W and G.I by ef-

fectively reusing loss values.

• Hardware Implementation and Real-world Validation: Demonstrates the practi-

cality of the proposed accelerator through FPGA-based implementation. The hard-

ware prototype is functionally verified using standard CNN models in a real-world

test setup to assess performance and correctness.

This chapter is structured as follows. Section 5.2 covers the mathematical foundations

of CNN inference and training, along with a detailed discussion of the research challenges

addressed in this chapter. Thereafter, section 5.3 provides an overview of the system-level

design, proposed technique, and novel VLSI architectures for the unified-CNN accelerator.

Following that, section 5.4 presents the implementation results, discussions, comparisons,

and validation. Finally, section 5.5 summarizes the chapter.
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5.2 Mathematical Prerequisite and Research Problem

5.2.1 Mathematical Backgrounds of CNN Inference and Training

As discussed extensively in chapter 1, the primary computation carried out during the

forward pass (inference phase) of a CNN models is the feature search, wherein the presence

of millions to several billions of trained features are searched in the input data, over different

model layers. Subsequently, such feature scores are used for identifying particular object in

the input data. Computation of such feature search operation is conventionally referred as

Conv operation and it is mathematically expressed as

ACx,y,z,δ =

α∑
a=1

β∑
b=1

γ∑
c=1

(
Wa,b,c,δ×Ixx,yy,zz

)
+Bδ. (5.1)

Along with the forward pass, another major computation involved in the training phase

is the calculation of gradients for filter weights (G.W), gradients for bias values (G.B), and

gradients for input feature map (G.I) of each layer. Computations of G.W and G.B of all

filter weights and biases are necessary to update them during each pass. Since input feature

map (I) is the bridge between two subsequent layers, computation of G.I for each activation

are also necessary to back propagate the loss, till the first layer of CNN model.

Computation of the gradients of such input feature map can be expressed as

G.Ix,y,z =

α∑
a=1

β∑
b=1

γ∑
c=1

(
Wα-a,β-b,γ-c,δ×Lxx,yy,zz

)
. (5.2)

Similarly, computation of the gradient of a filter bias value can be expressed as

G.Bδ =

M̂∑
x=1

N̂∑
y=1

Ô∑
z=1

Lx,y,z,δ. (5.3)

Likewise, computation of the gradients of filter weights can be expressed as

G.Wα,β,γ,δ =

M̂∑
x=1

N̂∑
y=1

(
Lx,y,γ,δ×Ix+α-1,y+β-1,γ,δ

)
(5.4)
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where L is the loss matrix corresponding to a 3D filter for the current layer. Here, M̂, N̂

and Ô are the sizes of three dimensions of such 3D loss matrix (L). For the last layer of the

model, L is calculated as the difference between the outcome of model and the expected (ac-

tual/correct) output of the last layer. Unlike, for the other layers, it is the G.I of subsequent

layer. Eventually, weights and bias values are updated using (5.5) and (5.6), respectively, as

shown below.

Wα,β,γ,δ = Wα,β,γ,δ − L.R ×G.Wα,β,γ,δ, (5.5)

Bδ = Bδ − L.R ×G.Bδ (5.6)

where L.R stands for the learning rate of the training process. Following that, the gradients

of input feature map G.I for each layer is back propagated to previous layer as the loss matrix

L. Henceforth, computations based on these equations continue for each layer until all filter

weights and bias values of each of the layers are updated.

5.2.2 Research Problem

Referring mathematical equations (5.1), (5.2) and (5.4), the computation of forward pass

as well as calculations of both G.I and G.W are analogous. However, the CNN accelerators

designed to process fixed set of smaller kernel sizes face severe inefficiency to map the

computation of gradient calculations [75, 76, 86]. Specially, the most important one is com-

putation of G.W, due to huge variation in the dimensions of I and L for different layers. For

example, in CNN model like VGG-16 [34], dimensions of both I and L are 114×114×64

and 112×112×128 for layer-2, 58×58×128 and 56×56×256 for layer-5, 16×16×512 and

14×14×512 for layer-11, respectively. This is the trend for majority of CNN models. There-

fore, conventional CNN accelerators that are designed for inference with fixed or small range

of kernel dimensions are immensely inefficient to compute the gradients for filter weights

(i.e. G.W).

Furthermore, as discussed extensively in chapters 2-4, energy consumption in the com-
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putation of such CNN models is profoundly contributed by the data movement, several local

reuse techniques like weight stationary, output stationary and row stationary approaches

have been used to reduce a number of off-chip accesses, and maximize the local reuse

[63,74]. However, each of these techniques requires extra hardware for complex routing and

additional memory blocks. Moreover, these architectures are limited to only inference with

a smaller dimension of kernels. To circumvent aforementioned issues, this chapter presents

a new unified architecture of CNN accelerator extending the line stationary approach from

chapter 3 and 4 to maximizes the reuse of local data during (i) forward pass of both inference

and training, and (ii) backward pass of training. Furthermore, the proposed architecture of

unified-CNN accelerator is capable of efficiently handling the mapping of large kernels for

the computation of G.W.

5.3 Proposed Technique and Hardware Architectures

5.3.1 System Model

A system-level overview of the proposed CNN engine for inference and training has

been presented in Fig. 5.1. Similar to the system models of chapter 3 & 4, this also consists

of three major blocks: off-chip DRAM, off/on-chip software processor, and the suggested

unified-CNN accelerator. Similar to chapter 4, this accelerator also has been interfaced

with on/off-chip software processor via high-speed links like CXL or PCle or AXI buses

for transferring the data between CNN-accelerator and DRAM, as shown in Fig. 5.1. In

this system, during the inference/forward pass, the software processor acts like a master

controller that loads the model parameters from off-chip storage, takes the input data from

external sources and stores them in DRAM. It also provides the necessary configuration

signals to the unified-CNN accelerator. In the similar way, during the training/backward

pass, such software processor loads the training data from external non-volatile memory

to DRAM in batch-wise fashion. It also generates necessary configuration signals to the

unified-CNN accelerator for other vital operations.

