• Instructor: Parimala Kancharla: (office: A17.03.06, email: parimala@iitmandi.ac.in)
  • Office Hours: (or by appointment)
  • Discussion Forum: Piazza code-ds411 ,To Join
  • Credit Structure: 3-1-0-4
  • Class Venue: A17-1B
  • Class Timings: F-slot
  • Syllabus
  • TAs
    1. Pallav Dwivedi (s23104@students.iitmandi.ac.in)
    2. Siddharath Shakya (s23048@students.iitmandi.ac.in)
    3. Kriti Khare
    4. Mridul Sharma

    Evaluation

  • Tutorials/Quizzes - 10%
  • Midsem - 25%
  • Endsem - 40%
  • Lab
    1. Assignments - 25%

    Resources

    S.N Topic Slides Notes External References
    1. Introduction Slides Notes
    1. Cost function of neural network is non-convex?
    2. Basic Calculus Slides Notes
    1. How does autograd work?
    2. Difference between True and Numerical Gradient
    3. Universal Approximation Theorem-Back Propagation Slides Notes
    1. Theoritical proof for UAT
    2. Visual Proof for UAT
    4. Auto Differentiation - Why Backpropagation? Slides Notes
    1. Auto Differentiation
    2. A Step-by-step Introduction to the Implementation of Automatic Differentiation
    5. Jacobian and Hessian Matrix Slides Notes
    1. Jacobian and Hessian
    2. How are Jacobian and Hessian Matrices used in ML
    6. Convexset and Convex Function Slides Notes
    1. Understanding Convexity
    7. Taylor's Approximation Slides Notes
    1. Taylor's Theorem Visualization (Change (a,N) and Observe)
    8. Quadratic Approximation - Notes
    1. Quadratic Approximation using Hessian
    9. Equivalent Definitions for Convex Function - Notes
    1. Practice Problems for Convex Function

    Assignments&Tutorials

    S.N Material Due Date
    1. Assignment-0 08/02/2025
    2. Tutorial-1 -