In this CNN engine, major role of the proposed unified CNN-accelerator is to perform
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Fig. 5.1: Overall system-level design of the proposed CNN engine for inference and training of CNN
models.

dedicated mathematical computations for the feature search and the gradient calculation

during inference and training processes, respectively. Since the CNN algorithm can reuse a

significant portion of data, our CNN accelerator has been designed with two major blocks:

a GBCU and a compute tile (CT), as shown in Fig. 5.1. Since the size of kernels varies

over a wide range during the inference and training processes, the CT architecture has been

designed with multiple clusters of KPU, as presented in Fig. 5.1. Each KPU contains a PE

array, multiple line memories, and KPC. The software processor manages the operation of

GBCU which in turn manages the flow of data like I, W, B, AC, Psum, G.W and G.I. Fur-

thermore, this processor also manages every other configuration and control signals between

DRAM and CT, as well as buffers some amount of data within the buffer memory of GBCU.

To begin with the computations for inference or training pass, software processor provides

layer information and data to the GBCU. Following that, GBCU configures CT according

to the layer information and the kernel size. Depending on the kernel size, GBCU either

maps it into one cluster of KPU, thus processing multiple kernels in parallel using all of the

different clusters of KPU, or splits the computation of large kernel among multiple KPUs.

Finally, GBCU either stores the computed AC or G within its buffer memory if they can be
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reused soon; otherwise, transfers them to DRAM .

5.3.2 Proposed Technique

The proposed technique for unified CNN-accelerator has been presented in Algorithm 3.

In addition, we have empirically determined that the overall efficiency of KPU degrades for

very large size of PE array. A detailed discussion on the impact of varying size of PE array

on the efficiency of KPU has been presented in section 5.3.4. Therefore, number of PEs

in such KPUs are not sufficient to accommodate the large kernels during the calculation of

G.W in some of the initial layers of large-input CNN models. Hence, instead of mapping

the computation of G.W in the KPU in one-go for parallel processing, this chapter combines

the computations of both G.W and G.I in the KPU. Consequently, this exploits the reuse of

L data for the calculations of both (5.2) and (5.4), as well as avoids hardware inefficiency.

A comprehensive discussion on the architectural design of such approach for computing

G.W and G.I has been carried out in section 5.3.3.4. However, for the substantial filter ker-

nels in (5.1) and (5.2), their computations are segregated and mapped on multiple KPUs,

referring line numbers 2-5 of Algorithm 3. Here, multiple smaller kernels are mapped in

a single KPU whenever possible, referring line numbers 6-7 of Algorithm-3. On the other

side, line numbers 9-43 of Algorithm-3 brings the uninterrupted processing technique from

Algorithm 1 and 2, enhancing the computational throughput ΘT of KPU by minimizing the

interruption due to data fetching. The key idea in such uninterrupted processing is to simul-

taneously perform both fetching Fi and computation Pi events, rather than sequentially. A

comparative depiction of such processing timeline with respect to conventional architectures

has been provided earlier in Fig. 3.2 of Chapter 3.

5.3.3 Proposed Hardware Architectures

5.3.3.1 Energy-Efficient Micro-Architecture of KPU

As discussed earlier in section 5.3.1 of this chapter, CT of the unified CNN accelerator

comprises of multiple KPU clusters. These clusters and GBCU are organized in a mesh net-

work wherein each KPU receives the Psum from other KPU in CT, as configured by GBCU.
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Algorithm 3 Proposed Implementation-Friendly Algorithm for the Unified CNN-
Accelerator Design

1: Determine M and N . M and N denote the number of PEs in a KPU and number of
elements in the kernel which is to be processed

2: if N>M then
3: Find κ: κ×M≥N & (κ-1)×M<N
4: Split the kernel to make κ smaller kernels with number of element ≤M
5: Map the computation of the kernel to κ numbers of KPUs.
6: else
7: Map τ kernels in a KPU : τ×N≤M & (τ+1)N>M.
8: for computation in each KPU do
9: Determine n and r; . n, and r are number of iterations to be performed and the least

number of data that need to be fetched to begin the computation, respectively.
10: Initialize: i=1, j=0; . i, j record the count of completed iteration, and the count of

fetched data, respectively.
11: Begin Fi=1; . Start pre-fetching of data for itri=1.
12: while i ≤ n do
13: if j ≤ r then . Adequate data has not been fetched yet.
14: Continue Fi=1; . Fetching continues for itri=1.
15: j = j+1; . Count the number of data pre-fetched for itri=1.
16: Return to Step 13; . Fetching continues for itri=1.
17: else . Adequate data fetched to begin computation.
18: Process Pi; . Compute ACi.
19: if Fi is not complete then
20: Continue Fi;
21: else
22: if i < n then
23: Begin Fi+1; . Start pre-fetching data for itri+1.
24: else
25: set j = 0
26: Begin Fi=0; . Start pre-fetching data for itri=0.
27: if Pi is Complete then
28: if i = n then
29: Set i = 0;
30: Return to Step 9. . Start processing the next layer.
31: else
32: Set i = i + 1
33: Return to Step 18. . Start computation for itri+1.
34: else
35: Return to Step 18 . Continue Pi.
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This section presents the proposed KPU architecture for unified-CNN accelerator based on

Algorithm 3. As mentioned earlier in section 5.2.2, CNN accelerator must minimize the

number of off-chip accesses and maximize the re-use of on-chip local data to enhance the

energy efficiency. In addition, such accelerators need to avoid interruptions in the processing

due to data movement in order to achieve high-speed computations. Moreover, an efficient

unified-CNN accelerator shall maintain these features during both, inference and training.

Referring (5.1) and (5.2) for a CNN model, dimension of I during the forward pass (for both

inference and training) as well as L are identical. They also perform Conv operation with

same filters of same dimension and depth, both during feature search in forward pass, and

computation of G.I during backward pass, except W are 180° rotated for the computation

of G.I during backward pass. Furthermore, during the backward pass from (5.4), same L

needs to perform Conv operation with I that had been used earlier during the forward pass to

calculate G.W. While reusing W and I values during forward pass, we need to exploit resuse

of the same L value for the computation of both (5.2) and (5.4) to achieve maximum reuse

of local data during backward pass. To cater this notion, the proposed KPU architecture has

been designed using an approach where during the forward pass, I and W values remain

stationary inside the KPU, and Psum is shared among multiple KPUs, as shown in Fig. 5.2.

Similarly, during the backward pass, L and W values remain stationary inside the KPU, and

Psum is shared among multiple KPUs.

Similar to chapter 4, proposed KPU also uses a specially adapted m×n-array of PEs,

along with m number of line memories to store I or L value and provide the same to PEs,

while facilitating its local reuse. To achieve these features, suggested KPU uses a special-

ized routing network managed by the KPC, as presented in Fig. 5.2. Such routing network

consists of n vertical data-buses. Each of them are connected to Ix ports of m PEs in a

column and one of the o ports in same column of m line memories, as shown in Fig. 5.2.

As a result, each line memory at any moment can produce n data, making m×n parallel data

available to n vertical buses for Ix ports of PEs. Therefore, whenever KPC configures via the

Ln.S.C, any PE in the KPU can receive data from any line-memory in the KPU, as illustrated

in Fig. 5.2. Thus, KPU achieves vertical strides using these Ln.S.C bits in association with

the Nxt.S signal. Comprehensive explanation of these routing processes using Ln.S.C bit has
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been presented further in section 5.3.3.2, while discussing the PE architecture. Furthermore,

KPC carries out the horizontal stride with the aid of Nxt.S, RA-n, and RA-r signals. More

details about these signals have been covered in section 5.3.3.3.

During the backward pass, to reuse the elements of L matrix for the calculation of G.W,

gradient calculate unit (GCU) for the activation has been incorporated in the proposed KPU

architecture, as shown in Fig. 5.2. It shows that by using Bus for L port in row-wise man-

ner, the same L values used by PEs are also simultaneously fed to GCU to perform Conv

operation with I data to calculate G.W. Here, KPC manages the operation of GCU using

three control signals: horizontal loss selector (Ls.Sh), vertical loss selector (Ls.Sv), and Nxt.S

signals. A detailed discussion on the reuse of L in the computation of Psum for G.W in the

GCU has been presented in section 5.3.3.4.

5.3.3.2 Micro-architecture of PE

Since the primary focus of this KPU is performing feature search using (5.1) and gradient

calculation using (5.2) and (5.4), hence, the proposed PE architecture has been designed

using a MAC unit, a kernel memory (KM), two address-generation units: AGU1 and AGU2

for write and read operations, respectively, an input selection switch (ISS), and an IDM

module, as shown in Fig. 5.3. Based on earlier discussion in section 5.3.3, both I or L and W

values are kept stationary within the suggested KPU architecture. To cater this, suggested

architecture of PE has been designed to hold the kernel values stationary within its KM for

the whole iteration; whereas, I or L (loss value L during backward pass) is fed from the line

memories. Since CNN models apply multiple kernels in each I or L value, KM stores up-to

z kernel-values (W). Note that KPC manages the operation of PEs using the write (Wr) and

read (Rr) signals, as shown in Fig. 5.2 and 5.3. By setting the value of Wr = high, whenever

a PE is selected to write the incoming W values, AGU1 sequentially generates the write

locations for such W values as well as it provides the count of W values stored in KM to

IDM module, as shown in Fig. 5.3. Similarly, whenever PE is selected for MAC operation

by setting Rr = high, AGU2 generates one read address in every clock cycle for KM to

produce kernel element for the MAC unit. Here, the operation of AGU2 has been locally

supervised by IDM module, which stops AGU2 from generating new W values from KM to
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MAC unit, until adequate (i.e. r) number of kernel elements are stored in KM.

WA

WE

Din

Str.

Req.

W

 Kernel

Memory

Dout

RE

RA

= =

R

E

G

clkAGU2

rst

2b

1b

1b

P
E

M
ic

ro
-A

rc
h

it
ec

tu
re

k

/A/G

Psumo

IDM

R

E

G

clkAGU1

{r, }

{r
,

}
r

{W
r,

 R
r}

k

Ln.

S.C

REG

k
enb

1
I

m

clk

Ix port

mI

1

{I
2

2

 iB, Psum

= =

rst

MAC

R

E

G

clk

C1

C2

ISS

L
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Furthermore, Ln.S.C signal from KPC also manages the operation of ISS to select I

or L from one of the m different line memories. Every time ISS selects an I or L value, it

remains stationary in PE for δ clock cycles, whereas AGU1 generates δ number of W values.

Subsequently, after every δ clock cycles, AGU2 also generates a stride request (i.e. Str.Req)

signal requesting KPC to provide next value of I or L from line memory for a horizontal or

vertical stride, as depicted in Fig 5.2. In addition, Str.Req signal activates the output register

of ISS to store the newly incoming values of I or L for the next δ clock cycles and resets

the read location of KM. Thus, PE applies δ number of kernels on each element of input I

or L to calculate output activation (AC) or G.I, respectively, using (5.1) and (5.2). Till this

instant, the operation of PE is identical for both forward and backward passes. However,

as discussed in section 5.3.3.1, L values used by the PEs in KPU are also fed to GCU to be

reused for the computation of G.W. Therefore, our PE shares currently selected value of L

from the ISS through L port, as shown in Fig. 5.3.
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5.3.3.3 Micro-architecture of Line Memory

Note that the operation of line memory is identical for both forward and backward

passes. Nonetheless, during the forward pass, input feature map data I, and during back-

ward pass, loss matrix data L is fed through I port of the line memory. Thus holding them

throughout α−s numbers of vertical strides. Such architecture of the line memory has been

extensively discussed in section 4.3.1.2 of chapter 4. Hence, it is also used in the design of

the unified CNN accelerator presented in this chapter.

5.3.3.4 Micro-architecture of Gradient Calculate Unit

Dimensions of G.I and I in (5.2) and (5.4), respectively, are identical for a Conv layer.

Thus, after performing necessary padding, number of horizontal strides (say ξ) in (5.2) is

equal to the number of horizontal Psum required for each value of G.W in (5.4). Similarly,

number of vertical strides in (5.2) is equal to the number of such row of Psum required

for each value of G.W in (5.4). However, computing G.W for a filter with width (α) and

height (β), it requires α copies of similar horizontal Psum, with L shifted by s between two

consecutive such batch of ξ number of horizontal Psum. Same applies for the vertical Psum

as well. Hence, during horizontal strides of (5.4), each value of I needs to be multiplied

with α number of L values from a row of the loss matrix L. This must be repeated for β

number of subsequent (separated by s) rows of L for β number of vertical strides. Therefore,

the proposed GCU architecture has been designed with m number of horizontal gradient-

compute units (HGUs), as shown in Fig. 5.4 (a). Furthermore, the micro-architecture of

HGU has been presented in Fig. 5.4 (b). Since each value of I needs to be used for β number

of rows of L, thus each of the m number of HGU simultaneously receives the same I value.

However, depending on the value of β, KPC activates β number of such HGUs, using Ls.Sv

signal, as illustrated in Fig. 5.2.

The suggested micro-architecture of HGU consists of one multiplier, n accumulators

(ACCs), one input buffer (i.e. REG), one n:1 multiplexer, and an address decoder. As

mentioned in section 5.3.3.2, PEs apply δ number of filter kernels in each value of I or L.

Thus, each such value remains in REG of ISS (in PE architecture of Fig. 5.3) for δ clock
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cycles. Therefore, when enabled by Ls.Sv signal, every time HGU receives a new value of

I, it buffers the same in REG for δ clock cycles until next horizontal stride (when Nxt.S →

high). Since each value of I needs to be multiplied with α number of L values from a row

of L matrix, each of the HGUs receives n number of L values through L port, available in

REG of the ISS module of each PE in a row, as shown in Fig. 5.2 and Fig. 5.4. Though

each of the n number of L values are available at the L port of the HGU, it takes one of the

L values in every clock cycle (decided by Ls.Sh signal) and multiplies this value with the I

value stored in REG. Subsequently, the results of such multiplication are fed to one of the n

ACCs that is activated by the decoded address from Ls.Sh, instead of rushing and processing

all of them together. The reason being, contents of both L port and REG of HGU will remain

unchanged for δ clock cycles (until Nxt.S→ high again), and conventionally α<δ. Further,

each ACC continuously adds and accumulates every Psum that it receives until the end of all

ξ×ξ vertical and horizontal strides for a single loss matrix. Eventually, producing α columns

and β rows of the α×β sized G.W. In this way, such loss (L) matrix has been simultaneously

used by both (5.2) and (5.4) without being fetched from the off-chip memory twice.
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5.3.4 Effect of PE-array Size on Efficiency

In the proposed KPU architecture, factors that depend on the size of m and n of the

m×n PE-array are (i) complexity of ISS inside each PE, (ii) complexity of the KPU routing

network, (iii) time required for the data movement between line memory and PE, and (iv)

overall complexity of the KPC module. The reason being, larger is the size of m, more

number of I values will be placed in each vertical bus for the Ix port. Thus, the size of such

vertical bus must be wider for such Ix port. Therefore, complexity of ISS surges to select

the data from a larger bus. Similarly, the distance between PE and line-memory, placed
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farthest at the opposite direction, also increases. Due to such increase in distance as well

as complexity of ISS, the speed of data movement enhances between line-memory and PE.

Furthermore, with the increase in the size of n, complexities of Data Router, Output Buffer,

and data storage (i.e. K×A Sized Memory) of the line-memory architecture increases, re-

ferring Fig. 4.5 from earlier chapter 4. As a result, the speed of data movement between

line-memory and PE is adversely impacted. On the other side, throughput (ΘT ) is directly

proportional to the number of PEs in KPU (NPE), i.e. ΘT ∝ NPE where NPE = m×n. There-

fore, this is an optimization problem that trades the size of m×n with achievable throughput,

hardware complexity, and data-movement latency.

5.4 Hardware Implementation, Validation and Compari-

son

Note that the proposed unified-CNN accelerator is independent of bit precision. How-

ever, back-propagation and gradient-descent processes use very small magnitudes of gradi-

ents. Thereby, the suggested accelerator has been implemented using BF16 bit format for

achieving higher dynamic range with optimum hardware efficiency [112]. In this section,

we present the hardware implementation of our unified-CNN accelerator and its validation

with the aid of real-world test setup. Eventually, the implementation results are compared

with the reported implementations in literature.

5.4.1 Test Setup for Hardware Validation

Schematic representation of the test setup for validating the hardware prototype of CNN

engine that includes the proposed unified-CNN accelerator is presented in Fig. 5.5 (a). As

discussed earlier in section 5.3.1, a software processor has been used for loading and stor-

ing the data between DRAM and CNN-accelerator. In addition, such processor provides

configuration signals to the unified-CNN accelerator for other vital operations. For validat-

ing the functionality of suggested unified-CNN accelerator, we have used ZCU102 Zynq-

UltraScale+ MPSoC FPGA-board which has an on-chip hexa-core ARM processor along
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with the programmable FPGA fabric in the same SoC, and a large on-board DDR4 DRAM.

Furthermore, other components used in this test setup are (i) a host computer, (ii) a memory

card (SDHC), (iii) a 32-channels logic-analyzer (Keysight-16861A), and (iv) a connecting

probe (Keysight N2140A), as presented in Fig. 5.5. Here, the snapshots of the real-world test

setups for validating inference and training operations are shown in Fig. 5.5 (b). Rest of the

interface of this test setup is similar to the one presented in section 4.4.1 of chapter 4. Here,

only the software program, step by step process and the type of data differs from chapter 4.

(a)

(b)

Fig. 5.6: Measured outputs from the FPGA prototype of the proposed unified-CNN accelerator for
(a) inference and (b) training processes.

In order to perform inference with our CNN engine with the aid of Python tool in the host

computer, a CNN model has been imported, optimized, and its parameters (like weights and

biases) are extracted and stored in the memory card. Input images are also saved as binary

files in this memory card which is then inserted in the FPGA board. To access these stored

model parameters as well as input images and configure the system, we have developed

a stand-alone software application using the Xilinx SDK tool. On the FPGA board, this
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software reads the data from memory card and transfers the same to DDR4 DRAM, and

it also sets the configuration bits according to the layer specifications. Towards the end of

inference process, results of the classification are displayed on screen of logic analyzer in the

form of class ID of the detected object, as shown in Fig. 5.6 (a). For better understanding,

layer-wise processing of images are shown in Fig. 5.7 and its detailed discussion for the

implementation of VGG16 model for the object recognition is covered in section 5.4.2.

On the other hand, to perform training with the CNN engine, training images from a

dataset are imported using Python tool in the host computer. They are organized batch-wise

and stored in the memory card as binary files, along with their labels. Description of the

model which is to be trained is also exported in the host computer and stored in the memory

card, which is then inserted in the FPGA board. Measured outputs (displayed on the logic

analyzer screen) of the training process that are generated by the proposed unified-CNN ac-

celerator - implemented on the FPGA platform - has been presented in Fig. 5.6 (b). Rest of

the data flow has been managed by the software that is executed by on-chip software proces-

sor of the FPGA board. Here, Fig. 5.8 (a) shows the schematic representation of a custom

made CNN model that has been used in this chapter to validate the training functionality of

the proposed unified-CNN accelerator. Furthermore, Fig. 5.8 (b) shows the layer-wise pro-

cessing for gradient calculation during such training process. A comprehensive discussion

regarding the implementation of training for the aforementioned model has been presented

in section 5.4.3.

Fig. 5.7: Schematic representations of layer-wise processing of images in the proposed unified-CNN
accelerator during the forward pass of inference using VGG-16 CNN-model.
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5.4.2 Inference Implementation for Hardware Validation

To demonstrate inference capability of the proposed unified-CNN accelerator, inference

with multiple CNN models has been carried out where a number of test images are processed

through the FPGA prototype of the proposed unified-CNN engine. One such example where

the classification outcomes for three sample images classified by the VGG-16 CNN-model,

processed in our CNN engine, are presented in Fig. 5.7. As described in section 5.4.1, the

final classification result is displayed on the screen of logic analyzer in the form of a class

ID, while the activations from intermediate layers are stored in memory card. For clarity,

a detailed layer-wise analysis of one sample image has been illustrated in Fig. 5.7, along

with a snapshot of its final classification output on the logic analyzer screen in Fig. 5.5 (b).

Furthermore, the classification results for all three test images are summarized in Fig. 5.7.

Here, the VGG-16 model uses linear layer connections where the activation AC of each

layer is treated as the input I of immediate subsequent-layer. Therefore, it does not require

complete off-loading of the activation of any layer, outside the PE array. However, we

have completely off-loaded the output of some layers in order to store and visualize them,

as shown in Fig. 5.7. When switching between the layers, this chapter reuses as much

activation that can be stored in all the line memories within PE-array and in the storage of

GBCU. Since these data have been generated towards the end of processing the previous

layer, and are being utilized at the beginning of processing the subsequent layer, orientation

of data processing thus flips between two subsequent layers. For this model, lateral and

vertical dimensions of the output data does not change until a pool of operations have been

used. Therefore, for layers 1 and 2, dimension of each channel of the output feature map is

224×224. It is 112×112 for the layers 3 and 4; furthermore, the dimension of each channel

for layers 5−7 is 56×56. Similarly, dimension of each channel for layers 8−10 is 28 × 28,

and for layers 11−13 the dimension of each channel is 14×14. Thus, we have plotted some

channels of the output feature map for layers 1−13, as a gray scale image in Fig. 5.7. For

layers 14−16, the output feature map is 1D array, a preview of them is presented in Fig. 5.7.

Finally, the output of classification layer is a single value, which is the class number of the

object that has been detected by the proposed CNN-inference engine from the input image.
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Human readable labels that are associated with these class numbers are provided with the

ImageNet class-1000 dataset [105]. Here, we have shown the detected class numbers of

three images along with their object labels. It can be seen that the class number generated

by our CNN engine correctly depicts the object present in the input image.

5.4.3 Implementation of Training for Hardware Validation

In this chapter, the proposed unified-CNN engine has been tested with multiple CNN

models to validate its training capability. For better understanding, schematic representa-

tions of layer wise connection of data for both forward and backward passes of one such

model are presented in Fig. 5.8 (a) and (b), respectively. Usually, CNN engine supports sub-

stantially complex CNN-models, the example CNN-model used in Fig. 5.8 are less complex

for the ease of visualization. This is a simple custom-made CNN-model with ten classes,

and the input size of 32×32×3 has been developed using the Python environment in the host

computer. It consists of two Conv layers with kernel size of 3×3 for both, followed by a

maxpool, and two FC layers. Since the input and output dimensions of this model matches

with the requirement of CIFAR-10 dataset [113], we have thus trained it on the CIFAR-10

dataset.

To begin with the training process, using the Python tool in the host computer, the layer

information and randomly initialized weights as well as biases of the chosen CNN-model

are exported in the memory card. As mentioned in section 5.4.1, we have also exported

train images for the data set along with their class labels in the memory card. Thereafter,

following steps are repeated for the desired number of epochs to proceed with the training

process, referring Fig. 5.8.

1. Forward Pass:

(a) Forward Pass on Single Image: Using the software executed on the on-chip

processor of FPGA board, configure the unified-CNN engine with untrained ini-

tial weights. Then, transfer a random train image from a batch to the CNN engine

to perform forward pass. During this forward pass, a copy of computed activa-

tion for all the layers are stored back to DRAM and these activations are used
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during the backward pass to calculate G.W from (5.4). Further, the activation of

classification result has been used to calculate total loss L.

(b) Complete Batch Processing: Repeat the above step (1a) one-by-one for all

images in the batch.

2. Backward Pass:

(a) Gradient Calculation: Configure the unified-CNN engine with 180° rotated

version of the same weights used in step 1. Send both the loss matrices of a

layer for a specific image (via I/L port of KPU) and the activation of previous

layer calculated in step (1a) as the input feature map (via I port of KPU) to calcu-

late G.I and G.W, respectively, using (5.2) and (5.4). Here, the processing occurs

in reverse order to propagate the loss in backward direction. Thus, G.I and G.W

of the last layer is first calculated. Subsequently, this G.I is used as L matrix for

its previous layer.

(b) Complete Batch Processing: Repeat step (2a) for all images in the batch in

one-by-one fashion to generate b set of G.W for a batch size of b.

3. Weight Update After Batch Processing: Compute the average of such b set of G.W

and G.B to determine the final gradients which are denoted as G.W f and G.B f , respec-

tively, for the current batch. Consecutively, update the weights and bias with G.W f

and G.B f using (5.5) and (5.6), respectively.

4. Complete Epochs/Training: Repeat all the above steps 1−3 for either all the epochs

or until the desired level of accuracy has been achieved.

During the training process, all the intermediate data (activations and gradients) move-

ment takes place between DRAM and unified-CNN engine. Moreover, in order to visualize

such results, we have off-loaded some values of G.W and G.I for few layers. Therefore,

G.W for some filters of two layers are shown as 3×3 matrix in Fig. 5.8 (b). Since the lat-

eral × vertical dimension of G.I for these layers is large 32×32-matrix, a 4×8 chunk from

one channel of two G.I has been shown as 4×8 matrix in Fig. 5.8 (b). In order to validate the

correct training ability of the proposed unified-CNN engine, we must evaluate the training

122



result using a standard data set. Therefore, once the training is complete after 30 epochs,

accuracy of the trained model has been evaluated in the Python environment using various

test images of CIFAR-10 data set. Thereafter, the trained weights and biases of the model

is exported from the DRAM of FPGA board to the memory card. It is then inserted in the

host computer where the trained weights are imported to evaluate the model in test images

of the data set. Finally, Fig. 5.9 shows a snapshot of the evaluation result in terms of Top-1

detection accuracy of the model that has been trained in our FPGA-based unified-CNN en-

gine, when evaluated on the test images of CIFAR-10 data set in the Python environment.

The model achieves an average Top-1 accuracy of 96.025%, as shown in Fig 5.9 (a). In

addition, the confusion matrix of the same CNN model has been presented in Fig. 5.9 (b).

Hence, the aforementioned process validates the training capability of the CNN engine that

is based on the proposed unified-CNN accelerator.
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Fig. 5.9: Evaluation accuracy analysis of the CNN-model that has been trained using the proposed
unified-CNN engine: (a) precision, recall, and f1-score, and (b) confusion matrix.

5.4.4 Results and Comparison

The proposed unified-CNN accelerator architecture has been implemented on an FPGA

platform using the AMD-Xilinx Zynq UltraScale+ ZCU102 MPSoC board. The detailed

implementation results of our unified-CNN accelerator are presented in Table 5.1. For a fair

comparison, the unified-CNN accelerator has also been implemented on additional FPGA

123



Ta
bl

e
5.

1:
C

om
pa

ri
so

n
of

Pr
op

os
ed

U
ni

fie
d

C
N

N
A

cc
el

er
at

or
Im

pl
em

en
ta

tio
ns

w
ith

R
el

ev
an

tS
ta

te
-o

f-
th

e-
A

rt
W

or
ks

.

[1
14

]
[1

15
]

[1
16

]
[1

17
]

[1
18

]
[1

19
]

Pr
op

os
ed

Im
pl

em
en

ta
tio

ns

Pl
at

fo
rm

Z
C

U
10

4
Z

C
U

10
4

V
C

70
9

Z
C

U
10

2
K

C
U

15
00

V
C

70
9

Z
C

U
10

2
V

C
70

9
K

C
U

15
00

Z
C

U
10

4

Pr
ec

is
io

n
(i

n
bi

ts
)

B
FP

16
FP

32
IN

T
16

FP
32

PI
N

T
8

PI
N

T
8

B
FP

16
B

FP
16

B
FP

16
B

FP
16

A
cc

ur
ac

y
L

os
s∗
∗

(%
)

'
0

0
0.

3-
0.

6
0

6-
10

6-
10

'
0

'
0

'
0

'
0

C
lo

ck
Fr

eq
ue

nc
y

(M
H

z)
20

0
10

0
N

R
20

0
25

0
20

0
35

4
20

0
25

0
34

3

L
U

T
S

(i
n

ki
lo

)
73

.6
6

16
9.

14
N

R
32

9.
29

19
9

13
2

20
6.

83
21

0.
89

20
6.

88
20

6.
75

FF
s

(i
n

ki
lo

)
26

.8
3

21
9.

37
2

46
6.

04
N

R
N

R
N

R
67

.9
7

67
.8

5
67

.9
7

67
.9

7

B
R

A
M

s
(3

6k
b)

22
0

30
4

N
R

17
4

10
60

24
0

64
64

64
64

D
SP

U
sa

ge
12

85
12

N
R

15
00

10
30

17
28

96
0

96
0

96
0

96
0

Θ
T

(G
O

Ps
)

10
2.

43
4.

39
10

22
86

.1
2

64
1.

1
61

0.
98

67
9.

68
38

4
48

0
65

8.
56

η
M

AC
(M

O
Ps

/M
A

C
)

79
.7

1
36

5.
83

N
R

57
.4

1
62

2.
43

35
3.

42
7

70
8

40
0

50
0

68
6

Po
w

er
C

on
su

m
pt

io
n

(W
)

6.
44

0.
67

32
14

.2
26

.8
8.

44
3.

78
3.

89
3.

40
3.

87

E
ne

rg
y

E
ffi

ci
en

cy
(G

O
Ps

/W
)

15
.8

9
6.

56
31

.9
4

6.
06

23
.9

2
72

.3
9

17
9.

81
98

.7
1

14
1.

02
17

0.
17

N
R

=
no

tr
ep

or
te

d

124



platforms, namely VC709, KCU1500, and ZCU104, which are used in compared state-of-

the-art implementations. As elaborated in section 5.4, all our implementations employ the

BF16 format.

Static timing analysis reveals that the critical path of the unified-CNN accelerator lies

within the HGU, involving a multiplexer, a multiplier, and an adder. Consequently, the

accelerator achieves a peak clock frequency of 354 MHz when implemented on the AMD-

Xilinx Zynq UltraScale+ ZCU102 MPSoC FPGA.

As discussed in section 5.3.2, the proposed KPU architecture ensures uninterrupted

computation, keeping all PEs fully active (σ=1). This results in improved compute effi-

ciency (ηMAC), measured as the number of operations performed per MAC unit per unit time

(OPs/MAC). Compared to prior works [119], [115], and [117], our architecture demonstrates

a ηMAC improvement of 1.13×, 1.87×, and 12×, respectively, as shown in Table 5.1.

As discussed extensively in chapters 3 and 4, power consumption in CNN engines is

largely influenced by data transfers between off-chip DRAM and the accelerator. Reduc-

ing off-chip data movement and improving data reuse are crucial for energy efficiency.

As detailed in Section 5.3.3.1, the proposed KPU architecture enables shared access to

a single line memory across n PEs and one HGU. During the forward pass, each input

(I) is reused δ(α−s)2 times, while during the backward pass, each loss value (L) is reused

{δ(α−s)2 + (α−s)} times. Additionally, filter values are reused (A−s)2 times in both passes.

This significantly reduces off-chip memory transactions, leading to improved energy effi-

ciency. Specifically, the proposed unified-CNN accelerator achieves 1.36×, 5.89×, 10.70×,

and 29.64× higher energy efficiency (OPs/watt) compared to the architectures reported

in [119], [118], [114], and [117], respectively.

The improved results in this chapter stem from the unified architecture that supports both

training and inference within the same hardware framework. Conventional designs either

optimize inference alone or provide partial training support, often duplicating hardware or

underutilizing resources. The proposed architecture eliminates such redundancy by reusing

the same processing elements for forward propagation, backward propagation, and weight

updates. Furthermore, it exploits reuse of gradients, activations, and weights across training

iterations, thereby reducing redundant memory transfers. Moreover, it uses BFP16 format,

125



which maintains the full dynamic range of FP32. Hence, this unified and reuse-driven ap-

proach along with high dynamic range allow the accelerator to deliver high throughput and

energy efficiency for both training and inference at FP32-level accuracy, which prior designs

could not achieve simultaneously.

5.5 Summary

This chapter presented an unified-CNN accelerator architecture designed to efficiently

support both inference and training workloads. Our accelerator architecture was incorpo-

rated with design-level optimizations to improve the utilization of PEs and maximized local

data reuse, which in turn enhanced both computational performance and energy efficiency.

Central to the design is a gradient compute unit that managed large kernel operations and

used backpropagated loss values to more effectively compute gradient filter weights and

activation gradients. The complete architecture was implemented on a Zynq UltraScale+

ZCU102 FPGA board, where it achieved a peak throughput of 679.7 GOPs at 354 MHz.

Its performance was validated using standard CNN models under real-world test conditions.

When compared with the state-of-the-art accelerators, the proposed design demonstrated

substantial gains, achieving up to 12.3× higher hardware efficiency and 10.7× better energy

efficiency making it well-suited for deployment in edge computing scenarios.
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Chapter 6

Summary, Conclusion and Future

Directions

6.1 Thesis Summary

AI has become a cornerstone of innovation across numerous sectors, from healthcare and

autonomous systems to industrial automation and cybersecurity. A significant contributor to

this progress is the use of CNNs, particularly in the domain of computer vision and pattern

recognition. However, these models incur increasing computational and memory demands,

making their efficient deployment on constrained platforms such as edge devices particu-

larly challenging. The growing depth and complexity of modern CNNs, while beneficial for

accuracy and generalization, impose burdensome costs in terms of power, memory access,

and throughput requirements. While general-purpose processors and GPUs offer flexibility,

they fall short in energy efficiency and scalability, especially under edge constraints. Con-

sequently, there is a clear need for tailored hardware accelerators that can strike a balance

between performance, energy efficiency, and resource optimization. This thesis explored a

comprehensive framework for the design and development of high-throughput, hardware-

efficient CNN accelerators, with an emphasis on real-time operation and edge compatibility.

The solutions in our thesis cover a wide range of architectural challenges, including convo-

lution flexibility, data reuse, memory bandwidth optimization, and unified support for both

training and inference.
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This thesis proposed a sequence of architectural enhancements aimed at improving the

hardware efficiency, energy consumption, and functional scope of CNN accelerators, with a

particular focus on edge deployment. Our work began by addressing the challenge of filter-

size diversity in modern CNN models. To improve compatibility and hardware utilization,

an adaptive convolution mapping approach was introduced. This technique enabled large

filters, such as 5×5 and 7×7, to be restructured into multiple 3×3 operations, which are pro-

cessed using a common PE array. As a result, the design supported variety of convolutional

layers without requiring separate processing pipelines for each kernel size. This architec-

tural feature has been discussed in chapter 2 and was supported by Fig. 6.1. It presents the

resulting gain in PE efficiency relative to conventional fixed-kernel designs.
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Furthermore, this thesis explored ways to sustain computation without interruption from

memory bottlenecks. In chapter 3, a line-stationary processing technique based on a RALB

proposed to minimize computation stalling during data movements. This approach has been

expanded in chapter 4 through the introduction of a redesigned PE micro-architecture and

an optimized line-memory structure. These two stages collectively improved throughput

density, as illustrated in Fig. 6.2, where the proposed designs demonstrate stepwise im-

provements over a conventional baseline.

Energy efficiency was also addressed by reducing redundant memory transfers. Chap-

ter 3 demonstrated that the local data reuse via RALB lowers external memory dependence,

which contributes to energy-aware design. Chapter 4 has built on this idea by introducing
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full-model data reuse and on-chip classification, thereby extending the reuse benefits to the

entire inference pipeline. These modifications minimized the overall energy footprint, as

reflected in Fig. 6.3, where the measured energy efficiency shows consistent improvement

with each architectural iteration.

To validate the architectural components in a real-world scenario, a complete inference

engine was designed by integrating the kernel and classification units into a single process-

ing pipeline. Efficient memory sharing schemes were used to reduce resource duplication,

and the proposed CNN engine has been evaluated using widely adopted models such as

MobileNetV2 and ResNet50. The system was implemented and tested on FPGA and ASIC

platforms, demonstrating model compatibility and consistent performance under constrained

hardware conditions.

In addition to inference, the thesis introduced a unified accelerator design in chapter 5

that supported both training and inference using a common hardware backend. By incorpo-

rating a gradient computation unit and reusing shared resources across training phases, our

design eliminated the need for a separate inference pipeline during training. This enables

on-device training capability that is an important requirement for applications involving

continual learning or model updates. The functional distinction between this unified accel-

erator and conventional training-only designs is summarized in Fig. 6.4, which indicates the

extended support for both forward and backward passes.
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Fig. 6.5: Summary of architectural contributions across chapters showing progression from convo-
lution mapping to unified training support.

The architectural decisions presented in this work followed a stepwise design method-

ology, where each chapter introduced an additional layer of optimization to the previous

framework. These include progressive support for adaptive filter mapping, uninterrupted

processing, energy-aware data reuse, optimized memory sharing, and full training support.

The combined effect of these contributions is summarized in Fig. 6.5, which outlines the

interconnected nature of the enhancements across the thesis.

In nutshell, our contributions offer a practical and modular architecture that addresses

the computation, memory, and adaptability limitations of conventional CNN accelerators.

The proposed solutions support scalable CNN execution with improved hardware utiliza-

tion, reduced energy cost, and extended training capabilities, making them well-suited for

deployment in real-time and edge-based AI systems.

6.2 Conclusion

CNNs are poised to play an increasingly vital role in the future edge intelligence-systems.

As computer vision applications proliferate across mobile and embedded platforms, the need

for compact and efficient CNN processing at the edge becomes one of the essential require-

ments. With their ability to extract rich and hierarchical features from raw sensory data,

CNNs offer significant potential for enabling intelligent and real-time decision-making di-
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rectly on edge devices without relying on the cloud connectivity. Edge platforms are fun-

damentally limited by area, power, and memory constraints, while CNNs typically demand

high computational throughput and substantial data movement. Furthermore, the growing

interest in on-device learning introduces additional complexity that demands the support not

only for the inference, rather for resource-intensive training operations as well. Therefore, it

becomes necessary to design an efficient high-speed CNN-accelerator that delivers excellent

inference and training performances in real-time scenario. Furthermore, it should be cost-

effective, must consume low-power and deliver higher data-rate. Hence, based on afore-

mentioned contemporary requirements, our thesis presented new techniques for efficient

and adaptive mapping of CNN kernels with corresponding hardware architectures for unin-

terrupted processing and energy efficient local reuse for both forward and backward passes

of CNN inference and training. The overall contributions from our thesis has been shown

in Fig. 6.5. Furthermore, our research works presented in this thesis concludes that the

combination of adaptive convolution mapping with uninterrupted processing better utilizes

the available processing elements in CNN accelerator architecture. Hence, it maximizes the

throughput density in comparison to other alternatives. Additionally, on exploiting on-chip

local reuse using the line stationary approach for all data of both inference and training sig-

nificantly minimizes the power consumption for CNN processing over other implementation

approaches from the literature. Therefore, it is necessary to explore CNN accelerator design

from the perspective of adaptive kernel mapping, uninterrupted processing and maximum

reuse of on-chip local data in order to conceive the best CNN accelerator for intelligence

systems edge-applications.

6.3 Future Directions

While this thesis has addressed several foundational challenges in the development of

hardware-efficient and high-throughput CNN accelerators, there remain many promising

avenues for further exploration. The architectural strategies introduced here can be extended

to accommodate emerging trends in neural network design, memory systems, and hardware

scalability.
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One potential direction is the support for transformer-based architectures. With the

rising adoption of Vision Transformers (ViT), Swin Transformers, and similar attention-

driven models in the field of computer vision, extending the proposed accelerator to handle

attention-based computations could significantly expand its applicability. Efficiently map-

ping components such as multi-head self-attention and positional encoding onto hardware

remains an open challenge, particularly for edge platforms where energy and resource con-

straints are critical.

Another important extension involves the incorporation of mixed-precision computation

and quantization-aware training. By enabling layer-wise precision control and training-time

awareness of quantization effects, future versions of the architecture could achieve better

trade-offs between accuracy, energy consumption, and area footprint. These optimizations

are particularly relevant for deployment on ultra-low-power or battery-operated devices.

Scalability across multiple accelerator instances is also worth investigating. As deep

learning models grow in size and complexity, supporting distributed execution across mul-

tiple chips or cores becomes essential. Future designs could incorporate interconnect and

synchronization mechanisms to efficiently parallelize CNN processing while maintaining

real-time performance guarantees.

In safety-critical applications like autonomous driving and medical diagnostics, the ro-

bustness and trustworthiness of AI hardware are paramount. Enhancing the fault tolerance

and security of the accelerator is therefore a key direction for future work. This may include

error detection and correction in PE arrays, secure memory access, and lightweight encryp-

tion techniques to protect model parameters and intermediate activations from unauthorized

access or data corruption.

Finally, a full ASIC implementation and tape-out of the proposed accelerator could yield

valuable insights into post-silicon behavior. Although ASIC synthesis was performed as

part of this work, actual fabrication and testing would enable thermal, parasitic, and signal-

integrity-aware validation under real-world conditions. Such an evaluation would not only

benchmark the architecture against industrial standards but also help guide iterative refine-

ments toward commercialization.
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